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Abstract

Machine learning (ML) (a subset of artificial intelligence that focuses on
autonomous computer knowledge gain) is actively being used across many
domains, such as entertainment, commerce, and increasingly in industrial
settings. The wide applicability and low barriers for development of these
algorithms are allowing for innovations, once thought unattainable, to be
realized in an ever more digital world. As these innovations continue across
industries, the manufacturing industry has also begun to gain benefits. With
the current push for Smart Manufacturing and Industrie 4.0, ML for man-
ufacturing is experiencing unprecedented levels of interest; but how much is
industry actually using these highly-publicized techniques? This paper sorts
through a decade of manufacturing publications to quantify the amount of
effort being put towards advancing ML in manufacturing. This work iden-
tifies both prominent areas of ML use, and popular algorithms. This also
allows us to highlight any gaps, or areas where ML could play a vital role.
To maximize the search space utilization of this investigation, ML based Nat-
ural Language Processing (NLP) techniques were employed to rapidly sort
through a vast corpus of engineering documents to identify key areas of re-
search and application, as well as uncover documents most pertinent to this
survey. The salient outcome of this research is the presentation of current
focus areas and gaps in ML applications to the manufacturing industry, with
particular emphasis on cross domain knowledge utilization. A full detailing
of methods and findings is presented.
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1. Introduction1

Machine learning (ML) has seen increased usage in manufacturing over2

the past 20 years. Two surges in the use of ML occurred in manufacturing;3

the first in the 1980s, with the second currently underway. While ML saw sig-4

nificant attention in the 1980s, industrial adoption was not high because the5

methods were difficult to implement and ahead of the technology available6

at the time [1, 2]. Many companies and researchers in industry are revisiting7

past work, focusing primarily on domain-specific models. We postulate there8

has been very little focus on cross-domain models for connecting information9

across the product life cycle. ML has remained “siloed” in each phase of10

the product life cycle: conception, design, manufacture, quality, and sustain-11

ment. With increased adoption of the Industrial Internet of Things (IIoT),12

Industrie 4.0, and Smart Manufacturing, even more data is being generated.13

Therefore, how does one effectively and efficiently take advantage of all that14

data?15

Applications such as Total Design theory [3], Design for Six Sigma [4],16

and Design for Manufacturing [5, 6] require knowledge of the various phases17

of the product life cycle. In a sampling of 35 defense-acquisition programs [7],18

development-cost growth averaged 57 percent and procurement-cost growth19

averaged 75 percent. Decision making dominated both types of cost growth.20

It follows that mitigating the negative effects of decisions earlier in the life-21

cycle could be advantageous to both the cost and the quality of a production22

program. Such mitigation requires knowledge of the full lifecycle and an23

understanding of how a decision in one phase of the lifecycle affects other24

phases of the lifecycle.25

How does one gain such knowledge? Hedberg Jr et al. [8] proposed three26

research directions to enable using knowledge earlier in the product life cycle:27

(1) dynamically generate knowledge bases, (2) determine minimum informa-28

tion requirements, and (3) data-interoperability support. ML are poised to29

greatly assist with the first two of these, dynamic knowledge generation and30

minimum information requirements. Synthesizing the work of Hedberg Jr31

et al. [8] with other literature [9, 10, 11, 12, 13] identifies a need for auto-32

mated methods to collect, transmit, analyze, and act on the most appropriate33

data. This sets the goal of using ML tools that can “observe” data, apply34
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Figure 1: Hypothesized current application areas and opportunities for applying machine
learning in manufacturing and beyond (adapted from [19])

context, and generate knowledge – these tools must be cross-domain (cross-35

phase) observatories.36

This paper provides a literature survey on the application of ML to mutli-37

disciplinary, cross-domain focus areas that make up the product life cycle38

using manufacturing data in support of developing a life-cycle-wide “data39

observatory” [14]. The motivation of this work is to survey and enable the40

integration of previous domain-specific works, such as those described by Jen-41

nings et al. [15], Li et al. [16], Wang et al. [17], into the systems and enterprise42

level of the life cycle. For example, Figure 1 presents the scope and hierarchy43

of the ISA-95 [18] framework and identified hypothesized current application44

areas and opportunities for applying ML in manufacturing and beyond. The45

survey was conducted with the hypothesis that most applications of machine46

learning are applied to low-level manufacturing problems (ISA-95 Level 0,47

1, 2) and little to no application of machine learning has been applied to48

systems level (ISA-95 Level 3), enterprise level (ISA-95 Level 4), and other49

phases / domains of the product lifecycle (e.g., systems engineering, design,50

quality).51

To accomplish extending the application of ML to cross-domain focus ar-52

eas, the gaps (e.g., what questions remain) must be identified so that they53
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may be closed through research and development. Also, to ensure success-54

ful adoption of ML solutions, the real-life applications that exist and their55

benefits must be determined. To accomplish this, the literature survey was56

conducted with two aims. i) investigate the current state-of-the-art for ML57

methods; and ii) investigate any cross-domain applications of ML in the58

product lifecycle.59

Three survey questions were asked:60

• What types of algorithms are used and with what frequency?61

• Are certain applications of machine learning frequently occurring? If62

so, which applications and at what level of the manufacturing systems?63

• Is further research needed to capture the opportunities of applying64

machine learning to cross-domain focus areas of the product life cycle?65

If so, where and what?66

The scope of the survey was limited to the integration of the design,67

fabrication, and quality domains / functions of the product life cycle. Sus-68

tainment, or customer and product support, was considered out of scope69

for this survey. While sustainment is important, the initial focus was on70

knowledge development to support design and manufacturing decisions.71

2. Motivation and Background72

The goal of this paper is to estimate the level of interest and actual73

effort being put towards the incorporation of ML technologies to the modern74

manufacturing industry by quantifying the presence of these concepts in the75

current literature. Further, this work seeks to ascertain prominent areas76

of the use of these technologies with both general and specific examples77

of applications in the literature by isolating sub populations of coordinated78

literature as well as targeting specific works on the subject. Last, any relevant79

gaps in the current level of deployment or development will be identified and80

presented as areas of future research.81

With the availability of digital publications, it is now possible via auto-82

mated techniques [20, 21] to search a wider breadth and depth of literature83

within an area than is feasible with manual methods. Search engines and84

online repositories of technical documents can quickly provide a host of infor-85

mation based on queries of a few simple phrases. However, these searches are86
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mostly word matching techniques and do not match the underlying concept87

or contextual content to a document. Most often in the English language,88

a collection of words or phrases presented in a particular order is required89

to convey a concept or idea instead of any single word. Thus, analyzing90

collections of words is the basis of many forms of linguistic analysis, and91

as related to this methodology, is what partially drove the motivation to92

move beyond simple key word matching as a basis for document compari-93

son. Towards that end, key NLP techniques were identified and applied to94

a large corpus of technical publication abstracts in addition to simple word95

matching analytics. These techniques included Bag of Words/Features, and96

Latent Semantic Analysis (LSA) to develop a measure of ’similarity’ between97

the documents and concepts to identify key trends [22]. This places more98

emphasis on not just simple word matching as with traditional searches, but99

core concept matching.100

In this work, a large collection of digital technical abstracts is mined via101

ML and NLP techniques to better understand emerging trends within both102

industry and academia. This base corpus is created using the word matching103

techniques native to many online repositories, and will be the space that all104

the automated information mining techniques will be applied to. Beyond au-105

tomated techniques, several key papers were manually identified for a more106

in-depth review based on the concept searching criteria developed in this107

paper. For this more in-depth review, both knowledge assimilation and dis-108

semination relies on traditional human efforts. A more complete description109

of the development and use of the base corpus is presented in the follow-110

ing section. The results from both the automated and manual information111

gathering efforts are presented below.112

3. Methodology113

A corpus of technical documents was reviewed using computer aided114

searching and NLP methodologies to assess AI and ML applications in man-115

ufacturing. A list of over 4000 unique articles pulled from a variety of digital116

resources (Primarily Engineering Village and Google Scholar) formed the117

search space and basis for the automated techniques used in this survey. The118

publication date of articles within is limited between 2005 and 2017. This119

section outlines the digitally assisted methodology for gathering these arti-120

cles, identifying those most focused to the interests of this survey, and the121

general assessment of key concepts throughout the survey search space.122
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Table 1: Initial keyword search terms

Contains Does NOT Contain

Manufacture Food
Machine Learning Bio
Artificial Intelligence Social Media
Quality Control
Inspection
Manufacturing Design

3.1. Initial Construction / Key Word Search123

The initial creation of the article list began with the largely common place124

key term search capability familiar to many document repositories. Various125

combinations of the terms shown in Table 1 identified potential articles that126

could be of interest. Only those terms listed in the table are used to populate127

the base corpus. Note that some words were used as exclusion parameters,128

listed under the ’Does NOT Contain’ section of the table. These terms were129

selected to create a broad scope of papers that encompasses the primary130

focus of this paper.131

This resulted in over 4000 articles that met the key word qualifications.132

It would be unpractical to manually sort through each article and rate it on133

pertinence to the subject matter of interest. This effort would be particularly134

wasteful noting that a tagged document may simply contain one or more of135

the searched phrases, but not actually deal with the target subject matter.136

To overcome such difficulties, an automated NLP driven approach was taken137

to characterize the corpus and expedite identification of those article that138

are of the most interest to ML in manufacturing.139

3.2. Corpus Characterization140

In this survey, document characterization is performed in two broad cat-141

egories: total search space characterization, and relative similarity to a focus142

subject document. Both analyses take the consolidated vector of semantic143

features and their associated values from the LSA algorithm and compare144

them to other established vectors using the cosign distance metric. In the145

case of the search space characterization, this comparison is made between146

each distinct article, whereas for the focused search the comparison is made147
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to a single predefined key or “prime vector”. A semantic feature of a doc-148

ument can be thought of as a combined magnitude of related words and149

phrases.150

To prepare the corpus for analysis, each document was cleaned by remov-151

ing punctuation and trivial “stop words” (e.g., ’also’, ’just’, ’that’, etc.) [23].152

Token phrases were constructed to have between one and three words, using153

the N gram approach, parsing each into a document/frequency matrix. These154

were then condensed into a lower dimensional feature space with Term Fre-155

quency – Inverse Document Frequency (TF-IDF) weighting and LSA. This156

helps to ensure that words and phrases used with similar context contribute157

similarly to the “semantic location” or position in the feature space. Com-158

bining elemental ideas or similar word concepts is a convenient way to think159

of this process in regard to this work.160

Once the document feature set is established for each article, it is a simple161

matter to calculate the angle between two documents to determine their sim-162

ilarity. It is important to note that when calculating the similarity between163

documents for the total search space characterization, feature phrases that164

appear in one document but not another are assumed as zeros for compar-165

ative calculations. However, in the case of the prime document comparison166

(a directed subject search), any feature phrases not in the prime document167

are simply omitted from the cosign similarity calculation. This is to help168

place more focus on the prime documents topics, and mitigate exclusion of169

searched documents that may contain additional topics other than the topics170

of interest.171

Using these methods, a value of similarity between any two documents172

within the search space, or the prime document can be made. However, sim-173

ple document to document similarity is not the most informative in terms of174

characterizing the total search space. By identifying similar patterns within175

documents and grouping them, trends within the overall search space can176

be characterized; from these, conclusions about the state of the art in both177

application and research can be made.178

3.3. Document Grouping179

As a method of further characterizing both the overall search space and180

the broad scale trends relating to the prime document, a form of fuzzy k-181

means clustering was chosen to help group the documents. This additional182

layer of analysis allows for the informed selection of a broader spectrum of183

documents to deeply analyze for the purposes of the survey. By selecting184
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papers that are the most like the prime document within each group, the185

survey will better be able to characterize a broad scope of the state of the art186

without over-focusing on any one sub-section artificially or miss a prominent187

area by accident.188

To characterize each group, the most frequently appearing words and189

phrases are identified to help identify the central ideas and topics of the190

group. The topic analysis is performed both with the absolute overall most191

frequent phrases and those that are exclusive of the top phrases across all192

groups. Lastly, each group is characterized by its average similar similarity193

to the prime document to quantify how relevant it is to the central topic194

of the survey. The results of the grouping as well as the similarity and195

characterization analysis are presented in the results section of this survey.196

4. Results197

4.1. Search Space Characterization198

A pool of nearly 4000 papers was created and used to evaluate of the state199

of the art of manufacturing cross-domain (design-manufacture-quality) use of200

ML. To help confirm that the constructed corpus of articles is centered in the201

field of manufacturing, Figure 2 shows that words such as “Manufacturing,”202

“Process,” and “Design” comprise the most frequent words.203

The analysis of density-based clusters within the corpus feature space204

provides further characterization of the total search space. The top 10 clus-205

ters are analyzed, each one reflecting a different region of density within the206

data. As shown in Figure 3, the clusters are labeled from 1 to 10 based on207

the total number of documents held within them. The upper chart compares208

the number of documents contained in each group, while the lower chart209

shows the proximity of each group center within the search space. Groups210

represented in the lower left of the chart are both close to the center of the211

search space and close to other groups, those in the upper right are far from212

center and have no near neighbors. Those in the far right are considered near213

the edges of the search space.214

To better understand some of core the concepts that each group cen-215

ters around, phrases that represent strong contributors to that point in the216

feature space are extracted and reported below. This can provide a broad217

understanding of the overall focus as well as areas of concentration of the218

corpus. The most frequent phrases overall in the search space have already219

been noted in Figure 2, therefore it is more informative to look at the most220
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Figure 2: Search space characterization

Figure 3: Cluster characterization
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frequent phrases of each group exclusive of those common to all groups (See221

Table 2).222

From this information, we can conclude that there is a large portion (ap-223

proximately 28%) of the search space focused on the development of new224

algorithms, particularly inclined towards ML in manufacturing. Similarly,225

we see that approximately 34% is interested in production control and man-226

agement. Even in this loose characterization of the search space, the interest227

in smart manufacturing and data utilization is apparent.228

Following from this characterization, two explicit ML algorithms that229

have dedicated areas of density towards them are Neural Networks (NNs)230

and Support Vector Machines (SVM), implying a growing popularity of them231

within manufacturing. With approximately 11% and 4% of the corpus fo-232

cused around these generically applicable ML algorithms respectively, indi-233

cations are strong that they are being applied to a broad range of problems234

or applications in the manufacturing domain. This is most likely due to the235

low barrier of entry for use of the algorithms, both in understanding to create236

and physical resources required. Open source, pre-made implementations of237

these tools are widely available on the internet, further promoting adoption.238

This is not meant to imply that these are the only algorithms in use in the239

manufacturing domain, only that there is a prominence of both NNs, SVMs240

and related algorithms.241

Note that, evidenced by the key phrases of Group 10, approximately 2%242

of the articles found seem to be related to the manufacturing of elements243

and isotopes through radioactive production methods. This is not a focus244

set of our survey, and can be marked as a trivial matching; another weakness245

of a simplistic key word search algorithm which created the overall corpus.246

As this is a suitably low percentage of the overall search space, these arti-247

cles are not removed from the analysis. However, these and other outlying248

trivial, or incidental matches exist within the search space and are expected249

to have contributions to the low end of the similarity distribution for any250

manufacturing industry related search.251

After establishing the search space as an acceptable representative sam-252

pling of recent publications regarding the manufacturing industry, two key253

documents were used to help infer and characterize the overall thrust and254

trends of focus areas as pertaining to the digital thread and process design255

in these publications. The individual similarity of each publication was eval-256

uated and recorded for each key document separately. By knowing the focus257

and intent of each of the key documents, a sense of how prevalent these top-258
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Table 2: Most frequent phrases for each group

Select Characterizing Phrases Search Space Coverage

Group 1 CONTROL 17.80%
MANUFACTURING SYSTEM
PRODUCTION
INTELLIGENT
MLTA

Group 2 ENERGY 16.60%
INDUSTRY
DEVELOPMENT
MANAGEMENT

Group 3 SMART 14.20%
ENERGY
GRID
APPLICATION

Group 4 MLTA 12.20%
MACHINE LEARNING
ALGORITHM
TECHNIQUE

Group 5 ALGORITHM 11.20%
PROPOSED
NEURAL NETWORK
RESULT

Group 6 MANUFACTURING PROCESS 11%
CONTROL
PRODUCTION
MLTA
QUALITY

Group 7 STUDENT 7.80%
ENGINEERING
PROJECT
COURSE

Group 8 SUPPORT VECTOR MACHINE 4.30%
ALGORITHM
MLTA
RESULT

Group 9 SUPPLY CHAIN 2.50%
PRODUCT
PERFORMANCE
NETWORK
AGILITY

Group 10 PHOTOCATALYTIC 2.20%
VISIBLE LIGHT
ACTIVITY
DEGRAMLTION
IRRADIATION
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Figure 4: Search space similarity to the introduction of this paper

ics are within the search space can be gained. The first key document is259

the introduction section of this paper, the second is a directed set of select260

phrases designed to highlight important concepts.261

Additionally, to establish a baseline, a short article unrelated to the field262

of manufacturing is also used to create a key document. In this case, the263

reference document selected is the abstract of an article related to peach264

farming that contains many of the key phases used to construct the total265

survey search space, but is expected to only have incidental similarity at best.266

This serves to aid in distinguishing random matching within the similarity267

algorithm.268

As the technique for document comparison is designed to capture similar-269

ities beyond simple word matching, the reference key document is expected270

to be better constructed from natural language. Towards that end, the in-271

troduction section of this paper is used (prior to minor editorial changes) as272

a key document (Prime String) to compare the search space similarity to the273

core concepts of this survey. Figure 4 shows the distribution of the search274

space similarity to the introduction section of this paper.275

In comparison to the baseline chance similarity developed from the cor-276

pus similarity to the peach farming article (dotted line in Figure 4), there277

is a significant increase in the overall similarity distribution (approx. 0.02278

mean shift). This clear visual and statistical shift strongly implies that the279

core concepts described within the introduction of this paper (Section 1) are280

of overall interest in manufacturing. However, the fact that the peak signif-281

icance seems mostly normal without a strong secondary peak suggests that282

few (if any) of the articles address all the concepts within this survey. Were283

a significant number the articles to address all or most of the themes in the284
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Table 3: Machine learning base phrases

Including Excluding

Machine Learning Social
Neural Networks Food
Reinforcement Learning Oil
Smart Manufacturing Gas
Intelligent Manufacturing Smart Grid
Flexible Manufacturing Finance
Agile Manufacturing Young Firms
Reconfigurable Manufacturing Radioactive Decay
Data Driven Irradiation
Product Life Cycle
Cross-Domain
Data Analytics

survey, those articles would be expected to produce a second, significant peak285

centered at a value higher than the bulk similarity of the corpus. As is, there286

may be some articles addressing a large portion of the themes, but not a287

significant enough number of these articles to fall outside the normal corpus288

similarity distribution. These facts together lend credence to the suggestion289

that this an area in need of further development.290

To further corroborate this hypothesis, a vector of weighted and directed291

key words was also analyzed as a key document for comparison with the292

search space of manufacturing related articles. This vector was constructed293

to capture many key concepts within the areas of machine learning to help294

evaluate the extent of research on novel utilizations of automated and rapid295

analysis methods in the manufacturing search space. As a base line reference296

for this vector, a similar sized vector was constructed from the top occur-297

ring phrases in the Peach Farming abstract mentioned before. This new set298

baseline is necessary due to the increased chance of randomly matching a299

vector with lower total phrases, either in part or total. The base phrases300

used to construct the machine learning query vector of phrases are provided301

in Table 3. All subsequent substrings of phrases are also added to the query302

vector to aid in capturing core concept similarity.303

Figure 5 shows the similarity distributions for both the directed search304

vector of phrases and the reference vector constructed from the random doc-305
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Figure 5: Directed vector similarity distribution

Figure 6: Convolution of similarity distributions

ument. From this, it is evident that the targeted search vector again has a306

significant overall increase in similarity to the reference distribution; confirm-307

ing interest in ML throughout the search space. As an aside, the seeming308

multi-modal nature of the Reference distribution is due to the comparatively309

lower number of possible feature phrases to match. This means that the310

jump between near zero matches and at least one match becomes much more311

significant. Additionally, another intuitive reason for this jump is that if one312

match exists, the probability of multiple matches increases as well.313

Further insight into the state of the art can be gained by looking at the314

convolution of similarity distributions (Figure 6) for both the prime document315

and the directed search vector. This provides a sense of how many articles316

in the search space are targeting smart manufacturing processes with an317

emphasis on ML algorithms.318

Once again, overall the similarity distribution is low, implying few or319

zero exact matches exist in the search space, but the marked increase over320
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Table 4: Average similarity summary

Reference Query % Difference

Prime Document 0.0373 0.0575 54.15
ML Targeted Vector 0.0498 0.1076 116.06
Convolution 0.0027 0.007 159.25

Figure 7: Visualization of interest in ML by year

the reference distribution implies strong interest in the general concepts. A321

summary of the relative increases for each similarity query is provided in322

Table 4 below.323

It is convenient and intuitive to use these percentages of relative similarity324

as metrics indicating interest in the concepts they represent within the search325

space. This would seem to imply a marked interest in ML within the field326

of manufacturing with regards to product life-cycle management (PLM). A327

final testimony for the supposition that the field of manufacturing is becoming328

increasingly interested in ML and associated techniques can be seen in the329

visualization below. Figure 7 shows how many publications relate key phrases330

by year, indicating a growing interest over time.331
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Notice that many common concepts and algorithms within machine learn-332

ing are increasingly being the subject of publication. Similarly, interest in333

life-cycle management can be seen to have an increasing presence. With this334

information in mind, the remainder of this document reviews a selection of335

articles within the workspace that are selected to both be like the prime336

document as well as be a representative selection from across the different337

regions of density within the search space. Documents for review were cho-338

sen by the authors both for their calculated similarity to the prime document339

and for special interest to the survey themes as judged by the authors.340

4.2. Survey Results341

A brief survey was performed consisting of papers targeted by the NLP342

methodology described in previous section to further expand upon the ideas343

characterizing the current state of knowledge-based usage and ML across344

all stages of the manufacturing process. This also serves to further validate345

the assertions and conclusions formed from the NLP algorithms while also346

adding a degree of context to those results. The following section collects347

and summarizes notable uses or potential uses of machine learning within348

industry, seeking to answer questions such as:349

• How is machine learning currently being applied in manufacturing?350

• How is machine learning enabling better information management and351

decision support?352

• What digital knowledge bases exist and how are they being utilized353

and maintained?354

• What are the current approaches to total Product Life-Cycle Manage-355

ment (PLM)?356

• What gaps exist in these areas that must be filled to provide a fully re-357

alized digital production environment that maximally utilizes available358

resources across all stages of production?359

4.3. Current Application of ML in Manufacturing360

The first of these questions is possibly the most generic, yet with the most361

potential impact upon the others. Machine learning is broadly defined by the362

concept of having a computer update a model or response based upon new363
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data or experiences through its learning lifetime. Self-updating algorithms364

have the potential to greatly benefit the manufacturing industry at all stages365

and levels of operations management.366

4.3.1. Decision Support367

Perhaps the most intuitive uses of machine learning occur at some of the368

more basic and fundamental levels of the manufacturing process. Even before369

the first part is made, manufacturers need to have an accurate estimation of370

the production cost to not only set pricing, but on a more fundamental level,371

to determine if the proposed product is financially viable or feasible for the372

company. Many factors go into the determination of cost, such as materi-373

als, process and tool costs, batch sizes, scheduling, outsourcing, etc. There374

is often heavy interplay within these variables, thus making it difficult for375

any single person to make fully informed and accurate estimations. This is376

particularly true in instances where the product is largely novel or dissimilar377

to the companys typical products. Deng and Yeh [24] propose a solution in-378

volving a Least Squares approach utilizing Support Vector Machines (SVM)379

to characterize the cost space and find a unique optimal cost estimation for380

a product. The use of SVM lends itself to rapid incorporation of new or381

updated cost estimations that can easily added to the model after the actual382

cost of a job is determined, either strengthening or, where needed, supersed-383

ing areas of the model with better information. This work was later extended384

upon comparing two machine learning methods – back-propagation neural385

networks (BPNs) and least squares support vector machines (LS-SVMs) to386

the life-cycle cost estimation problem [25]. Authors combine LS-SVMs with387

a data transformation – the log-sigmoid transfer function, and conclude that388

such data preparations play an important role in obtaining more accurate,389

available, and generalizable cost estimation model can be provided by this390

novel combining mechanism. Data preprocessing where practitioners clean,391

filter and transform data is a common and important step to solve outliers,392

missing data or scaling issues. This step also includes data reduction, which393

is selection and extraction of both features (input variables) and samples in394

a database [26].395

Another prime example of machine learning aiding in manufacturing de-396

cisions is proposed by Woodward and Gindy [27]. They briefly describe a397

decision support system that utilizes Genetic Algorithms (GAs) to explore398

and optimize some collected set of elemental heuristics as guided by some399

predefined set of hyper-heuristics for finding solutions to difficult questions400
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with often “softly defined” criteria. Within the paper, the application is401

proposed to aid in determination of decisions affecting ecological impact of402

the process, but the idea can easily be adapted to other important decisions403

where many factors interplay and have far reaching effect that may not be404

instantly apparent. The authors of this paper go on to assert that the library405

of elemental heuristics should be drawn from a diverse set of experts, each406

from different relevant areas of the issue in question. This library should407

be able to grow and update over time, making it as collaborative and inte-408

grated as possible, creating a framework for collecting valuable experience409

and knowledge from both people and machines. This symbiotic and archival410

approach leverages the ability of humans to create highly accurate approxi-411

mate rules without the distortion often associated with “tribal knowledge”,412

or information passed from person to person, while also allowing the com-413

puter to rapidly manage and apply more of that information than any single414

person could reasonably be expected to. Beyond simple solution optimiza-415

tion, bootstrapping and clustering can be applied to obtain and present the416

end user with groups of similar solutions from which a decision maker can417

choose one that best suits the companys needs.418

Managing scheduling of machine time for operations on a production419

line is rarely a trivial task with flexible manufacturing systems (FMS). Like420

many other production line decisions, optimal scheduling is a function of421

many interplaying variables that are difficult to completely manage and to-422

tally account for by a human decision maker. Yusof et al. [28] addresses the423

flexible manufacturing systems (FMS) and considering a machine-loading424

problem in FMS environment. The machine loading problem can be defined425

as the allocation of part operations and required tools to the machines, to426

optimize some objective(s) subject to some technological constraints. The427

problem covers many objectives such as maximization of the utilization of428

resources, minimization of processing and tooling costs and maximization of429

throughput. The authors point out that purely heuristics-based algorithms430

will often oversimplify a problem or be too specific to generalize across mul-431

tiple projects. Conversely, many more mathematically rigorous methods can432

become bogged down with expanded complexity or dimensionality of many433

problem formulations, in terms of both computation and configuration time.434

They propose the idea of utilizing harmony search (HS) algorithm based on435

the musical harmony [29], to aid in creating an optimal schedule. The algo-436

rithm suggested by the authors seeks to strike a balance between those two437

extremes by using rough heuristics to determine the feasibility of a solution,438
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then applying machine learning algorithms to optimize the problem within439

the, now, more limited scope. Methods such as this could greatly reduce the440

time needed to design and implement process work flow plans, while still pro-441

viding strong justification and a high level of confidence in the management442

decisions that were made.443

Maintenance scheduling is another area often performed sub-optimally444

(if at all) in many smaller and sometimes even larger industrial companies.445

Reactive maintenance, repairing an item or process only after a failure has446

been identified, is largely considered the least optimal method of maintaining447

a system, incurring large amounts of unplanned downtime and often allowing448

cascading failures that need not have occurred if preventative maintenance449

had been properly performed. Most preventative maintenance can broadly450

be classified into three categories; cycle based, current condition based, and451

predicted condition based. Cycle-based plans schedule maintenance after a452

set number of operational/calendar hours or duty cycles, such as miles driven453

on a tire. Current condition-based plans assess the current state of the sys-454

tem and perform maintenance when it is within a predefined limit or when455

a triggering event occurs, such as the growth of a fault frequency beyond456

a set threshold. The last category looks at the current and past states of457

the system as well as its expected future operational load to predict when458

a fault will likely occur, or how much Remaining Useful Life (RUL) a sys-459

tem has. Wu et al. [30] uses ML and NNs to predict the percentage of460

remaining useful life in rotating equipment. The authors propose an intelli-461

gent decision support system based on this technology to promote optimal462

maintenance strategies. Further, by reducing unnecessary maintenance, a463

production plant can maximize equipment utilization and availability while464

also reducing costs of repairs.465

4.3.2. Digital Knowledge Management: Plant and Operations Health Man-466

agement467

For a fully developed maintenance regime, diagnostic and prognostic in-468

formation exists for a multitude of individual units that interact within a469

manufacturing process production line. Although information regarding in-470

dividual units can be incredibly useful for identifying and scheduling mainte-471

nance plans, there is much more information to be gained from the analysis472

of the total system. As an example, this form of analysis could help in iden-473

tifying the interplay between linked units, each possessing non-terminal or474

even seemingly trivial amounts of degradation, causing an overall cumula-475
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tive deleterious effect on the product. Choo et al. [31] introduces a hierar-476

chical Markov Decision Process known as Adaptive Multi-Scale Prognostics477

and Health Management (AM-PHM) to help manage produced diagnostic478

and prognostic knowledge at all levels of the manufacturing system. This479

approach helps to overcome the problems of exponential complexity as in-480

formation is aggregated up the manufacturing system starting at individual481

components, and moving to work cell and assembly line levels. After infor-482

mation is pulled to and managed at the high level, decisions made can then483

be translated back down to the lower levels, informing specific tasks to un-484

dertake to ensure reliability of the production line as well as the quality and485

integrity of the product produced.486

Another application towards extending the life of manufacturing equip-487

ment, specifically robotic arms, focuses on incorporating Linear Temporal488

Logic (LTL) in to their monitoring and control scheme [32]. This technology489

adds intelligent autonomous diagnostic systems that can connect continuous490

and discrete prognostics. Having monitoring systems tolerant of connected491

systems is imperative and invaluable in the interconnected world of modern492

manufacturing work cells. The authors envision that this LTL-monitor sys-493

tem could be extended to selectively guide robotic motion sets towards those494

that produce the most even wear on joints to even further extend the life of495

these systems.496

4.3.3. Digital Knowledge Management: Data Management497

The volume of data produced by manufacturing systems is rapidly grow-498

ing beyond the capabilities of traditional algorithms, especially for users who499

want the most useful information from their data. High sample volume as500

well as huge numbers of dissimilar data sources are creating a need for both501

information consolidation and isolation algorithms that can be implemented502

in a distributed parallel fashion to meet the computational speed require-503

ments necessary for prompt knowledge utilization. Collected information504

that is not able to be correctly interpreted or made useful in a timely man-505

ner is rarely even so much as marginally better than having not collected the506

data. Kumar et al. [33] propose utilizing tools such as the Hadoop frame-507

work and cloud computing to help overcome this problem. Working with508

map-reduce algorithms, the authors go on to propose a method for dealing509

with data imbalance issues (having a large discrepancy between the number510

of exemplar cases for different categories of data). Specifically, they highlight511

an algorithm for overcoming data imbalance for the goal of fault detection or512
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identification through traditional machine learning classification algorithms.513

Automating large scale diagnostic data alarming could produce much more514

informed decisions about maintenance scheduling, workload, and demand515

cycles to maximize out and reliability of the system.516

The concept of cloud computing, the delivery of computing services over517

the internet (the cloud), was born to address the administration and stor-518

age of big data, and the scalability of services challenges, and to increase519

efficiency. Having the potential to be the next major driver of business inno-520

vation, cloud services could be part of a business strategy for manufacturing521

companies. One benefit of moving towards cloud manufacturing is the ability522

to store large amounts of critical data in the cloud, and access to resources523

in real-time. A detailed work on ”cloud manufacturing”, and what parts524

of a company can easily and quickly adopt cloud-based solutions has been525

prepared by Xu [34]. In this work, Xu analyzes the benefits of integrating526

cloud technology into a typical manufacturing company after discussing the527

essential requirements of a cloud computing system. IIoT and cloud services528

are two key paradigms for the construction of virtual manufacturing. In this529

context, the author describes MTconnect [35], STEP (Standard for the Ex-530

change of Product Model Data) [36] and STEP-NC (STEP-Compliant Data531

Interface for Numeric Controls) [37]. MTconnect is a manufacturing com-532

munication protocol used for data integration, and STEP provides a way to533

share product data over the entire life cycle of a product. STEP aims to accu-534

rately capture product definition and provide data interoperability between535

native systems, such as: Computer-Aided Design (CAD), Computer-Aided536

Manufacturing (CAM), Analysis (CAE), and Inspection (CMM) software.537

Healthy adoption of cloud solutions must include effective integration of the538

existing data-exchange standards and/or protocols.539

Brodsky et al. [38] have developed a system for managing a repository and540

conducting analysis and optimization on manufacturing models in Brodsky541

et al. [39] and Brodsky et al. [38], respectively. The former work proposes542

an architectural design and framework for fast development of software so-543

lutions for descriptive, diagnostic, predictive, and prescriptive analytics of544

dynamic production processes. The uniqueness and novelty of the proposed545

architectural design and framework is its middleware layer, which is based546

on a reusable, modular, and extensible Knowledge Base (KB) of process per-547

formance models. However, this related effort lacked a systematic design of548

the unit manufacturing process (UMP) repository and possible ecosystems549

around the repository, as well as a specific architecture for such a repository.550
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Furthermore, it did not address an implementation of a reusable repository551

and support for populating it with dynamic production processes. The au-552

thors address these gaps in their following work. They first propose the553

concept of a reusable KB of manufacturing process models, its functionality554

and high-level system architecture capable of supporting future ecosystems555

around it. Then, they implement an initial collection of performance models556

for milling and drilling as well as a composite performance model for machin-557

ing. They also develop a system for managing a repository and conducting558

analysis and optimization on manufacturing models where the initial scope559

of the system includes (1) an Integrated Development Environment (IDE)560

and its interface through the use of Atom Studio [40], (2) simulation and561

deterministic optimization of performance models through the use of Unity562

Decision Guidance Management System (DGMS), and (3) model manage-563

ment and version control through the use of the standard interface of GitLab564

[41].565

Manufacturing standards provide the means for industries to effectively566

and consistently deploy the necessary measurement science to assess process567

performance. These assessments ultimately set the stage for controlling the568

manufacturing systems and processes and enabling continuous improvement569

within the enterprise. Several evolving manufacturing-related standards lay570

foundations for modeling and integrating manufacturing systems and related571

services. Bloomfield et al. [42] proposed a framework to standardize the572

data exchange between manufacturing applications throughout the product573

life cycle. By implementing the Core Manufacturing Simulation Data In-574

formation Model (CMSDIM) developed by researchers at NIST [43], and575

chartered by the Simulation Interoperability Standards Organization (SISO),576

they aim to enhance interoperability between manufacturing applications at577

multiple stages of the product life cycle.The Core Manufacturing Simulation578

Data (CMSD) standard specifies the information entities common to man-579

ufacturing simulations to facilitate simulation model construction and data580

exchange between simulation and other manufacturing applications within a581

shop floor. Authors [42] discuss information gaps between the lean design582

engineering software and discrete event simulation. With their developed583

software, called “UA translator”, the authors report that they decreased the584

time to develop manufacturing applications, could eliminate of human er-585

ror and introduce of process time variation. Another data interoperability586

standard for manufacturing quality data is Quality Information Framework587

(QIF) [44]. QIF is an XML-based standard that was created and managed588
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by the Dimensional Metrology Standards Consortium (DMSC). It supports589

Digital Thread concepts in engineering applications ranging from product590

design through manufacturing to quality inspection [44].591

4.3.4. Lifecycle Management592

To facilitate the total integration a manufacturing system such that it593

can fully utilize the volumes of information being produced about it, there594

needs to be clear system of communication. The concept of the “Internet of595

Things (IoT) is exactly this, with both components and controllers directly596

communicating with each other as well as system coordinators and decision597

makers. An interesting extension of this is presented in the work of Aruväli598

et al. [45], detailing the notion of Digital Object Memory (DOMe). With this599

notion, information relating to each unit on a production line such as g-code,600

diagnostics, quality information, and even a complete list of machine inter-601

actions could follow a product through its entire lifetime from initiation of602

production to consumer purchase. As an example, the authors suggest that603

the manufacturing machines could stream real time information regarding604

surface roughness to the product item giving it the ability to self-assess its605

quality after production. Unfortunately, as is also explained in their work,606

this goal is currently not practical due to the difficulties of developing com-607

munications with largely dissimilar pieces of equipment, components, parts,608

and etc. The DOMe implementation could be both hardware and software609

driven to ensure high fidelity and storage of production information, but610

would need some open source communications standard that universally ap-611

plies to all the relevant constituents in manufacturing systems.612

Building upon the idea of cyber physical systems, Barthelmey et al. [46]613

describe a system to use both hardware and software to track changes in a614

manufacturing facility automatically. The goal of this work is to create an615

up to date set of documentation detailing the capabilities and status of a616

facility. This “self-organized creation of technical documents” could create617

a general cost savings by eliminating or reducing the costly upkeep of tech-618

nical documentation as it quick goes out of date due to the ever-changing619

manufacturing systems. Much of this change tracking can, and should (as ex-620

plained by the authors) be automated; keyed to some initiating event. Events621

that could trigger autonomous updates of the documentation include some622

physical change of the system as reported by various sensors and monitoring623

equipment, or the passage of some preset amount of duty cycles or calen-624

dar hours. Additionally, a prompt for document updates could occur after625
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any soft change to the system, such as maintenance. This logging scheme626

could promote not only well-maintained documentation in a context sensitive627

database, but also well-informed decisions regarding process planning.628

4.4. Identified Gaps and Needs629

With the popularity of smart-phones and similar tablet devices, the prac-630

ticality of implementing a standardized modular application-driven environ-631

ment in industrial settings is gaining support. Gröger et al. [47] discusses the632

idea of a “App”-based manufacturing tool-set. With a unified platform for633

application development users could develop specific tools that aid in every634

level of production manufacturing. These tools could be task specific for635

a single company, or more broad reaching, such as an interactive diagnostic636

maintenance tool that helps a user trouble shoot equipment on the production637

floor. Apps linked with online information repositories could have access to638

and provide contextually pertinent information at times and situations where639

it can have the most impact. For this to be maximally utilized, some unified640

platform for the Apps to be built within needs to be developed, further some641

repository should exist where end users from diverse companies could acquire642

or submit applications like the Google Play Store [48]. Standards regarding643

input/output protocols of the applications would need to be implemented644

as well as security and user interfacing. While the idea of contextualized,645

“right place right time” digital tools has the potential to greatly speed up646

maintenance, production, and development tasks in manufacturing, the lack647

of a standard or unified platform currently prevents this from being realized.648

Dekkers et al. [49] performed a survey regarding the linking of multiple649

stages of the product life-cycle development, where they arrived at some no-650

table conclusions about improving production. The need for a link between651

product design and engineering stages of the life-cycle and the implemented652

manufacturing plan has been known but not properly addressed since the653

early 1990s, although some strides have been made. One of the major hold654

ups is the lack of appropriate standardized software that can help create655

and manage a consistent repository of the knowledge. The knowledge base656

should contain contextualized knowledge for all stages of the life-cycle. Such657

a knowledge base can aid not only in production decisions within a company,658

but also with concurrent engineering and design or fabrication sourcing. Al-659

though the large amounts of data associated with this may slow down the660

process, specialized software could aid in tracking and management of the661

repository. As of now, no standardized repository or method for constructing662
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such a repository exists, but the need and growing interest in one is highly663

apparent and is expected to create a shift in manufacturing practices when664

it eventually enters the industry.665

Generic solutions for applying ML to cross-domain focus areas in the666

product life cycle are absent in the literature. The majority of previous work667

has been focused on specific use cases and domains. In addition, there is668

little-to-no use of cross-domain data and application of ML. Hedberg Jr et al.669

[8] identifies several research directions for using manufacturing knowledge670

earlier in the product life-cycle. They suggest dynamic knowledge bases671

could be generated by applying ML to data from several domains / phases672

of the life-cycle. Additionally, industry needs guidance on the minimum673

information requirements for the product life-cycle because of the different674

data requirements for each phase of the life-cycle [8] . However, when data675

and information is passed between the phases, information is lost, which676

requires iterations of communicating to ensure all the requirements for each677

phase are met. Our review described in this paper supports most of the678

findings from Hedberg Jr et al. [8]. ML applied to cross-domain use cases is679

an untapped area of research that would bring significant benefit to industry.680

5. Conclusions681

In this work, we developed and analyzed a corpus of approximately 4000682

abstracts from technical documents centered in the field of manufacturing683

using a series of NLP techniques. Going beyond simple key term matching,684

this work endeavored to provide concept matching, with a clear methodol-685

ogy and justification for characterizing general trends within the corpus as686

well as directed searches for concepts of interest in the realm of ML. From687

this, clear trends indicating the increasing prevalence of digital automation688

and ML appear throughout the manufacturing industry. Notably, generically689

applicable algorithms such as NNs and SVMs are gaining popularity. Algo-690

rithms such as these can produce compelling results with a low investment691

of time and resources to setup and maintain, making them very appealing692

for a wide array of problems.693

During the characterization of the total corpus, several key papers were694

identified for a more complete, in-depth review. The results of the in-depth695

manual survey confirmed many of the characterizations and suppositions696

about the total corpus developed by the NLP information mining. Survey697

results show that there is a growing interest in lifecycle management, as well698
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as in applications of ML in manufacturing. Areas of knowledge management,699

decision support, and lifecycle management are increasingly becoming aug-700

mented by automated technologies. Despite this, there are still significant701

gaps that could benefit from further development and adoption of some of702

these state-of-the-art technologies.703

As the manufacturing industry moves toward “automated manufactur-704

ing”, the role of data management and processing becomes more prominent.705

With the availability of data in each phase of product life-cycle, and ad-706

vances in algorithms and software tools, ML is emerging as an appropriate707

and promising tool for more agile, lean, and energy-efficient manufacturing708

systems. This trend and others necessitate pushing towards the right com-709

bination of human resources, automation and data, PLM, as well as the link710

between ML and IIoT.711

Retrieval from information silos and single-domain data re-use is the gen-712

erally accepted practice currently applied with ML. A holistic view of ML ap-713

plications across life-cycle is still a challenge. We recommend that academia714

and practitioners shift ML research and applications towards more of a life-715

cycle or enterprise-wide focus to take advantage of the ever growing mass of716

data. This would enable cross-domain data usage and could benefit industry717

with improved knowledge generation in each phase of the product life-cycle.718
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