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A 3-D Tensorial Integral Formulation of Scattering
Containing Intriguing Relations

Alex J. Yuffa , Member, IEEE, and Johannes Markkanen

Abstract— We investigate the role of the electric field and
its normal derivative in 3-D electromagnetic scattering theory.
We present an alternative integral equation formulation that
uses the electric field and its normal derivative as the boundary
unknowns. In particular, we extend a traditional formulation that
is used in 2-D scattering theory to three-dimensions. We uncover
several intriguing relationships involving closed surface integrals
of the field and/or its derivative. In order not to obscure the
physical/geometric awareness, the derivation is made from a
tensor calculus perspective.

Index Terms— Boundary conditions, boundary value problems,
electrodynamics, integral equations, waves.

I. INTRODUCTION

PREVIOUSLY DeSanto and Yuffa [1], [2] published a set
of integral equations for electromagnetic (EM) scattering,

where the electric field and its normal derivative were used to
satisfy the boundary conditions. Unfortunately, the derivation
presented in [1] is only valid in a Cartesian coordinate system
and requires the scattering surface to be of the form z =
f (x, y). Furthermore, the formulation is presented in a vector
component form, and thus it cannot be effortlessly extended
to curvilinear coordinate systems. In addition, the employment
of a nonunit normal vector used in the formulation is also
troublesome from theoretical and numerical points of view.
The net effect of the above-mentioned shortcomings is the
loss of physical/geometrical insight. Arguably, this is the most
detrimental sacrifice committed in our previous derivation. The
main purpose of this paper is to remedy these shortcomings
and to gain a physical insight into the mathematical relation-
ships involving the electric field and its normal derivative.

Although this paper is theoretical in nature, we would
like to remark that our formalism may be advantageous in
some avant-garde applications. For decades, if not centuries,
cloaking (invisibility) devices have fascinated minds. Up until
now, these fascinating devices only existed in the realm of
science fiction. Technological advances of this century brought
these devices into the realm of reality. Recent experiments at
microwave frequencies [3] and, to a lesser extent, at optical
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frequencies [4], [5] have demonstrated their feasibility. It is
well-known that the boundary conditions have an extensive
effect on the solution, and thus it is not surprising that unortho-
dox boundary conditions provide the most elegant means for
achieving a solution. Indeed, for cloaking applications, such
unorthodox boundary conditions on the normal components
of the EM field or its derivative, rather than on the tangen-
tial components, provide the required solution. In particular,
it has been shown that the vanishing of these normal compo-
nents is required to achieve some cloaking aspects [6]–[14].
Although these boundary conditions were first considered by
Rumsey [15] more than half a century ago, it is only in the
past decade that they have started to attract attention in the
literature. Therefore, the intriguing relationships derived in
this paper, especially those involving the electric field and
its normal derivative, as well as interrelationships between
their normal/tangential components, may offer some insight
into these fascinating devices.

Our formalism may also be advantageous in certain near
field to far field (NF2FF) transformations that are commonly
used in antenna metrology where the far field of an antenna is
predicted from measurements in the near field. Traditionally,
these NF2FF transformations were based on partial wave
(modal) expansion of the field with the expansion coefficients
computed from the near-field data taken on a canonical surface
[16]–[18]. In the past few decades, NF2FF transformations
based on integral equations started to appear in [19]–[23].
These equivalent current methods have a number of advantages
with regard to the sampling requirements as well as the
size and shape of the near-field measurement surface. It has
been shown in [24] that a receiving (probe) antenna can
be thought of as a linear differential operator that converts
the incident field and its derivatives into an output voltage;
hence, an integral equation method such as ours that inherently
uses the field and its normal derivative may offer further
physical insight. We plan to explore these ideas in future
publications.

This paper is organized as follows. In Section II, we for-
mulate the scattering problem and introduce the notation used
in this paper. At this point, we also invite the reader to review
tensor calculus (see Appendix A) because it is heavily used
throughout this paper. In Section III, we derive the key conti-
nuity condition for the normal derivative of the electric field
across an interface. Along the way, we also derive a number of
intriguing relationships involving the normal derivative of the
electric field. These are presented as corollaries in this section.
In Section IV, we use the continuity condition derived in
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Fig. 1. Typical scattering geometry is shown, where the primary wave is
incident from Region 1 onto a scatterer occupying Region 2. The scatterer is
bounded by the surface � with the unit normal vector N .

Section III to obtain the main result of this paper, i.e., the
alternative surface integral equations. In Section V, we make
a connection with the Stratton–Chu formula, and we conclude
this paper in Section VI.

II. PROBLEM STATEMENT AND NOTATION

Consider a typical scattering problem depicted in Fig. 1,
where the incident electric field

inc
E is assumed to satisfy the

vector Helmholtz equation and the scattered field
sca
E satisfies

the Silver–Müller radiation condition [25, Sec. 4.2]. The
scatterer (Region 2) is characterized by complex, constant
permittivity, and permeability, i.e., 2

� ∈ C and 2
μ ∈ C,

respectively. Region 1 is also characterized by a constant
permittivity and permeability, but these constants are assumed
to be purely real. Throughout this paper, we use the Gaussian
unit system and assume that all fields are harmonic in time
with a suppressed exp(−iωt) time factor. This convention
implies that the imaginary parts of 2

� and 2
μ must be non-

negative [26]. Furthermore, we use tensor notation with the
Einstein summation convention throughout this paper. In this
notation, the Latin alphabet indices range from 1 to 3 and
the Greek alphabet indices range from 1 to 2. We denote the
coordinates of a source point in the 3-D Euclidean space by
Z1, Z2, Z3, or Zi or simply by Z . Similarly, we denote the
coordinates of an observation field point by ˜Zi . If we let R
denote the position vector, then the position vectors of a source
point and a field point are given by P = R(Z) and ˜P = R(˜Z),
respectively, and the covariant ambient basis is obtained from
R via

Zi = ∂

∂ Zi
R(Z). (1)

If Sα (S1 and S2) denotes the surface coordinates, e.g.,
the coordinates of the surface � shown in Fig. 1, then the
surface covariant basis is given by

Sα = ∂

∂Sα
R(Z(S)) = Zi

α Zi (2)

where Zi
α = ∂ Zi/∂Sα is the shift tensor. Furthermore,

the covariant metric tensor and the surface covariant metric
tensor are given by Zi j = Zi · Z j and Sαβ = Sα · Sβ ,
respectively.

To obtain an integral representation of the E-field in
Region # (# denotes 1 or 2), we multiply (∇ i∇ i + #

k 2)
#
E = 0

by
#

G and (∇ i∇ i + #
k 2)

#
G = −δ(˜P − P) by

#
E, then take the

difference between the two equations. After integrating the
resultant equation over Region # and using Gauss’s theorem
as well as the sifting property of the Dirac delta function
δ(˜P − P), we obtain

inc
E(˜Z) −

∫

�

[

1
G(˜Z , S)

∂

∂ N

1
E(S) − 1

E(S)
∂

∂ N

1
G(˜Z , S)

]

dS

=
{

1
E(˜Z), ˜Z ∈ Region 1

0, ˜Z ∈ Region 2
(3a)

and
∫

�

[

2
G(˜Z , S)

∂

∂ N

2
E(S) − 2

E(S)
∂

∂ N

2
G(˜Z , S)

]

dS

=
{

2
E(˜Z), ˜Z ∈ Region 2

0, ˜Z ∈ Region 1
(3b)

where
#
E is the total E-field in Region #,

#
k is the wavenumber

in Region #, and
#

G denotes the free-space Green’s function in
Region #. Explicitly, the free-space Green’s function is given
by

#
G(˜P, P) = exp

(

i
#
k �˜P − P�)

4π�˜P − P� . (4)

In (3), ∂/∂ N denotes the normal derivative with respect to the
source coordinates, that is,

∂

∂ N
= Ni ∇ i (5)

where the unit normal N = Ni Zi points from Region 2 into
Region 1 and ∇ i denotes the covariant derivative. Furthermore,
in the derivation of (3), we expressed the Laplacian ∇ i∇ i in
terms of the covariant and contravariant derivatives.

If the E-field and its normal derivative are known on �,
then we can compute the E-field everywhere in space via (3).
In order to find the E-field and its normal derivative on �,
we let the field point ˜Z approach the surface and note that the
Green’s function and its normal derivative are singular when
Z = ˜Z . The Green’s function singularity contributes 0 to the
integral and its normal derivative contributes +1/2 (−1/2) to
the integral if the surface is approached from Region 1 (2)
[27, Sec. 3.1.1]. Thus, taking the limit as ˜Z approaches the
surface yields

inc
E(˜S) − −

∫

�

[

1
G

∂
1
E

∂ N
− 1

E
∂

1
G

∂ N

]

dS = 1

2

1
E(˜S) (6a)

and

−
∫

�

[

2
G

∂
2
E

∂ N
− 2

E
∂

2
G

∂ N

]

dS = 1

2

2
E(˜S) (6b)

where −
∫

denotes the Cauchy principal value integral and the
functional arguments of the integrands have been omitted to
conserve space. Having chosen the E-field and its normal
derivative as the boundary unknowns, we notice that (6) has
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twice as many unknowns as equations. A natural approach
to reduce the number of unknowns in (6) is to supplement it
with continuity conditions that relate the E-field and its normal
derivative across the surface �. To derive these conditions,
we have to rely on tensor calculus. Although there is a plethora
of textbooks on tensor calculus there seems to be no uniformity
in notation and, to borrow a phrase from renowned Russian
physicist Lev D. Landau, “the theoretical minimum” differs
greatly from book to book. To remedy this situation and to
make this paper self-contained as much as possible, we have
included a brief tutorial on tensor calculus in Appendix A.
This tutorial is similar in flavor to [28] and, to a lesser extent,
to [29].

Finally, we remark the assumption that the incident field
satisfies the vector Helmholtz equation can be relaxed without
significantly altering our method. To see this, simply use
the scattered field

sca
E instead of

1
E in the derivation of (3a).

This alternative derivation will yield (3a) with an additional
(known) term on the left-hand side (LHS), namely,

∫

�

[

1
G(˜Z , S)

∂

∂ N

inc
E(S) − inc

E(S)
∂

∂ N

1
G(˜Z , S)

]

dS.

III. CONTINUITY CONDITIONS

We will derive the continuity conditions for the E-field and
its normal derivative directly from the Maxwell equations

∇ × E − i
μω

c
H = 0 (7a)

∇ × H + i
�ω

c
E = 0 (7b)

∇ ·
{

E
H

}

= 0 (7c)

and the conventional continuity conditions, namely,

N ×
{ 1

E − 2
E

1
H − 2

H

}

= 0 (8a)

and

N ·
{

1
�

1
E − 2

�
2
E

1
μ

1
H − 2

μ
2

H

}

= 0. (8b)

By noting that (8a) and (8b) specify the continuity conditions
on the tangential and normal components of the field, respec-
tively, we can immediately rewrite (8) as [also see (A.1)]

2
E = r

� −1(N · 1
E)N + (Sα · 1

E)Sα (9)

where r
� = 2

� /
1
�. Using the projection decomposition formula

(A.4), we can express the tangential projection on the right-
hand side (RHS) of (9) in terms of the normal projection to
obtain

2
E i = Ai

j

1
E j

, where Ai
j = δi

j + (
r
� −1 − 1)Ni N j (10)

and δi
j is the Kronecker symbol. We prefer to work with (10)

instead of (9) because, from a computational point of view, it is
more convenient to work with unit normals than shift tensors.
Regardless how one chooses to express Ai

j , it is important to
note that each component of the E-field in one region depends
on all of the components of the E-field in the other region.
In other words, in general Ai

j does not have any zero entries.

A. Normal Derivative Continuity

To derive a continuity condition for the normal derivative of
the E-field, we first express the normal derivative in the form

∂ E
∂ N

= ∇αUα + V (11)

where Uα may depend on the E-field but not on its deriv-
atives. This form is desired because we can apply Gauss’s
theorem (A.13) to the first term on the RHS of (11) and obtain
terms that do not depend on the derivatives of the E-field. In
other words, after the application of Gauss’s theorem, we will
be able to use (10) to express the RHS of (11) in terms of the
E-field in the other region.

We begin the derivation by expanding N ×(∇× E) in terms
of two inner products and, after using (7a), we obtain

Nm∇m E
 = Nm∇
 Em + i
μω

c
K 
 (12)

where K = −N × H . The term on the LHS is the desired
normal derivative, but the first term on the RHS contains ∇


instead of the desired ∇α . These two covariant derivatives are
related by the chain rule [28, Sec. 11.8], namely,

∇α Em = Zk
α∇k Em . (13)

It is important to have a proper interpretation of the above-
mentioned elegant but terse relationship. On the LHS, we have
the covariant surface derivative of the surface restriction of
the ambient field, but on the RHS, we have the projec-
tion (shift tensor Zk

α) of the ambient covariant derivative.
Multiplying (13) by Zβ


 and then contracting the Greek indices
yields

∇
Em = Zα

 ∇α Em + N


∂ Em

∂ N
(14)

where we used (A.4) to express the tangential projection
operator Zα


 Zk
α in terms of the normal projection operator

N
 Nk . We can loosely interpret (14) as the “reverse” chain
rule after moving the last term on the RHS to the LHS
and comparing the resultant RHS with the RHS of (13).
Substituting (14) into the RHS of (12) yields

∂ E


∂ N
= Nm Zα


 ∇α Em + N
 Nm ∂ Em

∂ N
+ i

μω

c
K 
. (15)

The second term on the RHS of (15) contains the nor-
mal component of the normal derivative of the E-field,
i.e., Nm∂ Em/∂ N . This component is related to the surface
covariant derivative of the E-field because the E-field is
divergenceless in source-free space, i.e., ∇ · E = 0. Thus,
raising the 
 index in (14) and contracting it with the m index
yields

Nm ∂ Em

∂ N
= −Zmα∇α Em . (16)

Substituting (16) into (15) and using the product rule,
we obtain

∂ E


∂ N
= ∇α(Nm Em Z
α − Zmα Em N
) + i

μω

c
K 


+ Em∇α(N
 Zmα − Nm Z
α). (17)
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This would be the desired relationship if the last line on
the RHS vanished. Fortunately it does, and we prove this in
Appendix B. Thus, after using the metrinilic properties of ∇ i

and ∇α (see Sections B and C in Appendix A), we finally
have the desired relationship

∂ E
∂ N

= ∇α[(N · E)Sα − (Sα · E)N] + i
μω

c
K . (18)

The two terms inside the square brackets on the RHS are
unusual because the surface tangent vector Sα is scaled by the
normal component of the E-field N · E, and the normal vector
N is scaled by the tangential components of the E-field Sα · E.
Nonetheless, we can use (18) to derive the continuity condition
for the normal derivative of the E-field. To see this, write (18)
in Regions 1 and 2 and then consider 1

μ(∂/∂ N )
2
E − 2

μ(∂/∂ N)
1
E

to obtain

∂
2

E
∂ N

= r
μ

(

∂
1

E
∂ N

− ∇α[(N · 1
E)Sα − (Sα · 1

E)N]
)

+∇α[(N · 2
E)Sα − (Sα · 2

E)N] (19)

where r
μ = 2

μ/
1
μ. The surface currents do not appear in (19)

because K is continuous across an interface (see (8a)). The
continuity condition given by (19) is the main result of this
section; it relates the normal derivative of the E-field across
an interface. To gain some insight into (19), it is instructive
to consider (19) under special circumstances. In practice,
we often deal with nonmagnetic media ( r

μ = 1), and in this
case (19) reduces to

∂
2
E

∂ N
− ∇α[(N · 2

E)Sα] = ∂
1
E

∂ N
− ∇α[(N · 1

E)Sα]. (20)

From (20), we see that the discontinuity of the normal deriva-
tive of the E-field is dictated by the normal component of the
E-field, i.e., by N ·E. Another situation of practical importance
is when a 3-D scattering problem can be treated as a 2-D one.
Here, we will assume that all fields and the scattering surface
are independent of the z-coordinate and the incident wave is
polarized along the z-axis (TM mode). Under these conditions,
N · E = 0 and, assuming S2 is a constant vector parallel
to the z-axis, S1 · E = 0. Furthermore, ∇2 (S2 · E) N = 0
because both the field and the surface are independent of z.
Therefore, (19) reduces to the well-known continuity condition
[30, Sec. 14.1], that is,

1
2
μ

∂
2
E

∂ N
= 1

1
μ

∂
1
E

∂ N
. (21)

B. Normal Derivative Corollaries

From the relationships derived in Sec. III-A, we can derive
four elegant and intriguing formulas. The first formula we shall
derive relates the surface integral of the normal component of
∂ E/∂ N to the surface integral of N ·E and the mean curvature.
(For the reader’s convenience, the mean curvature and related
terms are discussed in Appendix A.) To derive this formula,
we use the product rule to rewrite (16) as

Nm
∂ Em

∂ N
= − ∇α(Zm

α Em) + Em∇α Zm
α (22)

and then relate ∇α Zm
α to the curvature tensor via (A.11). This

yields

N · ∂ E
∂ N

= (N · E) Wα
α − ∇α (Sα · E) (23)

where Wα
β is the curvature tensor. Integrating (23) over an

arbitrary closed surface � and using Gauss’s theorem (A.13)
on the last term on the RHS yields
∫

�
N · ∂ E

∂ N
dS =

∫

�
(N · E) Wα

αdS −
∫

∂�
nα (Sα · E) dC

where nα is given by (A.12). The last term on the RHS
vanishes because the integral is over the nonexistent boundary
of the closed surface � (see Section D in Appendix A), and
thus we obtain the desired formula

∫

�
N · ∂ E

∂ N
dS =

∫

�
(N · E) Wα

α dS. (24)

From (24), we immediately have that
∫

�
N · ∂ E

∂ N
dS = 0

for closed surfaces with a zero mean curvature, i.e., Wα
α = 0.

These surfaces are usually called minimal surfaces [31, Ch. 2]
and are of current scientific interest in mathematics, physics,
and computer graphics.

We can also derive a formula analogous to (24) for the
tangential components of ∂ E/∂ N . To see this, substitute (18)
into Sβ · (∂ E/∂ N) and use (A.10) to obtain

Sβ · ∂ E
∂ N

= ∇α
[

(N · E) Sβ · Sα

] + (Sα · E) Wαβ

+i
μω

c
Sβ · K . (25)

Integrating (25) over an arbitrary closed surface � and note
that the first term on the RHS vanishes by Gauss’s theorem
(A.13) yields

∫

�
Sβ · ∂ E

∂ N
dS =

∫

�
(Sα · E) Wαβ dS

− i
μω

c

∫

�
εαβ (Sα · H) dS (26)

where εαβ denotes the Levi–Civita symbol. From (26), we see
that the surface integral of the tangential components of
∂ E/∂ N depends on the tangential components of the E-field
as well as the H-field. This is in contrast with the normal
component of ∂ E/∂ N that depends only on the E-field
(see (24)).

We can also derive a relationship involving all components
of the normal derivative of the E-field. Applying Gauss’s
theorem in the same manner as used earlier to (18) yields

∫

�

∂ E
∂ N

dS = −i
μω

c

∫

�
N × H dS. (27)

From (27), we see that the surface integral of ∂ E/∂ N depends
only on the tangential components of the H-field. The formulas
for the surface integral of ∂ E/∂ N and its normal/tangential
components are intriguing. They provide some insight into
how the normal derivative depends on the normal and/or
tangential components of the EM fields. Furthermore, these
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formulas and the following equation may be used computa-
tionally to gauge the accuracy of the numerically computed
boundary unknowns.

The last formula we should derive is analogous to (21)
but holds for any sufficiently smooth homogeneous scatterer.
Applying our Gauss’s theorem argument to the continuity
condition (19) yields

1
2
μ

∫

�

∂
2

E
∂ N

dS = 1
1
μ

∫

�

∂
1

E
∂ N

dS (28)

where � is the surface of the scatterer and not an arbitrary
closed surface. This remarkable relationship states that the nor-
mal derivative of the E-field is continuous across an interface
in a weighted mean sense. Of course, from (21), we see that
if the scattering problem is 2-D, then the continuity holds in
a pointwise sense as well.

IV. ALTERNATIVE INTEGRAL EQUATIONS

The continuity conditions for the electric field and its
normal derivative are given by (10) and (19), respectively.
Equipped with these conditions, we can readily derive a set of
surface integral equations with E and ∂ E/∂ N as the boundary
unknowns. If we are predominantly interested in the E-field in
Region 1, then (3a) suggests that we choose

1
E and ∂

1
E /∂ N

as the boundary unknowns. On the other hand, if we are more
interested in the internal field, i.e., the E-field in Region 2,
then (3b) suggests that we choose

2
E and ∂

2
E /∂ N as the bound-

ary unknowns. For concreteness we will choose the former, but
remark that for the latter choice the derivation is analogous.

Substituting (19) into (6b) and using the product rule yields

1

2

2
E(˜S) = −

∫

�

[

r
μ

2
G

∂
1

E
∂ N

− 2
E

∂
2

G

∂ N
+ Fα∇α 2

G

]

dS

−−
∫

�
∇α(Fα

2
G)dS (29a)

where

Fα = N · (
r
μ

1
E − 2

E)Sα − Sα · ( r
μ

1
E − 2

E)N . (29b)

The last term on the RHS of (29a) vanishes by the same
Gauss’s theorem argument that was used to reduce (23) to
(24). The third term on the RHS of (29a) can be written in
terms of the gradient ∇ ≡ Zi∇ i , and the normal derivative of
Green’s function by using the self-evident identity

Zi∇ i
2

G = Sα∇α 2
G +N

∂
2

G

∂ N
(30)

to eliminate Sα∇α
2

G from the Fα∇α
2

G term in (29). After
performing this elimination and using (9) to express

2
E in terms

of
1
E, we finally obtain

1

2

2
E(˜S) = −

∫

�

[

r
μ

2
G

∂
1
E

∂ N
− 1

E
∂

2
G

∂ N

]

dS

+ (
r
μ− r

� −1)−
∫

�
(N · 1

E)∇ 2
G dS

+ (1 − r
μ)−

∫

�
(

1
E ·∇ 2

G)N dS (31a)

where
2
E = 1

E +(
r
� −1 − 1)(N · 1

E)N . (31b)

Note that (31b) immediately follows from (10) after it is
contracted with Zi . Equation (31) together with (6a) form
the desired set of integral equations. Ordinarily, this set can
be solved for

1
E and ∂

1
E /∂ N via well-known numerical tech-

niques such as the method of moments (Galerkin’s method)
[27, Ch. 4], [32], [33] or the locally corrected Nyström
method [34].

To gain some insight into (31), let us consider a common
scattering situation when Regions 1 and 2 have the same
permeability, i.e., r

μ = 1. Under this condition, (6a) remains
the same but (31a) becomes

1

2

2
E(˜S) = −

∫

�

[

2
G

∂
1
E

∂ N
− 1

E
∂

2
G

∂ N

]

dS

+ (1 − r
� −1)−

∫

�
(N · 1

E)∇ 2
G dS. (32)

If we discard the last integral on the RHS of (32), then (6a)
and (32) are of the form that is traditionally used in scalar
diffraction theory [27, Sec. 2.1], [35, Sec. 10.5]. In other
words, it is the normal component of the E-field that separates
the scalar and the vector surface integral equations.

To further illustrate this point, consider scattering of a
z-polarized plane wave by a cylinder of arbitrary cross section
whose axis is parallel to the z-axis. Under these conditions,
the E-field only has a z-component, whence N · E = 0, and
therefore (32) reduces to

1

2

2
E(˜S) = −

∫

�

[

2
G

∂
1
E

∂ N
− 1

E
∂

2
G

∂ N

]

dS (33)

as expected. Of course, the integral in (33) is now interpreted
as an integral over the perimeter of the cylinder and not as a
surface integral.

In the sense discussed earlier, we can think of (6a) and (31)
as a natural extension of the scalar diffraction theory. In other
words, the RHS of (31a) contains three integrals that loosely
can be associated with scalar diffraction, surface charge, and
magnetic contributions, respectively.

V. STRATTON–CHU FORMULA

In Section II, we derived the integral representation of the
E-field (see (3)) directly from the vector Helmholtz equation.
From this simple and streamlined derivation, the connection
to the Stratton–Chu formula [36], [37, Sec. 8.14]

E = −
∫

�

[

i
μω

c
(N × H) G + (N · E) ∇G

+ (N × E) × ∇G
]

dS (34)

may not be obvious to the reader. To see the connection
between (3) and (34), multiply (12) by G to obtain

−i
μω

c
(N × H) G − (N · E) ∇G = G

∂ E
∂ N

− Nm∇Am

(35)
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where Am = Em G. We see that (35) takes care of the first
two terms on the RHS of (34), and the last term on the RHS
of (34) can be expanded via

(N × E) × ∇G = (

δi
mδk


 − δi

δ

k
m

)

N
 Em∇k G Zi

= E
∂G

∂ N
− N∇mAm + NG∇m Em . (36)

Putting (35) and (36) into (34) yields

E =
∫

�

[

G
∂ E
∂ N

− E
∂G

∂ N
− N (∇ · E) G

]

dS + O (37a)

where

O =
∫

�
[N
(Z
∇mAm) − Nm (Z
∇
Am)]dS. (37b)

However, in Euclidean space (37b) vanishes. To see
this, apply Gauss’s theorem to (37b), then rewrite the
result in terms of the Riemann–Christoffel tensor Rk

·i
m ,
i.e., (∇
∇m − ∇m∇
)Ak = Rk

·i
mAi , and note that the
Riemann–Christoffel tensor vanishes in Euclidean space [28,
Sec. 8.8], [29, Sec. 12.6]. In other words

O =
∫

Vol.
Z
[∇
∇m − ∇m∇
]Am dV

=
∫

Vol.
Z
 Rm

·i
mAi dV = 0. (38)

Finally, we note that ∇ · E vanishes even on the boundary
� (because there are no primary sources on �) and (37a)
reduces to (3). Therefore, we conclude that (3) is equivalent
to the Stratton–Chu formula with ∇ ·E = 0 explicitly enforced
on the boundary.

VI. CONCLUSION

We present an alternative set of surface integral equations
for EM scattering, where the electric field and its normal
derivatives are chosen as the boundary unknowns (see (6a)
and (31)). To derive these, we develop a continuity condition
for the normal derivative of the electric field (see (19)).
We obtain this condition directly from the time-harmonic
Maxwell equations and the conventional continuity conditions
on the EM fields. Throughout this paper, we have relied on
tensor calculus to keep the results independent of a particular
coordinate system and not to obscure physical/geometrical
interpretation. This also allows us to identify a number of
intriguing relationships involving closed surface integrals of
the electric field (see (24), (26), (27), and (28)).

In conclusion, we remark that analogous relationships exist
for the H-field as well. For the reader’s convenience, we sum-
marize them in Appendix C. Note that these relationships may
be obtained via E ⇒ H , H ⇒ −E, and � ⇔ μ replacement
rules.

APPENDIX A
TENSOR CALCULUS

A. Projection Decomposition Formula

To derive the projection decomposition formula used in the
body of this paper, we note that any vector A can be written
in terms of its normal and tangential components, that is,

A = (N · A)N + (Sα · A)Sα. (A.1)

Writing (A.1) in the component form

Ai Zi = (N j A j )Nk Zk + (

Zα
i Ai)Zk

α Zk (A.2)

and taking an inner product with Z
 yields

Ai[δ

i − Ni N
 − Zα

i Z

α

] = 0 (A.3)

where we used the fact that Z
 · Zi = δ

i . Of course, (A.3)

must hold for an arbitrary vector A, and thus we have the
desired projection decomposition formula

Ni N j + Zi
α Zα

j = δi
j . (A.4)

B. Covariant Derivative

The covariant derivative ∇ i is defined by

∇ i A j = ∂ A j

∂ Zi
+ �

j
ik Ak (A.5a)

and

∇ i A j = ∂ A j

∂ Zi
− �k

i j Ak (A.5b)

where the Christoffel symbol �k
i j is given by

∂ Zi

∂ Z j
= �k

i j Zk . (A.6)

Applying ∇ i to Z j and using (A.5b) immediately yields
∇ i Z j = 0. Similarly, one can show that ∇ i Z j = 0. We follow
Grinfeld [28, Sec. 8.6.7] and refer to these as the metrinilic
property. Sometimes it is useful to have an explicit equation
for the Christoffel symbol. This can be accomplished by taking
an inner product of Z
 and (A.6) to obtain

�

i j = Z
 · ∂ Zi

∂ Z j
. (A.7)

C. Covariant Surface Derivative

The covariant surface derivative ∇α is defined by

∇α Aβ = ∂ Aβ

∂ Zα
+ �β

αγ Aγ (A.8a)

and

∇α Aβ = ∂ Aβ

∂ Zα
− �

γ
αβ Aγ (A.8b)

where the Christoffel symbol �
γ
αβ on an embedded surface is

given by

�
γ
αβ = Sγ · ∂Sα

∂Sβ
. (A.9)

Note that a definition analogous to (A.6) is not possible
because ∂Sα/∂Sβ may have components that do not lie in
the tangent plane of the surface. In fact, if we apply (A.8b)
to Sβ and substitute the result into Sγ · ∇α Sβ , we obtain
Sγ · ∇α Sβ = 0. In other words, we see that ∇α Sβ lies along
the normal vector N , that is,

∇α Sβ = Wαβ N (A.10)
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where Wαβ is termed the curvature tensor. The covariant
surface derivative is metrinilic with respect to Zi and Zi but
not with respect to Sα and Sα . Thus, substituting Sβ = Zi

β Zi

and N = Ni Zi into (A.10) immediately yields

∇α Zi
β = Ni Wαβ . (A.11)

D. Gauss’s Theorem

Undoubtedly, the reader is familiar with Gauss’s theorem in
three dimensions, which relates a volume integral to a closed
surface integral. However, the reader may be less familiar
with Gauss’s theorem in two dimensions, which relates a
surface integral over a curved surface patch to an integral over
the boundary of that patch. Before we state this theorem,
we briefly review the elementary aspects of embedded curves.
A curve can be viewed as an object embedded in a 3-D Euclid-
ean space, or as a hypersurface embedded in a surface (non-
Euclidean space). In the former view point, the codimension
of the curve is 3 − 1 = 2. Thus, the normal space is a plane
and the curve does not have a unique normal direction at each
point on a curve. In the latter view point, the codimension
of the curve is 2 − 1 = 1, and thus the curve has a well-
defined normal at each point on the curve. This unit normal is
given by

n = nα Sα (A.12)

where Sα is the surface covariant basis. In other words,
the normal n is orthogonal to the curve and lies in the tangent
plane to the surface.

Gauss’s theorem in two dimensions is given by
[28, Sec. 14.5]

∫

�
∇α Aα dS =

∫

∂�
nα Aα dC (A.13)

where � is a surface patch bounded by a contour ∂�.
To illustrate the predominant use of (A.13), in this paper,
we apply it to (A.10). Raising and contracting the index
β with the α index in (A.10), and then applying (A.13)
yields

∫

�
Wα

α N dS =
∫

�
∇α Sα dS

=
∫

∂�
nα Sα dC =

∫

∂�
n dC. (A.14)

If we let � be a closed surface, then ∂� does not exists
(strictly speaking, it is a curve of measure zero) and the
RHS of (A.14) vanishes, i.e.,

∫

� Wα
α N dS = 0 for any

closed surface. Furthermore, it has been noted by Grinfeld
[28, p. 244] that (A.14) “gives a vivid geometric interpretation
of mean curvature: mean curvature measures the degree to
which the contour boundary normal field n points consistently
out of the plane.”

APPENDIX B
PROOF OF Em∇α(N
 Zmα − Nm Z
α) = 0

To prove that

Em∇α(N
 Zmα − Nm Z
α) = 0 (B.1)

we first use the product rule to expand (B.1) and then relate
∇α Ziα to the curvature tensor via (A.11), to obtain

Em∇α(N
 Zmα − Nm Z
α) = Em(Zmα∇α N
 − Z
α∇α Nm ).

Using Weingarten’s formula ∇α Ni = −Zi
βWβ

α [28, Sec. 11.9]
on the RHS yields

Em∇α(N
 Zmα − Nm Z
α) = Em(Z

α Zm

β − Z

β Zm

α )Wβα

where the RHS vanishes because the curvature tensor is
symmetric, i.e., Wαβ = Wβα [28, Sec. 12.4].

APPENDIX C
H-FIELD FORMULATION

2
H i = Ci

j

1
H j

, where Ci
j = δi

j + (
r
μ−1−1)Ni N j (C.1)

∂ H
∂ N

= ∇α[(N · H)Sα − (Sα · H)N] + i
�ω

c
N× E (C.2)

∫

�
N · ∂ H

∂ N
dS =

∫

�
(N · H)Wα

α dS (C.3)

∫

�
Sβ · ∂ H

∂ N
dS =

∫

�
(Sα · H)Wαβ dS

+ i
�ω

c

∫

�
εαβ(Sα · E) dS (C.4)

∫

�

∂ H
∂ N

dS = i
�ω

c

∫

�
N × E dS (C.5)

1
2
�

∫

�

∂
2

H
∂ N

dS = 1
1
�

∫

�

∂
1

H
∂ N

dS (C.6)

1

2

2
H(˜S) = −

∫

�

[

r
�

2
G

∂
1

H
∂ N

− 1
H

∂
2

G

∂ N

]

dS

+ (
r
� − r

μ−1)−
∫

�
(N · 1

H)∇ 2
G dS

+ (1 − r
�)−

∫

�
(

1
H ·∇ 2

G)N dS (C.7a)

where
2

H = 1
H +(

r
μ−1 − 1)(N · 1

H)N . (C.7b)
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