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Abstract

To quantify interactions between drug molecules and target receptors, a novel
nanoscale electronics instrument is under development. The instrument consists
of two regions: a biological region, and an electronics region. The biological re-
gion consists of a well containing a buffer fluid, and receptors immobilized on a
biochemical gate at the well-surface. The electronics regions consists of a semi-
conductor channel, through which current is flowing from source to drain. During
a typical experiment ligand molecules are injected at the top of the well, and diffuse
to the surface to bind with receptors. Ligand binding with receptors modulates cur-
rent flow through the semiconductor channel, thereby producing a time-dependent
current signal which can be used to study the biochemical process of interest. To
quantify the coupling between diffusion and reaction, a partial differential equa-
tion model for this system is developed. It is shown that one can exploit disparate
length scales associated with the device to reduce the coupled PDE model to a sin-
gle nonlinear integrodifferential equation for the reacting species concentration. A
numerical solution to this equation is found with the method of lines, and results
reveal the presence of a depletion region on the biochemical gate. The size of the
depletion region is directly related to the Damköhler number.

1 Introduction
Recent advances in genetics and medical technology have put physicians and researchers
closer to realizing preciesion medicine–an approach which centers on tailoring treat-
ment protocols to individuals based upon their environment, genetic information, and
lifestyle. To customize treatment protocols physicians must be able to quickly measure
markers and evaluate the efficacy of a given therapy, which requires precise measure-
ments of drug molecule-protein interactions. Although technology such as Surface
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Plasmon Resonance (SPR) biosensing, mass spectroscopy, or Nuclear Magnetic Res-
onance (NMR) spectroscopy can be used, these tools are time-consuming, expensive,
and cannot be utilized point-of-care. This has motivated the development of a novel
nanoscale electronics instrument at NIST, designed to provide fast, accurate, inexpen-
sive, and portable measurements of interactions between drug molecules and their tar-
get receptors. A schematic of the device is depicted in Figure 1.1. The instrument is
partitioned into two regions: a biological region and an electronics region. The elec-
tronics region consists of a semiconductor channel through which current flows from
source to drain. The biological region consists of a well containing a buffer fluid, and
receptors immobilized on a biochemical gate at the well floor. During a typical experi-
ment ligand molecules are injected at the top of the well at concentration C(x,y, t), and
diffuse to the surface to bind with receptors confined to the biochemical gate, creating
bound ligand molecules at concentration B(x, t). Ligand binding with receptors on the
biochemical gate modulates current flow through the semiconductor channel, resulting
a time-dependent current signal which may be used measure drug molecule-protein in-
teractions. For example, the signal thus obtained could be used to estimate kinetic rate
constants associated with these reactions.

Source Drain

Semiconductor channel

Biochemical gate

Figure 1.1: Schematic of the nanoscale electronics instrument. Ligand molecules in-
jected at the top of the well diffuse to the surface to bind with receptors immobilized
on the biochemical gate. This schematic is not drawn to scale. In particular, the length
of the well floor is on the order of millimeters, while the length of the biochemical gate
is on the order of micrometers.

This instrument is an example of a Biological Field Effect Transistor (Bio-FET),
and has a number of advantages. In contrast with techniques such as fluorescent mi-
croscopy, this instrument does not require protein labeling. Such techniques are not
only economically disadvantageous, but also introduce the possibility of modifying
protein activity, rendering any measurements suspect. Furthermore, this instrument
enjoys high sensitivity and selectivity. In addition, the instrument is designed to be
portable and inexpensive.

Since the ability to interpret experimental results relies on an accurate mathemat-
ical model, this nanoscale electronics instrument raises several interesting mathemat-
ical questions. Of particular interest is a quantitative description of the coupling be-
tween bound ligand evolution and diffusion. To the authors’ knowledge this is a previ-
ously unexplored area of mathematical inquiry, though a Poisson-Boltzman approach
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to model sensor physics is common. For example in [4] Heitzinger et al. use the
Poisson-Boltzman equation to develop a multiple-scale model for the electric poten-
tial distribution within semiconductors of planar and nanowire field effect biosensors.
Therein, the authors model these devices using three layers: a semiconductor layer, a
dielectric layer, and a discrete layer of biomolecules immobilized on the dieletric layer.
Homogenization techniques are employed to reconcile the biomolecule length scale
with the semiconductor length scale, and interface conditions for the biomolecule-
dielectric interface are derived. It must be noted that there are several important dif-
ferences between [4] and the present manuscript. Perhaps the most stark contrast is
that [4] focuses on the electric potential distribution within the semiconductor channel,
whereas the present manuscript concerns the coupling between reaction and diffusion.
Furthermore, while the authors of [4] model the biomolecule layer with a discrete num-
ber of biomolecules and use homogenization techniques, in the present manuscript
we adopt a continuum perspective. Moreover, [4] assumes a steady distribution of
biomolecules on the dielectric layer, while the present manuscript concerns the evo-
lution of B(x, t). This is an experimentally relevant difference: the instrument under
consideration produces time-dependent data and an unsteady model for B(x, t) is neces-
sary. For example, with a steady model one could estimate the equilibrium dissociation
rate constant in a given reaction, however it is not clear how one could a steady model
to extract the kinetic rate constants themselves.

A Poisson-Boltzman approach is also employed in [5], where a one-dimensional
Poisson-Boltzman equation is used to model a layer of biological macromolecules on
the gate of a metal-oxide-semiconductor transistor. A similar one-dimensional Poisson-
Boltzman model is also described in [1]. A three-dimensional model is proposed in [2],
where the authors model the electric potential in an aqueous solution and semiconduc-
tor channel with a Poisson-Boltzman equation. These two regions are coupled through
interface conditions derived from Monte-Carlo simulations which calculate the charge
distribution resulting from a layer of charged biomolecules on the semiconductor’s sur-
face. For other examples of a Poisson-Boltzman approach one may see [3, 6, 8]. Note
that all of these models assume a steady distribution of biomolecules, and thus cannot
be used to analyze time-dependent data.

In [7] Hietzinger and coworkers calculate numerical values for the kinetic parame-
ters governing adsorption and desorption processes of carbon monoxide at a tin diox-
ide single-nanowire gas sensor. Therein, the authors adopt a continuum perspective
by modeling surface reactions on a single-nanowire gas sensor through a set of dif-
ferential equations. However, in [7] the authors simply apply the well-stirred kinetics
approximation in which gaseous carbon monoxide transport is completely divorced
from adsorption and desorption processes at the surface. This reduces their model to a
nonlinear set of Ordinary Differential Equations, which can be used to estimate kinetic
rate constants involved in the reaction of interest.

Hence, although the significance of the interplay between reaction and diffusion in
biosensors is well-known, to date these effects have not been quantified in the context
of Bio-FETs. In the present manuscript we develop a quantitative description of the
coupling between reaction and diffusion for the novel nanoscale electronics instrument
described herein. In particular, we consider the experimentally relevant limit of very
low ligand concentrations–i.e., on the order of pico- to femtomolar concentrations–and
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very fast assocation rates. This problem is interesting because it involves multiple time
and length scales. While the length scale of the well is on the order of millimeters,
the length scale of the biochemical gate is on the order of micrometers. Furthermore,
while the rate at which ligand molecules diffuse through the well is very slow, the
rate at which they bind with receptors is very fast. The consideration of multiple time
and length scales reveals that the evolution of the reacting species concentration B(x, t)
depends heavily upon a diffusive boundary layer near the surface.

We begin in Section 2 by developing a mathematical model for an experiment in
which ligand molecules are continuously and uniformly injected into the nanoscale
electronics instrument. It must be noted that although, in practice experimentalists in-
ject ligand molecules over only a very narrow portion of the well, this idealization was
made to obtain useful analytic results. Future work will include a comparison of exper-
imental data with the present model. Given this assumption, our model takes the form
of a diffusion equation coupled to a Partial Differential Equation (PDE) describing
reaction on the biochemical gate. In Subsection 2.1 the governing equations are pre-
sented, and it is shown that there are multiple time and length scales associated with the
experiment. In Subsection 2.2, techniques from complex analysis are used to reduce
the coupled PDE system to a single nonlinear Integrodifferential Equation (IDE) for
the reacting species concentration. A quadrature-free numerical solution based on the
method of lines is developed in Section 3, where it is shown that this method acheives
first-order accuracy despite a singular convolution kernal. Results and their physical
interpretations are discussed in Section 4, and concluding remarks are given in Section
5.

2 Governing Equations

2.1 Mathematical Model
We consider the geometry shown in Figure 1.1, and take our domain to be the rectangle
(x̃, ỹ) ∈ [0, L̃]× [0, H̃], with the origin (0,0) located at the lower-left corner of the
well. The parameters L̃ and H̃ are the height and length of the well respectively; for
parameter values see Table 2.1. Throughout manuscript paper tildes are used to denote
dimensional quantities. Receptors are confined to the biochemical gate on the sensor
surface, which occupies the very narrow region (x̃, ỹ) ∈ [−l̃s/2+ L̃/2, L̃/2+ l̃s]×0 =

[x̃min, x̃max]× 0, where l̃s denotes length of the biochemical gate and [x̃min, x̃max] :=
[−l̃s/2+ L̃/2, L̃/2+ l̃s]. It is important to note the while the length scale of the well is
on the order of millimeters, the length scale of the biochemical gate is on the order of
micrometers.

Assuming that ligand molecules are continuously and uniformly injected at the top
of the well, ligand transport is governed by the diffusion equation which is expressed
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Table 2.1: Bounds for dimensional and dimensionless parameters are given below.

Necessary Parameters Ancillary Parameters
Parameter Range Reference Parameter Range
D̃ (cm2/s) 10−6 Dw 4×10−3–40
k̃a (cm3 · (mol · s)−1) 1011–1012 D 4×103–4×107

k̃d (s−1) 10−5 – 1 Daw 3321.1–66420.0
C̃u (mol · cm−3) 10−18–10−15 Da 3.32110–66.4200
R̃t (mol · cm−2) 6.6422×10−14–1.3284×10−13 K 10−2–107

H̃ (cm) 0.2 ε .4
L̃ (cm) 0.5 ls 10−3

l̃s (cm) 5×10−4

in dimensionless form as:

∂C
∂ t

= Dw

(
ε

2 ∂ 2C
∂x2 +

∂ 2C
∂y2

)
, (2.1a)

C(x,y,0) = 0, (2.1b)
∂C
∂x

(0,y, t) =
∂C
∂x

(1,y, t) = 0. (2.1c)

Equation (2.1a) is the diffusion equation, (2.1b) is the initial condition, and (2.1c) are
no-flux conditions which hold on the sides of the well. In writing (2.1a)–(2.1c), we
have nondimensionalized the spatial variables x̃ and ỹ using the well dimensions by
setting x= x̃/L̃ and y= ỹ/H̃. Additionally, since we are interested in reaction dynamics
on the sensor surface, the time variable has been scaled by the forward reaction rate
t = k̃aC̃ut̃. Here C̃u is the uniform injection concentration at the top of the well.

In (2.1a)–(2.1c) ε = O(1) is the aspect ratio, and

Dw =
D̃

H̃2k̃aC̃u
=

D̃/H̃2

k̃aC̃u
(2.2)

is the dimensionless diffusion coefficient, which is the ratio of the time scale on which
ligand molecules diffuse through the well D̃/H̃2 to the time scale for forward reac-
tion k̃aC̃u. The subscript w indicates that the independent variables are currently scaled
with the well dimensions. It is seen in Table 2.1 that Dw = O(10−3)–O(10), which
implies that diffusion through the well is either slower or slightly faster than the for-
ward reaction rate. The latter case is interesting since it implies that the time scale
diffusion through the well is slightly faster than the time scale of forward reaction; this
phenomenon arises in the limit of femtomolar ligand concentrations C̃u.

To state the bottom boundary condition associated with (2.1a)–(2.1c) we observe
that when (x,y) 6∈ [xmin,xmax]×0 there is no flux through the surface of the well, while
when (x,y) ∈ [xmin,xmax]×0 the diffusive flux normal to the binding surface is used in
forming bound ligand B(x, t). These two conditions are expressed compactly as:

(n ·∇C)|y=0= Daw χs [−(1− B̃)C̃(x,0, t)+KB]. (2.3)
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In (2.3) n = (0,−1) denotes the outward unit normal vector, χs is the characteristic
function defined as

χs(x) =
{

1 x ∈ [xmin,xmax],
0 x 6∈ [xmin,xmax],

(2.4)

and K = k̃d/(k̃aC̃u) is the dimensionless equilibrium dissociation rate constant. Fur-
thermore, since the bound ligand concentration is governed by the kinetics equation

∂B
∂ t

= (1−B)C(x,0, t)−KB, (2.5a)

B(x,0) = 0, (2.5b)

we can express (2.3) as
∂C
∂y

(x,0, t) = Daw
∂B
∂ t

. (2.6)

The complete Partial Differential Equation (PDE) system is then given by (2.1), (2.5),
and (2.6).

In (2.3) and (2.6), the important dimensionless parameter

Daw =
H̃k̃aR̃t

D̃
=

k̃aR̃t

D̃/H̃
(2.7)

is the Damköhler number, which is the ratio of reaction “velocity” to diffusion“velocity”.
It is seen in Table 2.1 that Daw� 1, which implies that reaction velocity is much faster
than diffusion velocity. This is a direct consequence of the fact that there are multiple
time and length scales associated with the experiment: ligand molecules must diffuse
a distance on the order of millimeters to arrive at the reacting-surface, and the speed at
which this happens is far slower than the reaction velocity.

Using the fact that Daw� 1 reduces (2.6) to

∂B
∂ t

= 0, (2.8)

which implies that to leading-order B(x, t) is in steady-state. Substituting (2.8) into
(2.5) gives

C(x,0, t) =
KB

1−B
, (2.9)

which implies that reaction happens so quickly that the unbound ligand concentration
must adjust to the proper concentration at the surface. This reflects the diffusion-limited
nature of the kinetics system under consideration: ligand molecules slowly diffuse
through the well, and are very quickly incorporated into the surface. To study reaction
dynamics we must examine diffusion of ligand molecules near the biochemical gate
into the surface. To this end, we introduce the boundary layer coordinates

x =
x−1/2

ls
, y =

ε

ls
y. (2.10)
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In (2.10)

ls =
l̃s
L̃

(2.11)

is the ratio of biochemical gate length l̃s to the well length L̃, and is very small. Intro-
ducing these scalings into (2.1a)–(2.1c) and (2.6) transform these equations into

∂C
∂ t

= D
(

∂ 2C
∂x2 +

∂ 2C
∂y2

)
, (2.12a)

C(x,y,0) = 0, (2.12b)
C(x,ε/ls, t) = 1, (2.12c)
∂C
∂x

(−1/(2ls),y, t) =
∂C
∂x

(1/(2ls),y, t) = 0, (2.12d)

∂C
∂y

(x,0, t) = Da
∂B
∂ t

χs. (2.12e)

Furthermore, the kinetics equation (2.5) becomes

∂B
∂ t

= (1−B)C(x,0, t)−KB, (2.13a)

B(x,0) = 0. (2.13b)

Observe that transitioning to boundary layer coordinates has had the effect of rescal-
ing Dw and Daw. The parameter

D =
D̃

l̃2
s k̃aC̃u

=
D̃/l̃2

s

k̃aC̃u
(2.14)

is the dimensionless diffusion coefficient on this length scale, and is the ratio of the
diffusive time scale over a region of size l̃2

s to the forward reaction rate. From Table
2.1 it is seen that D� 1, which implies that diffusion over micrometer length scales is
much faster than the forward reaction rate. This is intuitive since we are considering
picomolar to femtomolar ligand concentrations. Furthermore

Da =
k̃aR̃t l̃s

D̃
=

k̃aR̃t

D̃/l̃s
(2.15)

is the Damköhler number on these length scales. Since Da is an O(1) to O(10) param-
eter, on these length scales reaction velocity is the same as or only slightly faster than
the diffusion velocity. Equation (2.12e) then implies that reaction now balances with
diffusion near the surface into receptors on the biochemical gate.

2.2 Integrodifferential Equation Reduction
Since D� 1, we neglect the left hand side of (2.12a) which reduces this equation to

∇
2C = 0. (2.16)
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Physically, equation (2.16) implies that near the surface C is in a quasi-steady-state and
change in the unbound concentration is driven by the surface-reaction (2.12e). Further-
more, since ls� 1 we do not concern ourselves with satisfying the no-flux conditions
(2.12d) and take our domain to be the infinite strip R× [0,ε/ls]. This idealization is
physically motivated and justified by the fact that the biochemical gate occupies a very
narrow portion of the well surface, so the walls of the well will not appreciably affect
ligand binding.

To solve the resulting set of PDEs we search for solutions of the form

C(x,y, t) = 1+Cb(x,y, t), (2.17)

where Cb satisfies

∇
2Cb = 0, (2.18a)

Cb(x,ε/ls, t) = 0, (2.18b)
∂Cb

∂y
(x,0, t) = Da

∂B
∂ t

χs, (2.18c)

for (x,y)∈R× [0,ε/ls]. To solve (2.18) we introduce a Fourier transform in x, defining
the Fourier transform as

(Fu)(ω) := û(ω) =
∫

∞

−∞

u(x)eiωx dx, (2.19a)

so that the inverse Fourier Transform is given by

(F−1û)(x) = u(x) =
1

2π

∫
∞

−∞

û(ω)e−iωx dx. (2.19b)

Applying a Fourier transform to (2.18) and solving the resulting equation in frequency
domain gives

Ĉb(ω,y, t) =−Da sinh((εl−1
s − y)ω)

ω cosh(εl−1
s ω)

∂ B̂
∂ t

(ω, t)?
(

sin(ω/2)
ω/2

)
, (2.20)

where the convolution product has been defined so that

∂ B̂
∂ t

(ω, t)?
(

sin(ω/2)
ω/2

)
=
∫

∞

−∞

∂ B̂
∂ t

(ω−ν , t)
sin(ν/2)

ν/2
dν . (2.21)

Now observe that in order to study the dynamics of interest, i.e. reaction, we need a
closed-form for C(x,y, t) only on the surface at y = 0. Thus it is sufficient to invert

Ĉb(ω,0, t) =−Da tanh((εl−1
s )ω)

ω

∂ B̂
∂ t

(ω, t)?
(

sin(ω/2)
ω/2

)
. (2.22)

To this end we seek to apply the convolution theorem, and note that by duality

F−1

(
∂ B̂
∂ t

(ω, t)?
(

sin(ω/2)
ω/2

))
=

∂B
∂ t

(x, t)χs(x). (2.23)
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Inverting (2.22) is then a matter of finding the inverse Fourier transform of

f̂ (ω) =
tanh(aω)

ω
, a = εl−1

s , (2.24)

which requires computing

F−1( f̂ (ω)) = f (x) =
1

2π

∫
∞

−∞

tanh(aω)

ω
e−iωx dω. (2.25)

Observe that when x = 0 the integrand

tanh(aω)

ω
=

eaω − e−aω

ω(eaω + e−aω)
(2.26)

decays at a rate of 1/ω as ω →±∞. Thus (2.25) is not integrable when x = 0, and the
inverse transform of f̂ is singular at the origin. Evaluating the integral in (2.25) may
then be broken up into two cases: when x > 0 and when x < 0. We first consider the
latter by extending the integral into the complex plane in the manner depicted in Figure
2.1. To fix notation we let C(n) = ∑C(n)

j .

Re ω

Im ω

ρn−ρn Rn−Rn

C(n)
2

C(n)
4

C(n)
1 C(n)

3

Figure 2.1: The contour used to calculate (2.25) when x < 0.

Since the hyperbolic tangent function has a countably infinite number of singulari-
ties along the imaginary axis, care must be taken to ensure that the path of integration
does not intersect one of them. The singularities will occur when ω = 0 or

eαω + e−αω = 0. (2.27)

Note the contour depicted in Figure 2.1 does not pass through the singularity at the
origin; in fact, since

lim
ω→0

tanh(aω) = 0 (2.28)

this singularity would not have contributed to (3.5) if we had placed the semi-circle of
radius ρn in the lower half-plane. Equation (2.27) then implies there are singularites at

ω =
πi(2n+1)

2a
, (2.29)
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for each n ∈ Z. Then taking the radii of our semi-circles to be

ρn = π/((n+2)a), (2.30a)
Rn = πn/a, (2.30b)

the path of integration will never intersect one of the singularities, and Cauchy’s Residue
Theorem may be applied:∮

C(n)

tanh(aω)

ω
e−iωx dω = 2πi

n−1

∑
k=0

I(C(n),ak) Res
(

tanh(aω)

ω
e−iωx;αn

)
. (2.31a)

In (2.31a) the singularities and their residues have been denoted

αk = πi(2k+1)/(2a), (2.31b)

Res
(

tanh(aω)

ω
e−iωx;αk

)
, (2.31c)

and the winding number or index of C(n) with respect to ak has been denoted by as

I(C(n),ak). (2.31d)

Since one may calculate the residues of the integrand in (2.25) to be

Res
(

tanh(aω)

ω
e−iωx;αk

)
=−2ie(2k+1)πx/(2a)

π(2k+1)
, (2.32)

Cauchy’s Residue Theorem (2.31a) implies∮
C(n)

tanh(aω)

ω
e−iωx dω = 4

n−1

∑
k=0

e(2k+1)πx/(2a)

(2k+1)
, (2.33)

and letting n approach infinity gives

lim
n→∞

∮
C(n)

tanh(aω)

ω
e−iωx dω = 4

∞

∑
k=0

e(2k+1)πx/(2a)

(2k+1)
. (2.34)

On the other hand

lim
n→∞

∮
C(n)

tanh(aω)

ω
e−iωx dω = lim

n→∞

4

∑
j=1

∮
C(n)

j

tanh(aω)

ω
e−iωx dω. (2.35)

As we shall show the second and fourth terms in the above sum vanish, leaving only
contributions from the contours C(n)

1 and C(n)
3 which traverse the real line. First con-

sider the second term; i.e., the portion of the integral which traverses the contour C(n)
2 .

Parameterizing C(n)
2 by ω = ρneiθ , for θ ∈ [π,0], implies

lim
n→∞

∮
C(n)

2

tanh(aω)

ω
e−iωx dω = lim

n→∞
i
∫ 0

π

tanh(aρneiθ )eρn(−icos(θ)+sin(θ))x dθ , (2.36)
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and formally exchanging the limiting operations yields

i
∫ 0

π

lim
n→∞

tanh(aρneiθ )eρn(−icos(θ)+sin(θ))x dθ = 0 (2.37)

since limn→∞ tanh(aρneiθ ) = 0. Thus, the contribution of (2.36) to (2.35) vanishes as
n→ ∞. In a similar manner C(n)

4 may be parameterized as ω = Rneiθ , for θ ∈ [π,0], to
yield

lim
n→∞

∮
C(n)

4

tanh(aω)

ω
e−iωx dω = lim

n→∞
i
∫

π

0
tanh(aRneiθ )eRn(−icos(θ)+sin(θ))x dθ . (2.38)

Then formally exchanging the limiting operations gives

i
∫

π

0
lim
n→∞

tanh(aRneiθ )eRn(−icos(θ)+sin(θ))x dθ = 0, (2.39)

which follows since x < 0, sin(θ)> 0 almost everywhere on [0,π], and the fact that
tanh(aRneiθ ) remains bounded as n→ ∞.

Then since

lim
n→∞

∮
C(n)

1

tanh(aω)

ω
e−iωx dω =

∫ 0

−∞

tanh(aω)

ω
e−iωx dω, (2.40)

and

lim
n→∞

∮
C(n)

3

tanh(aω)

ω
e−iωx dω =

∫
∞

0

tanh(aω)

ω
e−iωx dω, (2.41)

equation (2.35) implies

lim
n→∞

∮
C(n)

tanh(aω)

ω
e−iωx dω =

∫
∞

−∞

tanh(aω)

ω
e−iωx dω. (2.42)

Moreover, (2.34) together with (2.42) implies∫
∞

−∞

tanh(aω)

ω
e−iωx dω = 4

∞

∑
n=0

e(2k+1)πx/(2a)

(2k+1)
. (2.43)

However, the Maclaurin expansion for the inverse hyperbolic tangent function is

tanh−1(x) =
∞

∑
k=0

x2k+1

2k+1
. (2.44)

Hence when x < 0 the inverse Fourier transform of (2.24) is given by

f (x) =
2
π

tanh−1(eπlsx/(2ε)). (2.45)

It remains to find the inverse Fourier transform of (2.24) when x > 0; this is done in
analogous manner by extending (2.47) into the complex plane in the manner depicted
in (2.2). Doing so and using arguments similar to those for the case when x < 0 leads
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Re ω

Im ω

ρn−ρn Rn−Rn

C(n)
2

C(n)
4

C(n)
1 C(n)

3

Figure 2.2: The contour used to calculate (2.25) when x < 0.

to the conclusion that
f (x) =

2
π

tanh−1(e−πlsx/(2ε)) (2.46)

when x > 0.
In summary: the inverse transform of (2.24) is singular at the origin, (2.45) when

x < 0, and (2.46) when x > 0. Putting these three observations together leads to the
conclusion that the inverse Fourier transform of (2.24) is

f (x) = tanh−1(e−πls|x|/(2ε)). (2.47)

Since the inverse Fourier transform of (2.24) is (2.47), the convolution theorem may be
applied to invert (2.20). Doing so gives

Cb(x,0, t) =−
2 Da

π

∫
∞

−∞

tanh−1(e−πls|x−ν |/(2ε))
∂B
∂ t

(ν , t)χs(ν) dν (2.48)

or

Cb(x,0, t) =−
2 Da

π

∫ 1/2

−1/2
tanh−1(e−πls|x−ν |/(2ε))

∂B
∂ t

(ν , t) dν . (2.49)

Having solved for Cb(x,0, t), from (2.17) we conclude

C(x,0, t) = 1+Cb(x,0, t) = 1− 2 Da
π

∫ 1/2

−1/2
tanh−1(e−πls|x−ν |/(2ε))

∂B
∂ t

(ν , t) dν .

Hence bound ligand evolution is governed by the IDE:

∂B
∂ t

= (1−B)
(

1− 2 Da
π

∫ 1/2

−1/2
tanh−1(e−πls|x−ν |/(2ε))

∂B
∂ t

(ν , t) dν

)
−KB, (2.50a)

B(x,0) = 0. (2.50b)
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3 Numerical Method

3.1 Method of Lines Approximation
The IDE (2.50) is nonlinear and unwieldy, so we now search for a numerical approx-
imation to its solution. First we choose N equally-spaced discretization nodes xi and
partition [−1/2,1/2] into N distinct subintervals of length ∆x = 1/N:[

−1
2
,

1
2

]
=

N⋃
i=1

[
xi−

∆x
2
,xi +

∆x
2

]
, (3.1)

where −1/2 = x1−∆x/2 and 1/2 = xN +∆x/2. Next we seek to apply the method of
lines by proposing an approximation of the form:

B(x, t)≈
n

∑
i=1

hi(t)φi(x). (3.2)

The functions hi(t) are to be deterimine and subject to the initial condition hi(0) = 0,
while the functions φi(x) are locally defined hat functions given as

φi(x) =



2
∆x

[x− (xi−∆x/2)] if x ∈ [xi−∆x/2,xi),

2
∆x

[(xi +∆x/2)− x] if x ∈ [xi,xi +∆x/2],

0 else.

(3.3)

Substituting (3.2) into (2.50a) and evaluating each side of the resulting equation at
x = x j yields

h′j(t)= (1−h j(t))

(
1−

N

∑
i=1

2 Da h′i(t)
π

∫ 1/2

−1/2
tanh−1(e−|x j−ν |πls/(2ε))φi(ν) dν

)
−Kh j(t),

(3.4)
for j = 1, . . . , N. The solution of this nonlinear set of ODEs determines the time-
dependent functions h j(t), however solving this system requires computing∫ 1/2

−1/2
tanh−1(e−|x j−ν |πls/(2ε))φi(ν) dν . (3.5)

Since tanh−1(e−|x j−ν |πls/(2ε)) exhibits logarithmic singularity at ν = x j, computing
(3.5) using a quadrature rule requires great care, although (3.5) can be computed ex-
actly. This is done by decomposing the basis functions (3.3) into their left and right
parts:

φi,l(x) =


2

∆x
[x− (xi−∆x/2)] if x ∈ [xi−∆x/2,xi),

0 else,

(3.6)
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and

φi,r(x) =


2

∆x
[(x+ xi)−∆x/2] if x ∈ [xi,xi +∆x/2],

0 else.

(3.7)

Having decomposed the basis functions into their left and right parts (3.5) can be writ-
ten as∫ 1/2

−1/2
tanh−1(e−|x j−ν |πls/(2ε))φi(ν) dν =

∫ 1/2

−1/2
tanh−1(e−|x j−ν |πls/(2ε))φi,l(ν) dν

+
∫ 1/2

−1/2
tanh−1(e−|x j−ν |πls/(2ε))φi,r(ν) dν .

(3.8)

Since the two terms on the right hand side are related through a change of variables, it
is sufficient to calculate∫ 1/2

−1/2
tanh−1(e−|x j−ν |πls/(2ε))φi,l(ν) dν . (3.9)

After changing variables, one may use the definition of tanh−1(·) and expand the inte-
grand in terms of its Mclaurin series to find that it is a telescoping sum:∫ 1/2

−1/2
tanh−1(e−|x j−ν |πls/(2ε))φi,l(ν) dν =

∞

∑
n=0

2
∆x

∫
∆x/2

0

e−|w−x j+xi−∆x/2|(2n+1)/(2ε)

2n+1
w dw.

(3.10)
In writing (3.10) we have formally exchanged the limit operations. Observe that the
absolute value prevents one from integrating by parts directly; however, by using the
fact that the discretization nodes are equally spaced one can show the computation may
be partitioned in two distinct cases: when x j ≥ xi and x j < xi. Since the computation is
analogous in each case we concern ourselves only with the former. Thus taking x j ≥ xi
and integrating the right hand side of (3.10) by parts shows that (3.9) is equal to

∞

∑
n=0

(
2

∆x

)(
∆xε e−(x j−xi)(2n+1)πls/(2ε)

(2n+1)2πls
− 4ε2 e−(x j−xi)(2n+1)πls/(2ε)

(2n+1)3π2l2
s

+
4ε2 e−[∆x/2+(x j−xi)](2n+1)πls/(2ε)

(2n+1)3π2l2
s

)
.

(3.11)

To sum the series (3.11), we observe that one can use the definition of the polylogarithm
of order s

Lis(z) =
∞

∑
k=1

zk

ks (3.12)

to show
∞

∑
n=0

z2n+1

(2n+1)s = Lis(z)−
1
2s Lis(z2). (3.13)
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Hence when x j ≥ xi∫ 1/2

−1/2
tanh−1(e−|x j−ν |πls/(2ε))φi,l(ν) dν

=

(
2

∆x

)[
∆xε

πls

(
Li2(e−(x j−xi)πls/(2ε))−Li2(e−(x j−xi)πls/(ε))/4

)
− 4ε2

π2l2
s

(
Li3(e−(x j−xi)πls/(2ε))−Li3(e−(x j−xi)πls/(ε))/8

)
+

4ε2

π2l2
s

(
Li3(e−[∆x/2+(x j−xi)]πls/(2ε))−Li3(e−[∆x/2+(x j−xi)]πls/(ε))/8

)]
.

(3.14)

The form of (3.14) when x j < xi is very similar. With the exact value of (3.8), the
nonlinear set of ODEs (3.4) can be solved using one’s favorite linear multistage or
multistep formula.

3.2 Convergence
Convergence of the numerical method outlined in the previous Subsection was mea-
sured by first computing a reference solution Bref(x, t) on a mesh with N = 37 = 2187
spatial discretization nodes; this was done by integrating (3.4) from t = 0 to t = 150
using an adaptive linear multistage formula. Then solutions Bi(x, t) were computed on
meshes with N = 3i nodes and convergence was measured by calculating

|| ||Bref(x, t)−Bi(x, t)||2, x||∞, t (3.15)

for i = 1, . . . ,6. In (3.15) ||·||2, x denotes l2 norm in x and ||·||∞, t denotes the infinity
norm in t. A logarithmic plot of these values is depicted in Figure 3.1. Despite the
logarithmic singularity in (2.50a), the evidence in Figure 3.1 strongly suggests that our
method of lines approximation to (2.50) achieves first-order convergence. Although it
is of interest to derive analytic error estimates for our approximation, the nonlinearity
in (2.50a) seems to render any such estimates beyond reach.

0 2 4 6 8
-12

-10

-8

-6

-4

Figure 3.1: The values of (3.15) for i = 1, . . . , 6 depicted together with the line y =
−1.0762x− 4.2067, which was fit to the values of (3.15) with an R2 coefficient of
R2 = .9987. These simulations were computed using the parameter values Da = 66.42,
K = 1, ls = 10−3, and ε = 1.
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4 Results and Discussion
Results of our numerical simulations are depicted in Figure 4.1. Upon inspection one
immediately notices the presence of a depletion region in the middle of the sensor for
small t. As time progresses the rate of bound ligand production near the boundary
decreases and the depletion region narrows. The bound ligand concentration continues
to become more spatially uniform until a uniform chemical equilibrium is achieved in
which there is a balance between association and dissociation.

0
0.2

0.5

2

×10-3

B

t

0.1

x

4

0

0 -0.5

(a) Evolution of B(x, t) for t ∈ [0, .1] (b) Evolution of B(x, t) for t ∈ [0,10].

(c) Evolution of B(x, t) for t ∈ [0,50]. (d) Evolution of B(x, t) for t ∈ [0,150].

Figure 4.1: Numerical solution to (2.50) during different time intervals using the pa-
rameter values Da = 66.42, K = 1, ls = 10−3, and ε = 2/5.

Mathematically, the depletion region results from the singular convolution kernal

tanh−1(e−|(x−ν)|πls/(2ε)) (4.1)

and the finite limits of integration. In Figure 4.2 we have depicted our convolution
kernal centered at x = 0, and x = −1/2. When the convolution kernal is centered
at x = 0 it acts as a two-sided influence function. The singularity at x = 0 reflects
the high likelihood that a ligand molecule directly above the origin will diffuse to the
surface and bind with an available receptor site there; however, in the unstirred layer
ligand molecules diffusing into the surface bind with neighboring receptor sites. Figure
4.2 reveals the likelihood of binding with a neighboring receptor site decays with the
distance away from the source, although it is never zero since tanh−1(e−|x−ν |πls/(2ε))
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is supported almost everywhere on the real line, and in particular, almost everywhere
on [−1/2,1/2].

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
ν

3.5

4

4.5

5

5.5

Convolution Kernal

x = 0

x = −1/2

Figure 4.2: The convolution kernal tanh−1(e−|x−ν |πls/(2ε)) centered at x= 0 (solid line),
and at x =−1/2 (dotted line). Here ls = 10−3, and ε = 2/5.

Conversely, when the kernal is centered at x =−1/2 Figure 4.2 shows that it acts as
a one-sided influence function. The finite limits of integration in (2.50a) imply that the
convolution kernal influences the bound ligand concentration the most at x=−1/2, and
has a monotonically decreasing influence as one progresses from x =−1/2 to x = 1/2.
Thus we see the finite limits of integration encode the reflective boundary conditions.
To the right of x = −1/2, ligand molecules spread out and diffuse into the surface; to
the left, ligand molecules are reflected.

Furthermore, from (2.50a) we see that the size of the depletion region is directly
related to Da–larger values of Da correspond to more pronounced depletion regions at
a fixed time t. From (2.15) it is seen larger values of Da correspond to larger ratios
of reaction velocity to diffusion velocity. When the reaction velocity k̃aR̃t is much
faster than diffusion velocity D̃/l̃s, the additional ligand flux from the one-sided decay
near the boundaries results in the reaction proceeding faster in the enrichment regions.
Figure 4.3 shows the bound ligand evolution after t = 10 seconds when Da = 5.5352,
and when Da = 33.2110. Clearly, the depletion region is more significant when Da =
33.2110.

Moreover, Figure 4.3 shows that Da affects how fast reaction proceeds. Indeed,
from Figure 4.3 it is seen that reaction proceeds at a slower rate when Da is larger. This
agrees with our above discussion: larger values of Da correspond to a wider depletion
region, and the rate of reaction depends upon the amount of unbound ligand at the
surface C(x,0, t).

Although Da is O(1) or larger, it is illuminating to consider the limit in which
Da→ 0; i.e., when (2.50a) reduces to a simple ODE. This is the classical well-stirred
approximation, in which reaction kinetics completely decouple from diffusion into the
surface. Physically, in this case, ligand molecules arrive at surface on a much faster
time scale than reaction. We expect reaction to proceed more quickly in this regime,
because the rate at which it occurs is limited by the intrinsic rate constants k̃a, k̃d and
the ligand concentration C̃u. Thus, this is the reaction-limited regime.
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(a) The solution of (2.50) with Da =
5.5352.

(b) The solution of (2.50) with Da =
33.2110.

Figure 4.3: Numerical solution to (2.50) after t = 10 seconds for different values of
Da. Notice the different scales on the z-axis. In each of these simulations the parameter
values K = 1, ls = 10−3, and ε = 2/5 were used.

Conversely, when Da = O(1) or larger reaction and diffusion near the surface into
the sensor occur on the same time scale. Thus, the fact that Da = O(1) or larger re-
flects the fast nature of our reaction, and the relatively slow nature of diffusion near
the surface into the sensor. In this regime, the speed at which the reaction proceeds
depends not only upon the rate constants k̃a, k̃d and the ligand concentration C̃u, but
also upon the speed at which ligand molecules diffuse into the surface. Since diffusion
is a relatively slow process, we expect the reaction to proceed slower in this regime.
This phenomenon is depicted Figure 4.3, where it is seen that increasing Da reduces
the rate at which reaction proceeds.

5 Conclusions
The nanoscale electronics experiment under consideration has been modeled with a
diffusion equation, coupled to an equation describing reaction on the sensor surface.
By using the appropriate time and length scales the evolution of C may be described
with the quasi-steady approximation. By solving this equation in frequency domain
and inverting at y = 0 with Cauchy’s Residue Theorem, we have obtained a formula
for C(x,0, t). This reduces the full PDE system to a single nonlinear IDE for B. De-
spite the presence of a nonlinear singular convolution kernal, this equation has been
solved to first-order accuracy without resorting to quadrature techniques to evaluate
(3.5). Results of our numerical simulations reveal the presence of a depletion region in
the middle of the sensor. Mathematically, the depletion region results from the finite
limits of integration and the convolution kernal. The finite limits of integration encode
the reflective boundary conditions, and the convolution kernal captures the effect of
diffusion into the surface. Moreover, the effect of diffusion into the surface is directly
tied to Da–larger values of Da result in a more pronounced depletion region at a given
time t.
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In the future, we would like to investigate the dynamics of this system under exper-
imental conditions. In particular, an sealed experiment with an initial drop of ligands.
This corresponds to a no-flux boundary condition on the top, and a compactly sup-
ported Gaussian as our initial condition.
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Barbano, and C. Heitzinger. Kinetic parameter estimation and fluctuation analysis
of CO at SnO2 single nanowires. Nanotechnology, 24(31):315501, 2013.

[8] Y. Wang and G. Li. Performance investigation for a silicon nanowire fet biosensor
using numerical simulation. In Nanotechnology Materials and Devices Confer-
ence, pages 81–86. IEEE, 2010.

19


	Introduction
	Governing Equations
	Mathematical Model
	Integrodifferential Equation Reduction

	Numerical Method
	Method of Lines Approximation
	Convergence

	Results and Discussion
	Conclusions

