
Cryptocurrency Smart Contracts for Distributed
Consensus of Public Randomness

Peter Mell1, John Kelsey12, and James Shook1

1 National Institute of Standards and Technology, Gaithersburg MD, USA
2 Department of Electrical Engineering, ESAT/COSIC, KU Leuven, Belgium

Abstract. Most modern electronic devices can produce a random num-
ber. However, it is difficult to see how a group of mutually distrusting
entities can have confidence in any such hardware-produced stream of
random numbers, since the producer could control the output to their
gain. In this work, we use public and immutable cryptocurrency smart
contracts, along with a set of potentially malicious randomness providers,
to produce a trustworthy stream of timestamped public random numbers.
Our contract eliminates the ability of a producer to predict or control
the generated random numbers, including the stored history of random
numbers. We consider and mitigate the threat of collusion between the
randomness providers and miners in a second, more complex contract.

1 Introduction

Most modern computing devices can produce secure random numbers. However,
there are applications which require that many parties share and trust some
source of random numbers. For example, running a lottery requires some trust-
worthy source of public random numbers. In the rest of the paper, we define
a lottery abstractly as any mechanism that randomly picks a proper subset of
elements from some larger set. It is necessary to ensure that the chosen subset
cannot be predicted (before some published time), controlled (deliberately set),
or influenced (biased toward values that are more desirable for some party).
The interesting research question is: how can we get trustworthy public random
numbers sampled from a uniform distribution, especially when the producer of
random numbers has a financial incentive to cheat?

Currently an individual ‘beacon’ service, a public producer of randomness,
may use specialized hardware setups and cryptography to reduce the possibil-
ity of the numbers to be compromised [3]. However, the ability to control the
numbers (by the beacon owner or some attacker that has compromised the bea-
con) may remain. What is needed is a consensus protocol for a set of mutually
distrusting entities to collaborate to produce a trustworthy stream of publicly
available random numbers.

Our solution is to create an Ethereum3 [22] smart contract, called a light-
house, which implements a beacon service while taking as input random num-

3 Any mention of commercial products is for information only; it does not imply
recommendation or endorsement by NIST.

bers from one or more external and potentially malicious randomness producers.
To produce the lighthouse output, we combine producer input with blockchain
hashes while forcing producers to commit to future values. In creating the dis-
tributed consensus protocol, we leverage the security capabilities associated with
smart contracts and blockchains along with a novel commitment system we call
Merlin chains (which mitigates a vulnerability common in other systems). Our
lighthouse service’s timestamped random outputs are published on the Ethereum
blockchain, which ensures their immutability and their public visibility. This
merging of beacons, smart contracts, and blockchains enables the production of
public random numbers at an extremely high level of security, even when as-
suming the presence of powerful malicious actors in the system (as long as all
participating actors aren’t malicious).

We provide two main proposed designs:

1. A single-producer contract which provides security against control or
influence from the randomness producer or a large coalition of miners com-
peting in the digital currency system, but not against both.

2. A multiple-producer contract which provides security against control or
influence from all k of the randomness providers colluding, or a large coalition
of miners conspiring with k − 1 of the randomness providers.

Both designs publish random numbers along with a time before which the
random number could not have been predicted by any entity, thus eliminat-
ing prediction attacks. With these designs, we have provided a solution for the
trustworthy public production of streams of immutable public random numbers.
Finally, we create such a contract and empirically test it on the Ethereum test
network using both the single and multiple producer models.

Usage of lighthouse services can greatly benefit any public lottery so that
selection of random numbers is no longer done behind closed doors, where the
public has to trust that no cheating is taking place. Lotteries enable a limited
set of resources to be fairly chosen for, or distributed to, a set of customers.
Among many other areas, their uses include school placements, dorm rooms
allocations, gambling, military drafts, jury duty, immigration applications, elec-
tion site auditing, and large public financial games run by governments. The
utility of a beacon extends far beyond lotteries, but a complete discussion of
those applications is outside the scope of this paper.

Different types of public lotteries are more or less sensitive to the three at-
tack types mentioned previously: prediction, control, and influence. For example,
with election site auditing an attacker primarily wants to ensure that the elec-
tion sites chosen for auditing do not correspond to the compromised sites. The
attacker then primarily wants influence to change the sites chosen for audit if
the unmodified result is going to include a compromised site. However, in a gam-
bling scenario, the attacker probably wants to predict the winning number or,
even better, control the result. Our approach must mitigate all three types of
attack.

The rest of this paper is organized as follows. Section 2 discusses previous
and related work. Section 3 discusses background information. Section 4 provides

partial solutions that build towards our final solution. Section 5 describes our
design for a single producer contract. Section 6 describes our multiple producer
contract; Sect. 7 discusses our empirical work; and Sect. 8 concludes.

2 Previous and Related Work

The original idea of a beacon (a public service that publishes signed, times-
tamped random numbers) comes from Rabin [16]. More recently, in [11], Fischer
et. al. propose the usefulness of a beacon service, and describe the NIST beacon.
They also propose a general protocol to allow many beacons to be used together
to decrease required trust in a single TTP/point of failure, and describe some
practical applications for a beacon service. There have also been many attempts
to find verifiable public random numbers for use in other applications, such as
election auditing [10] and the choice of parameters in cryptographic standards
[7].

The simplest way to build a beacon is to simply set up a trusted machine,
which generates and signs timestamped random numbers. Existing services such
as the NIST Beacon [3] and the beacon-like random.org [6] follow this approach.
For many applications of a beacon, this provides sufficient practical security.
However, it has a single point of failure – the owner of the beacon (or anyone
who compromises the trusted machine on which the beacon is running) can
influence or predict future random numbers4 .

2.1 Entropy from the Environment

In order to avoid a single point of failure or trust, many people have tried to use
unpredictable data from the world to generate public random numbers. In order
to be useful, these numbers need to be public, widely-attested, and not under
anyone’s control.

In [10], the authors consider using financial data as a source of randomness,
particularly for election auditing, and use existing tools from finance to estimate
the entropy and difficulty of influencing these numbers. [7] considers the use
of public financial lotteries to generate random numbers (intended for use in
defining cryptographic standards). [8] uses the hash of a block from the Bitcoin
blockchain and analyzes the cost of exerting influence on these random numbers
by bribing miners to discard inconvenient mined blocks. Our approach uses block
hashes in a related way and we have to consider similar attacks.

2.2 Combining Randomness from Multiple Parties

Still another approach is to combine random values from multiple sources, with
the goal of getting a trustworthy public random number if enough of the con-
4 The NIST Beacon’s published format includes features to mitigate some attacks–for
example, the beacon operator cannot directly control the beacon outputs, as they’re
the result of a SHA512 hash. However, he can predict and influence future random
numbers.

http:random.org

tributors are honest. This may be done by first collecting commitments from
participants5, and then asking each participant to reveal their commitments.

For example, if Alice and Bob want to each furnish a part of a shared random
number, Alice generates random number RA and publishes hash(RA), while Bob
generates RB and publishes hash(RB). After both commitments are published,
Alice and Bob reveal their random numbers, and agree to use RA ⊕ RB as their
shared random number. (This is referred to as a commit-then-reveal protocol.)
The generic attack against this kind of scheme is for Alice to wait until Bob has
published RB , and then decide whether she likes the resulting random number
or not. If not, she can “hit the reset button,” claiming to have suffered a system
failure that caused her to lose RA. If this leads to the shared random number
being generated again in an actual random way (even in a way that excludes
Alice), she has now exerted some influence on the shared random number.

Commit-Then-Reveal Approaches The new NIST Beacon format [12] has a pre-
commitment field intended to allow for combining of beacons using a commit-
then-reveal protocol. However, preventing the ‘hit the reset button’ attack is
left to be handled by reputation–a beacon that skips providing an output often
will get a reputation for unreliability. The Randao [4] is an Ethereum service
that tries to solve this problem by requiring each party that contributes a com-
mitment to also post a performance bond. Anyone who refuses to reveal their
random number forfeits the bond. [19] describes an elaborate set of protocols to
use verifiable secret sharing and Byzantine agreement to generate public random
numbers from 3k independent participants, so that the shared random numbers
will be trustworthy (and impossible to prevent from being published) so long as
at least k + 1 participants are trustworthy.

Variants Using Slow Computations [13] takes a different approach to combin-
ing contributions from multiple parties. Contributions from the public as well
as environmental inputs from a public video camera are hashed together and
the hash is published. The inputs are fed into an inherently sequential compu-
tationally slow hash function, and much later after the hash is computed the
result is published. Since nobody could have known the result of the slow hash
function when the inputs were hashed and published, nobody could have influ-
enced the output by deciding what or whether to send an input in. A related
approach is considered in [9], in which a computationally slow function is used to
produce shared random numbers from Bitcoin or Ethereum block hashes while
preventing miners from influencing the resulting random numbers. The same
paper describes a set of protocols for ensuring that the computationally slow
function is correctly computed, and considers the necessary financial rewards for
incentivizing participants to keep verifying the correctness of the computation.
Another related possibility to prevent an attacker “hitting the reset button” is
to use time-lock puzzles, as described in [17]. If Alice publishes TL(RA), where

5 Without these commitments, Alice can always wait for Bob to publish a random
number, and then choose hers to control the resulting shared value.

TL() is a time-lock scheme with a minimum time to unlock of one hour, and
then five minutes later all parties reveal their random numbers, the attack is
prevented. Even if Alice wants to hit the reset button (refuse to publish her
number to stop the beacon from publishing), she can only delay knowledge of
the shared random number for one hour.

Merlin Chains In this paper, we describe still another approach, called a Merlin
chain, to address this problem by giving participants a way to credibly commit to
being able to recover their ‘lost’ random numbers after hitting the reset button.
This is an example of a common situation, in which a party in a protocol becomes
more capable by restricting its future freedom of action6 .

3 Background

Beacons are entities that produce a stream of random numbers [16] (see [3] for
a currently-operating example). Each time a beacon releases a random number,
it is called a ‘pulse’. Beacons have three properties:

1. A beacon will put a random number R, unpredictable to anyone outside the
beacon itself, in each message.

2. A beacon will never release a signed random number with a timestamp T
before time T (so nobody outside the beacon could have known the random
number earlier than that time).

3. A beacon will emit only one random number for each timestamp T .

In order to be useful, the outputs from a beacon must be publicly available
and must be immutable. A beacon pulse may have many fields, but only two are
really essential: the random number, R, and the timestamp, T .

Blockchains are immutable digital ledger systems and were first used for
digital cash with Bitcoin [15]. Each ‘block’ contains a set of transactions as
well as the hash of the previous block (thus forming the ‘chain’). They can be
implemented in a distributed fashion (without any central authority) and enable
a community of users to record transactions in an immutable public ledger.
This technology has undergirded the emergence of cryptocurrencies where digital
transfers of money take place in distributed systems; it has enabled the success
of currencies such as Bitcoin [15] and Litecoin [2]. In such systems, a community
of ‘miners’ maintain a blockchain by competing to solve a mathematical puzzle.
The solution is evidence that the miner is performing computation, and for this
reason such system are called ‘proof-of-work’ systems. The ‘miner’ that solves
the current puzzle can then publish the next ‘block’ which contains recent digital
cash transactions. The winning miner receives a block award and may receive fees
from included transactions, both in terms of the applicable electronic currency.
Some blockchains use other techniques, such as consensus among trusted nodes,

6 A more general version of this idea appears in [18], applied to many real-world
situations that can be modeled by game theory.

proof-of-stake, or proof-of-storage. Without modification, our protocol will work
only with ‘proof-of-work’ systems.

Ethereum [22] is a blockchain-based cryptocurrency that supports ‘smart
contracts’. Contracts are programs whose code and state exist on the public
blockchain and they can both send and receive funds while performing arbitrary
computations. They can act as a trusted third party in financial transactions,
since the code is public but immutable. The programming language used for
contract transactions, Solidity [5], is limited in functionality but is Turing Com-
plete [20]. Ethereum charges a fee for contract execution, called ‘gas’. The orig-
inator of any transaction must pay this fee or the transaction aborts. There is
a maximum gas limit, currently 3 000 000, to prevent computationally expensive
programs from being submitted to the Ethereum miners (since each miner will
execute each transaction in parallel).

3.1 Merlin Chains

In the rest of this paper, we use a sequence of unpredictable numbers we call a
Merlin chain7. This is a (usually long) sequence of values where every value Vx is
the hash of the value with the next higher index Vx+1 (i.e., Vx = SHA3(Vx+1)).
This use of a hash function then provides a series of random values taken from
a uniform distribution but where each value is related to the previous value
(because the current value is created by hashing the previous value).

A Merlin chain has three important properties:

1. An attacker who has seen all previous entries (V0,1,2,...,j−1) in the Merlin
chain cannot predict anything about the next entry (Vj).

2. Each entry in the chain works as a commitment to the next entry in the
chain. Once an entity has revealed V0, it has no valid choice except to follow
this with V1, then V2, and so on.

3. By storing Vn offsite, the entity revealing the chain entries can guarantee
that even a catastrophic hardware or software failure will not prohibit the
production of chain values (as would happen were the chain data lost).

The most important feature of the Merlin chain is that it takes away the
choices of the entity using it, while still allowing that entity to produce numbers
(unpredictable to everyone else). For the user of the Merlin chain, “Everything
not forbidden is compulsory”[21].

4 Preliminary Approaches

In this section, we describe some plausible-sounding strategies to make a beacon.
These approaches don’t work but will build towards our proposed solution, thus
motivating our design choices in the rest of the paper.

7 The Merlin Chain is named after the character of Merlin in T.H. White’s The Once
and Future King [21], who lives his life backwards in time.

4.1 Block hashes

Each block in the Ethereum blockchain is hashed using 256-bit SHA3 and this
result is published on the blockchain along with a timestamp. This meets our
definition of a beacon in Sect. 3 and one might consider using these hashes
as a source of public randomness. However, in this case it turns out that it is
possible for the Ethereum miners to influence the beacon results. Consider the
situation where a coalition controlling a fraction F of all the processing power
of the Ethereum miners is working to predict, control, or influence a block hash.
Predicting the block hash would require knowing all transactions to be included
in the blockchain up to and including the block whose hash will be used for a
random number. Thus, prediction a very short time in advance is sometimes
possible for a coalition of miners but prediction far in advance would require
control of the whole mining pool and a very visible-to-the-world denial of service
attack on the transactions submitted to Ethereum. With respect to control, it’s
clear that even when F = 100 %, there is no way for the coalition to control the
value of the block hash, since it’s the output of a hash function.

However, influencing the block hash is quite feasible. Consider a coalition
controlling F % of the total mining power, which wants to force a single bit of
the block hash to be a one. The coalition members attempt to mine the next
block, but when they reach a valid proof of work (so that they’ve successfully
mined a block) they check to see whether the resulting block hash has the desired
bit set. If not, they simply throw the block hash away and keep trying to mine
the next block. Table 4.1 shows the result of simulating this attack, for various
fractions of mining power controlled by the coalition.

Table 1. Extent to which a coalition of miners can influence one bit of the block hash

Fraction of Bias in
processing power targeted bit
in coalition

5 % 0.01
10 % 0.03
20 % 0.06
30 % 0.09
40 % 0.13
50 % 0.17

As the table shows, even a coalition with only 10 % of the miners’ processing
power can impose a potentially significant amount of bias on a selected bit of
the block hash, causing the selected bit to have probability 0.53 of being a one.

4.2 Adding a Producer of Randomness

The above analysis demonstrates why the block hash alone cannot be used as a
public source of randomness. We now consider adding an external producer of

randomness, moving us closer to a useful solution. The producer sends a random
number V , and then the contract produces an output R = SHA3(H k V), where
H is the block hash of the previous block. If the producer does not reveal V until
the block hash is calculated, the miners no longer can exert any influence over
R. However, in this scenario the producer can choose V after H is generated and
thus influence R. In addition, this influence is greater since it is very easy for
the producer to compute many R values by simply changing the V input (it is
much harder for the miners because to compute a new candidate R value they
must create a blockchain block that wins the current block competition).

Our solution to these residual security issues is for the contract to require the
producer to generate V prior to H being computed. It does this by requiring that
the producer submit the hash of V before it records the value of H to be used.
Then only after H is computed by the miners, the producer submits V to the
contract. The contract can check that this is the value the producer committed
to upfront by simply hashing V . The miners can’t influence R because they don’t
know V when computing the block hash. The producer can’t influence R because
it can’t know the block hash when initially committing to a V value (when it
sends the hash of V to the contract). The next sections more formally present
this approach and handle a variety of security issues that arise (including the
possibility that the producer and miners might collaborate to circumvent the
security architecture).

5 Single Producer Contract

In this section we present a contract whose input comes from a single producer
and whose output is a beacon. It is designed to produce a 32-byte random number
on the blockchain with a maximum frequency of about once every 30 seconds
(more precisely once every other Ethereum block). To maximize the usability of
the provided beacon service, we recommend that the producer provide input to
the contract at some fixed interval greater than 30 seconds.

The producer will provide unpredictable values from a Merlin chain, and
so must pre-compute all inputs that will be provided to the contract for its
lifetime. Let n represent the chosen number of input values. The value Vn is
chosen randomly, Vn−1 = SHA3(Vn), Vn−2 = SHA3(Vn−1) and so on until the
computation of V1. The Merlin values are released to the contract starting with
V1 (the reverse of the order in which they were generated).

The function B() will provide the block number in which some input or out-
put is processed by the contract. The function BH() provides the block hash of
some block number. Lastly, the function timestamp() provides the Ethereum
timestamp for some block.

The producer will periodically provide the contract some message containing
a Vx value along with a timestamp Ux. The contract in response may produce
a random value Rx and a timestamp Tx (note that in certain circumstances
the contract may not publish an Rx value). Tx will be the time before which

no entity could have predicted Rx, including the producer (usually this will be
about 30 seconds prior to Rx being publicly released).

The core idea is that for each message (containing some Vx) received from
the producer, the contract will attempt to generate Rx using as input both an
Ethereum block hash and Vx. The block hash used will be one that was generated
after Vx−1 was submitted to the contract but before Vx was submitted. This
way the miners can’t know Vx when the relevant block hash is created and they
can’t then influence Rx (assuming that the producer and a group of miners
are not colluding). Likewise, the producer can’t influence Rx because Vx was
predetermined by the submission of Vx−1 and this was done before the relevant
block hash was generated. Tx is then generated by taking the minimum of Ux−1

and the Ethereum timestamp for the block in which Vx−1 was submitted (taking
the minimum eliminates malicious producers from being able claim a Merlin
value was revealed later than it was revealed). The actual protocol is slightly
more complicated (to account for unexpected input, messages submitted too
early, and Ethereum implementation issues). It is outlined below.

5.1 Single Producer Protocol

For each message, with associated Vx and Ux values, the contract checks the
following prior to accepting the input:

1. The message must come from the Ethereum address registered in the con-
tract as the one pertaining to the producer.

2. Vx must be the next value on the producer’s Merlin chain (i.e., Vx−1 =
SHA3(Vx)). This ensures that the producer can’t influence Rx.

However, Vx is not considered ‘valid’ for producing a random number, Rx,
and a timestamp, Ux, unless the following hold (assume that Ry is the last
produced R value, usually Rx−1):

1. The block number in which Vx is processed by the contract must be at least
2 more than the block number where the last valid V value was processed
by the contract8 (i.e., B(Vx) ≥ B(Ry)+2). This ensures that the miners can’t
use the block hash to influence Rx (since miners can discard a block after
computing the block hash).

2. The contract must have access to BH(B(Ry)+1). The contract will retrieve
this given any activity (either from the producer or any customer retrieving
random numbers) but Ethereum only provides access to the blockhashes for
the last 256 blocks. If this is not available9, the contract will output a public

8 The producer can ensure this is always true by verifying that it doesn’t send the
next (Vx, Ux) message until it has seen at least one block go past on the blockchain
since the last random output.

9 This availability could be ensured by setting up another provider which does nothing
except send a message to the lighthouse contract once every 256 blocks (since block-
hashes produced more than 256 blocks in the past are irretrievable in the Ethereum
system).

error log message and reset the block hash used to be the one from the next
Ethereum block (i.e., BH(B(Vx)+1).)

If these conditions are satisfied, Rx and Tx are generated according to the
following formulas:

Rx = SHA3(Vx k BH(B(Ry) + 1)) (1)

Tx = min(timestamp(B(Ry)), Ux) (2)

Figure 5.1 provides an example of two valid messages arriving to the contract
and shows how the contract uses them to generate R and T values. In the figure,
we use bx to represent the block number at which some Vx arrived to the contract.

Fig. 1. The Single Producer Protocol

5.2 Mitigated Security Flaws

We now analyze different attack scenarios and discuss how they are mitigated:

1. The producer might try to use Vx to influence Rx. However, this won’t work
because Vx is fixed based on Vx−1 and the block hash used was generated
after Vx−1 was revealed.

2. The producer might try to delay sending Vx to influence Rx. This was possi-
ble in earlier designs where the block hash used for Rx was the one prior to
Vx. In this case, the producer could watch the block hashes being produced
and then quickly issue a pulse after a desirable block hash was published on
the blockchain. We mitigated this by fixing the block hash to be used to be
BH(B(Ry)+1).

3. A producer could purposefully submit a message too early. However, the
message is rejected as invalid and this simply updates the Merlin value V
stored on the contract (which is fine since the relevant block hash has not
yet been generated).

4. Because of a design limitation in the Ethereum Solidity language, the con-
tract is only able to retrieve up to the last 256 block hashes (about 68 minutes
of blockchain operation). The threat is that prior to revealing Vx, a producer
might calculate Rx and find it undesirable. The producer may then wait 256
blocks prior to releasing Vx so that the correct blockhash can’t be retrieved.
This effectively changes the result since the contract can no longer retrieve
the block hash BH(B(Ry)+1). We mitigate this by enabling the contract to
retrieve the block hash during any transaction (including customer retrieval
of V values). Thus, even if the producer waits, other activity will enable
the contract to retrieve the needed value within the period of availability. If
this does not happen, the contract emits an error log and resets the block
hash used to be one not yet generated. To strongly mitigate this problem
for little used beacons, the contract owner should arrange for some party to
access the contract at least every 256 blocks to ensure that the block hash
is retrieved within the time constraints.

5. Miners (not collaborating with the producer) may try to affect Rx by throw-
ing out discovered blocks that have block hashes that will produce unde-
sirable random numbers. However, miners must compute the block hash to
be used, BH(B(Ry)+1), prior to Vx being revealed and thus this won’t work.
This is why the block number in which Vx is processed by the contract must
be at least 2 more than the block number where the last valid V value was
processed by the contract. Note that a separate vulnerability arises if one
uses the block hash of the block where the last V value was processed and
so that was not available as an option.

6. The contract owner has only the ability to register and de-register the pro-
ducer. De-registration only occurs after a set number of blocks (eliminating
the possibility of the contract owner seeing a revealed Vx value message and
trying to remove the producer before the contract processes it). With respect
to registering a producer, its first message is used only to set the initial Vx

Merlin value and so registration can’t be used to influence or control the V
values.

7. An attacker could compromise the producer but they would still have to
produce the values on the pre-determined Merlin chain. To influence the
results they would have to collaborate with a group of miners (this attack is
discussed in the next section).

8. The producer who has sent some Vx can predict an Rx+1 after the next block
hash has been calculated. Our mitigation of this is for the contract to publish
Tx+1 which indicates at what time the producer could have predicted Rx+1

(this is usually less than a minute in the past).
9. Since the producer can predict the next R value, it may not send some Vx

because revealing it will generate an Rx that is deemed undesirable (e.g., the
producer made a bet on the outcome). However, then it must stop producing

any values because the contract will wait for Vx. We mitigate this by requiring
producers to keep an offsite backup copy of their Merlin chain. This does not
stop a producer from refusing to reveal Vx. However, it does eliminate their
ability to claim an inability to reveal due to a hardware failure or natural
disaster. This weakness could be more strongly mitigated in future work by
requiring the producer to submit a timelock puzzle [17] along with each V
value. Such puzzles would allow contract customers to perform an expensive
computation on a Vx−1 to reveal any Vx withheld by the producer. The
producer couldn’t lie at the right moment because they can’t predict an Rx

when sending in a Vx−1 (and lying in general is easy to detect by solving the
timelock puzzle).

5.3 Residual Security Flaw

The remaining security flaw is that the producer (or an attacker that has com-
promised the producer) may collaborate with a set of miners to attempt to
influence, but not control, Rx. The malicious producer would provide the collab-
orating miners the value Vx, enabling them to compute a candidate Rx if they
successfully mine block B(Ry)+1. If this is a desirable outcome, they publish
the completed block to the mining community. If not, they discard the com-
pleted block and lose the associated block reward and transaction fee funds. We
mitigate this attack with our multiple producer contract.

6 Multiple Producer Contract

The multiple producer contract permits multiple producers to submit values to
mitigate the possibility of a single producer collaborating with a group of min-
ers. Each producer is handled independently using the single producer protocol
from Sect. 5.1 (with some exceptions) and the contract maintains a beacon inde-
pendently for each producer. When all beacons have pulsed, the contract pulses
R and T values derived from the combination of beacon pulses. We call this
combined output a lighthouse pulse. We change our notation to handle multiple
producers as follows. We identify each producer with an integer, add this as a
subscript to each variable, and let each variable refer to its most recent value.
Thus, R1 references the most recent R value for producer 1. We use RL and TL

to refer to the most recent lighthouse output.
The contract handles each producer using the single producer protocol from

Sect. 5.1 with the following exceptions (that force the beacons to progress in a
lockstep manner):

1. Once pulsed, beacons are not allowed to pulse again until the lighthouse
pulses. If a producer sends additional messages prior to the lighthouse pulse,
they are marked as invalid.

2. The ‘Ry ’ references in Sect. 5.1 now correspond to the RL values produced
by the lighthouse (not the particular producer’s beacon). This causes all
beacons to use the same block hash for each beacon pulse.

Once all beacons have pulsed, the lighthouse pulses as follows:

RL = R1 ⊕ R2 ⊕ ... ⊕ Rm (3)

where ⊕ is exclusive or (XOR) and m represents the number of participating
beacons. This has the convenient feature that the lighthouse output using only
a single producer is identical to that producer’s beacon output.

TL = max(T1, T2, ..., Tm) (4)

While not necessary, the lighthouse will work more efficiently if all producers
synchronize their time (e.g., using the Network Time Protocol [14]) and issue
messages at some agreed upon interval.

Each producer’s beacon follows the single producer protocol and thus has
the same security advantages. The small exceptions to the protocol in Sect. 6
do not affect the per beacon security analysis. Each beacon is still secure unless
both the producer and a group of miners collude. The small exceptions cause the
beacons to produce in lockstep. Due to the common block hash used, no beacon
can predict the lighthouse output until after the block hash has been calculated
(at which point the potentially malicious beacon has already committed to its
next value).

This leaves open the possibility that a set of t malicious producers could
collaborate on which will refuse to reveal in order to try to manipulate 2t bits.
However, any such activity will be publicly viewable, will cause the lighthouse to
stop production, and cause the contract owner to deregister any such producers.
The producers can’t claim technical failures because they are required to keep a
backup copy of their Merlin chains.

The only way to influence the RL values then is for all producers to collab-
orate with each other and also with a group of miners. They can then throw
out successfully mined but undesirable blocks (those that would produce an un-
wanted RL value). In no situation can the RL value be controlled (i.e., directly
chosen).

However, there is one remaining weakness that must be addressed. If all
producers colluded when initially creating their Merlin chains then they could
use the same V value making the beacons all pulse the same value. If there are
an even number of producers, this will force RL to be 0 since it used XOR. To
mitigate this, our contract simply refuses to pulse an RL value equal to 0. This
obviously reduces the output state space by 1.

7 Empirical Work

We implemented our multiple producer contract using the Solidity language [5]
and deployed it to the Ethereum test network. The test network is identical to
the production network except the Ether has no real world value. Given that
our system does not rely on the transfer of digital assets, the test network works
just as well for our lighthouse as the real Ethereum network. We also created

distributed application (DApp) software to enable producers to submit pulses to
the contract and for customers to retrieve R values. We used multiple producers
and tested the contract’s ability to generate the independent beacon values as
well as the lighthouse values.

We found that coding our contracts in Solidity was rather straightforward.
The main challenges were that we easily ran out of gas (performed too much
computation) or ran out the very limited stack space for individual functions.
However, creating the beacon software that submitted pulses to the contract was
much more difficult since very little documentation exists on how to enable a
program outside of Ethereum to communicate with an Ethereum contract.

We didn’t use the main Ethereum network for our empirical testing because
the current contract execution prices made it too expensive (due to Ether cur-
rency speculation). The price of Ethereum has risen from $8.00 per Ether to
$358 per Ether in six months [1] (as of June 20, 2017) and the gas fees have
not dropped accordingly although Ethereum has a mechanism to do so. Table 2
shows the costs of the main functions in terms of Ether, USD on January 2017,
and USD on June 2017.

If a producer pulses once a minute, the cost using June 2017 prices would
be $673,000 USD per year. Using January 2017 prices, it would be $17,870 USD
(which the authors believe to still be excessively high).

Table 2. Approximate Ether and USD Costs of Lighthouse Functions as of 2017-06-15

Request Type Gas Ether USD (2017-06-20) USD (2017-01-01)
Contract Deployment 1.9M .0399 $14.29 $0.32
Register Producer 205k .0043 $1.54 $0.035
Producer Pulse 200k .0042 $1.50 $0.034
Retrieve Output 22k .000462 $0.17 $0.0037

Due to these cost issues, future implementations of our contract may use
an alternate to Ethereum or a private Ethereum network. This latter approach
is fully supported by the Ethereum development tools and would be privately
managed but publicly accessible. Another option is to design the system so that
the users of the system pay the cost by charging a small fee for each delivered
random number.

8 Conclusion

It is possible to use cryptocurrency smart contracts to create a distributed con-
sensus protocol to publicly produce a stream of trustworthy random numbers.
Our contract design eliminates both prediction and control attacks. Neither is it
possible for any entity to change the values once published. What is possible is
that the output might be indirectly influenced without being directly controlled
but this can be mitigated by registering multiple producers.

References

1. Ethereumprice, https://ethereumprice.org/, accessed: 2017-06-27
2. Litecoin, https://litecoin.org/, accessed: 2017-06-16
3. National Institute of Standards and Technology Beacon Program,

https://beacon.nist.gov/home, accessed: 2017-06-16
4. Randao, https://github.com/randao/randao, accessed: 2017-07-10
5. Solidity language, https://solidity.readthedocs.io/en/develop/, accessed: 2017-06-

16
6. www.random.org, https://www.random.org/, accessed: 2017-07-10
7. Baignères, T., Delerablée, C., Finiasz, M., Goubin, L., Lepoint, T., Rivain, M.:

Trap me if you can - million dollar curve. IACR Cryptology ePrint Archive 2015,
1249 (2015)

8. Bonneau, J., Clark, J., Goldfeder, S.: On bitcoin as a public randomness source.
IACR Cryptology ePrint Archive 2015, 1015 (2015)

9. Bunz, Goldfeder, B.: Proofs-of-delay and randomness beacons in
ethereum. IEEE Security & Privacy on the Blockchain (2017),
http://www.jbonneau.com/publications.html

10. Clark, J., Hengartner, U.: On the use of financial data as a random beacon. IACR
Cryptology ePrint Archive 2010, 361 (2010), http://eprint.iacr.org/2010/361

11. Fischer, M.J., Iorga, M., Peralta, R.: A public randomness service. In: Security and
Cryptography (SECRYPT), 2011 Proceedings of the International Conference on.
pp. 434–438. IEEE (2011)

12. Kelsey, J.: The new nist beacon protocol and combining beacons (2017)
13. Lenstra, A.K., Wesolowski, B.: A random zoo: sloth, unicorn, and trx. IACR Cryp-

tology ePrint Archive 2015, 366 (2015)
14. Mills, D., Martin, J., Burbank, J., Kasch, W.: RFC 5905: Network Time Protocol

Version 4: Protocol and Algorithms Specification. Internet Engineering Task Force
(IETF), 2010. tools. ietf. org/html/rfc5905

15. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)
16. Rabin, M.O.: Transaction protection by beacons. Journal of Computer and System

Sciences 27(2), 256–267 (1983)
17. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release

crypto (1996)
18. Schelling, T.C.: The Strategy of Conflict. Oxford University Press (1960)
19. Syta, E., Jovanovic, P., Kokoris-Kogias, E., Gailly, N., Gasser, L., Khoffi, I., Fis-

cher, M.J., Ford, B.: Scalable bias-resistant distributed randomness. In: 2017 IEEE
Symposium on Security and Privacy, SP 2017, San Jose, CA, USA, May 22-26,
2017. pp. 444–460 (2017), https://doi.org/10.1109/SP.2017.45

20. Turing, A.M.: On computable numbers, with an application to the entschei-
dungsproblem. Proceedings of the London mathematical society 2(1), 230–265
(1937)

21. White, T.H.: The Once and Future King. Ace Books (1987)
22. Wood, G.: Ethereum: A secure decentralised generalised transaction ledger.

Ethereum Project Yellow Paper 151 (2014)

https://doi.org/10.1109/SP.2017.45
http://eprint.iacr.org/2010/361
http://www.jbonneau.com/publications.html
http:https://www.random.org
http:www.random.org
https://solidity.readthedocs.io/en/develop
https://github.com/randao/randao
https://beacon.nist.gov/home
http:https://litecoin.org
http:https://ethereumprice.org

