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ABSTRACT
In this paper we propose NDN-Trace, a path tracing utility to de-
termine the characteristics of the available paths to reach a given
name prefix in NDN-based networks. While the traceroute tool in
IP networks is based on an iterative process, with each iteration
incrementally traversing more hops along the path to the target,
we adopt a non-iterative approach, with the tracing process done at
the application layer. Our design supports multi-path tracing that
can be used to trace paths to NDN forwarding nodes, applications,
or content store caches, while providing path information (node
identifiers and round-trip times), as well as optional metrics such
as those related to content stores. NDN-Trace leverages NDN’s na-
tive Interest/Data exchange and does not require changes to NDN
forwarding. We present a C++ implementation of our design, and
show experimental results that demonstrate its capabilities. We
also discuss open issues and future work, including an approach to
implement path tracing within the NDN forwarder itself.
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1 INTRODUCTION
Because of fundamental differences between IP and NDN (Named
Data Networking [6]), path tracing in NDN requires a novel ap-
proach [7]. Since routing and forwarding in IP networks are based
on IP addresses, the IP traceroute tool [5] was developed to deter-
mine network reachability and latency information for an endpoint
identified by a given IP address. NDN is based exclusively on named
objects, with routing and forwarding based on name prefixes that
do not refer to unique endpoints. An Interest is forwarded by the
network nodes based on its name, and retrieves content either
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from some producer application (or content publisher), or from the
Content Store (CS) of one of the on-path nodes. Consecutive trans-
missions of Interest packets with the same prefix may be forwarded
along different paths, and may reach different data sources (produc-
ers or caches). Therefore we need to be able to discover all paths to a
given name prefix, which makes the implementation of path tracing
in NDN more challenging. Thus, multi-path forwarding introduces
new requirements in the design of path tracing for NDN. Note that
leveraging and improving the multi-path forwarding capability is
an active area of research [4, 12, 17].

A path tracing design for NDN should support a number of
use cases, including: discovering one (such as the nearest) or more
cached copies of a given content, finding one or all paths to an appli-
cation or content publisher (bypassing any on-path caches), tracing
one or more paths towards an NDN router and identify all hops for
diagnostic purposes, measure the round-trip time (RTT) to retrieve
some content or reach a forwarder. Consequently, the NDN name
being traced can be: a name prefix belonging to an application’s
namespace, the name of a content that can be cached somewhere in
the network, or the name (assigned by the network operator) of any
node running an NDN forwarder. Finally, in addition to providing
basic path information (node identifiers and round-trip times), the
goals of tracing can be extended to include returning other metrics
such as those related to content stores [11, 16].

With these goals in mind, we designed NDN-Trace, a path trac-
ing utility that can be used to determine the characteristics of avail-
able paths to a given name prefix in NDN-based networks. To reduce
the deployment barrier of this utility, we decided to start with a
design that does not require changes to the forwarder. The option
of having path tracing implemented inside the forwarder itself is
discussed as part of our future work. NDN-Trace uses NDN’s native
Interest/Data exchange and exhaustively explores multiple paths
using a lightweight forwarding strategy tailored to this purpose.

This paper is organized as follows. Section 2 explores related
work in terms of previous ICN traceroute proposals. The design of
NDN-Trace is described in section 3, followed by a detailed explana-
tion in section 4 of how we estimate round-trip times. In section 5
we introduce our C++ implementation and present preliminary
evaluation results. Open issues and future work are discussed in
section 6. Section 7 concludes the paper.

2 RELATEDWORK
Despite the critical importance that a path-tracing tool assumes in
Information-Centric Networks, the matter has received relatively
little attention from the scientific community so far.
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Asaeda et al. [3] propose Contrace, a tool for measuring the
round-trip time between routers in Content-Centric Networks
(CCN). The Contrace client creates and sends trace requests en-
coded as special CCNx packets. Each on-path router attaches its
own Report block, containing arrival timestamp and node identifier,
to the trace request and then forwards it to its upstream neighbor
router. This process is repeated until the request reaches either the
content producer or a cache with a copy of the content. At this
point, a Reply message is generated and propagated back to the Con-
trace client following the PIT state. In order to support multi-path
tracing, Contrace requires PIT entries created by trace requests to
be kept alive until a configured timeout expires. This represents a
significant departure from the “flow balance” principle established
by NDN. Moreover, Contrace does not provide RTT measurements
between the client node and each intermediate router on the path
to the content; instead, it only provides the RTT between the client
and the node where the content is found, similar to the Ping tool.

In their ICN Traceroute protocol specification, Mastorakis et al.
[8] take a different approach, which resembles the mechanism used
by the IP traceroute tool. The ICN Traceroute client iteratively
discovers the path to a named content by issuing Interests with a
progressively increasing HopLimit counter. This counter is decre-
mented by one at each hop traversed by the Interest, and when it
reaches zero, the forwarding of the trace request stops, while a reply
containing the forwarder’s name is sent back to the client following
the reverse path. A new PathSteering header is introduced, which
is constructed hop-by-hop while the reply travels back to the client,
and is then included in subsequent trace requests that need to be
forwarded along the same path. This design is unable to reliably
support multi-path tracing, as there is no guaranteed mechanism
for the client to choose a new path that was not explored before.
Thus, the client cannot tell whether it discovered all available paths.

Shannigrahi et al. [13] tackle several design questions and trade-
offs that we also faced, and that will be discussed in the remainder
of the paper. The solution they offer, however, does not distinguish
between single and multi-path tracing, does not consider RTT mea-
surements, and does not support tracing of cached content.

3 THE NDN-TRACE PROTOCOL
The architecture of NDN-Trace consists of three interacting com-
ponents:

• A client application, run by the user, which sends the initial
trace request, and displays the discovered path(s) once the
tracing session is completed.
• A daemon that processes trace requests and replies, and per-
forms round-trip time measurements. It registers the /Trace
name prefix with the local NDN forwarder.
• A forwarding strategy, installed by the daemon under the
/Trace prefix, that handles trace request forwarding and
performs Content Store lookups on behalf of the daemon.

The strategy and the daemon must be running on every NDN
node in the network. However, only the node that initiates a trace
request is required to run the client application. See section 6.3 for
an alternative design that requires neither a forwarding strategy
nor a separate daemon.
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Figure 1: Forwarding of NDN-Trace requests and replies. On
each node, NFD performs the standard CS/PIT/FIB lookups.
The second node is a forking point for the trace request: two
new Interests I3 and I4 are created, and each one is sent to
a different next hop. When the two Data D1 and D2 come
back, the daemon combines them into a single reply D3.

NDN-Trace operations leverage the conventional NDN Inter-
est/Data exchange: a trace request is an Interest packet, and a trace
reply is a Data packet1.

3.1 Trace request
Upon user invocation, the NDN-Trace client initiates a tracing
session by expressing a trace Interest, whose name includes the
following components:
• a fixed /Trace prefix, this must be the first component;
• a parameter P1 to denote whether single-path or multi-path
tracing is requested: this is currently a binary setting, but can
easily be extended to an integer representing the maximum
number of paths to explore at each hop;
• a parameter P2 that indicates the type of tracing: “application”
(matching FIB entry toward a producer application), “cache”
(matching Content Store entry), or “any”, meaning that trac-
ing will stop at either a producer or a cache, whichever is
found first;
• the name to trace;
• a random nonce that is regenerated at every hop: this is
needed to prevent the forwarder from aggregating Interests
from different tracing sessions in the same PIT entry;
• the identifier of the chosen outgoing face for the Interest,
used to steer the request toward a particular next hop.

For example:
/Trace/<P1>/<P2>/<NameToTrace>/<TraceNonce>/<FaceId>

Note that P1, P2, TraceNonce, and FaceId can be combined into a
single name component using a suitable reversible encoding. For
clarity of exposition, we will keep them separate here.

When a trace Interest is received by NFD (the NDN Forwarding
Daemon [2]), it is forwarded according to the FIB to the trace
daemon of that machine. For the first hop, the daemon is effectively
running on the same node as the trace client application.

1Throughout the paper, we use the terms “trace request” and “trace Interest”, and
“trace reply” and “trace Data” interchangeably.
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Each daemon maintains a Pending Trace Table (PTT) data struc-
ture. When a daemon receives a trace Interest, it searches its PTT
for an entry with the same name-to-trace and the same network
nonce as the incoming Interest (note that this is the nonce specified
by the NDN Interest packet format, not the application-level nonce
that appears in the trace request name). If a match is found, this
arrival is considered a loop, and a PATH_LOOP reply is immediately
sent back to the previous hop. Otherwise, a new entry is inserted
into the table, together with the arrival time of the request.

Then, the daemon employs NFD’s management protocol to in-
terrogate the FIB for any entries that match the traced name prefix,
thus obtaining the list of next hops for that prefix and their respec-
tive cost. If the list is empty, it means that this node does not know
how to reach the target name prefix, therefore the trace daemon
replies with a NO_ROUTE error. Else, the list is traversed in increasing
order of routing cost. If the trace request parameter P1 indicates
that this is a single-path trace, only the first (lowest cost) next hop
is considered, otherwise all entries are processed. For each of them,
and only if P2 is set to “application” or “any”, the daemon checks if
the corresponding face points to a local application. If that is the
case, a partial reply is recorded in the PTT for this next hop, and
processing continues with the following entry in the list of next
hops. Otherwise, a new trace Interest is expressed. This Interest
is identical to the incoming Interest, except for two things: (1) the
trace nonce contained in the name is refreshed; (2) the outgoing
face identifier, also in the name, is replaced with this next hop’s
FaceId. In particular, the NDN-layer nonce is kept unchanged from
the incoming Interest, to ensure that the request loop detection is
effective2. The daemon keeps track of all these new trace Interests
in the PTT, along with the time at which they were expressed. Even-
tually, when all Interests for the same tracing session are either
satisfied, expired, or nacked, the daemon generates a trace reply as
explained in 3.2.

A daemon may also choose to reply with a PROHIBITED error,
in case the target name belongs to a set of prefixes for which the
network operator has blocked trace requests.

Inside NFD, trace Interests are handed over to our custom trace
strategy, that as a first step examines the parameter P2 in the name.
If P2 indicates that the client wishes to trace a cached object, the
strategy performs a Content Store lookup on the traced name only,
as opposed to the full Interest name. If a matching Data packet is
found, the strategy responds to the Interest with a Nack containing
a custom reason, in order to let the daemon know that the target
has been reached. On the other hand, if P2 has a value other than
“cache”, or if the CS lookup fails, the strategy simply sends the trace
request on the face specified in the Interest name.

This whole process is repeated at every node encountered on
the path(s), until all trace requests either reach the target prefix, or
hit an error condition, or time out.

2Since trace Interests are terminated at every hop by the trace daemon, and new
Interests have a different name, NFD can no longer detect loops, thus the responsibility
of loop detection is now assumed by the daemon.

3.2 Trace reply
A trace reply is an NDN Data packet sent by an NDN-Trace daemon
in response to a trace request. Replies are forwarded back down-
stream following the PIT entries left behind by the corresponding
trace Interests, as per the regular NDN forwarding semantics. The
Data packet payload contains the following set of values for each
node traversed during the tracing session:
• The node identifier: this can be anything that allows to iden-
tify an instance of a forwarder, globally or locally within
a network. Conceptually, this should be the node’s name,
or a combination of the node’s name and the ID of the face
on which the trace Interest was received. Globally unique
names can be hierarchically assigned to a router by the net-
work operator in a manner similar to how domain names
are employed in today’s Internet. In our implementation we
have chosen to use the NFD ID, which is the NDN name of
the public key used by the forwarder.
• The measured round-trip time from this node to the target
name prefix.
• The time spent by the trace daemon on this node to prepare
and send all trace requests and to process all the correspond-
ing replies. See section 4 for how this number is used in the
final RTT computation. The two most expensive operations
that are taken into account here are the trace Data signing
operations and the queries executed via NFD’s management
protocol, which also involve cryptographic operations.

Upon receiving a trace Data packet, the daemon records its ar-
rival time, which is used to compute the round-trip time between
this node and the upstream node that sent this reply. As soon as
all PTT entries for a tracing session are either satisfied, expired,
or nacked, the daemon creates a new Data packet containing the
identifier and the timing information for this node, as previously
explained, plus the values returned by all upstream nodes, up to the
point where the tracing stopped (for whatever reason). In case of
multi-path tracing, the daemon extracts the information returned
from each path, and concatenates them together to form a single3
Data packet, which is then sent downstream as usual.

Eventually, the NDN-Trace client will receive a reply containing
all the information generated by each hop along the path (or paths)
to the traced name prefix. As a last step, the client computes the RTT
values as described in section 4, and displays the results accordingly.

4 MEASURING ROUND-TRIP TIMES
Based on the above description of Interest and Data processing
at the trace daemon, it is clear that Interest/Data packets for path
tracing incur higher processing time as they traverse NDN forward-
ing nodes than regular Interest/Data packets from user application
traffic. Consequently, we need to compensate for this difference
when computing round-trip times by properly accounting for the
additional processing delay, as we will see in this section.

When node i sends trace Interests ton upstream neighbors (n = 1
if single-path tracing), it measures the response time to each one
of them when the corresponding trace Data is received. All these

3The reply Data packet may need to be segmented by the daemon if its total size
exceeds the maximum allowed by NDN (8800 octets). In that case, the standard NDN
naming conventions for sequence-based segmentation are used [18].
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𝑡1 	: time Interest arrives at trace daemon from NFD
𝑡2 	: time Interest (for upstream) is sent to NFD
𝑑𝑖𝐼 = 𝑡2 - 𝑡1
𝑡3 	: time Data arrives at trace daemon from NFD
𝑡4 	: time Data (for downstream) is sent to NFD
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Figure 2: RTTmeasurement: a time-sequence diagram illus-
trating the different overhead and delay components.

measurements are then aggregated in one Data packet and sent to
node i’s downstream. Two quantities are measured by node i for
each upstream node j:
• Ti, j : the time between sending an Interest to j and receiving
the corresponding Data back.
• Di, j : the delay at the trace daemon on node i due to process-
ing the request/response to/from node j . Note that if k is the
node hosting the traced content, and thus will locally handle
and not forward the trace request, then Dk,k denotes the
time it takes to process the request at the local forwarder’s
trace daemon.

While Ti, j is computed in a straightforward manner (as the
difference between request and response times for a trace Interest
sent by i toward j as shown in Fig. 2), Di, j is made up of three
components. Mathematically:

Di, j = d
I
i + d

D
i + d

A
ij

where:
• d Ii is the Interest processing overhead at node i’s daemon.
• dDi is the Data processing overhead at node i’s daemon, and
includes signature verification of the incoming Data packet
and signing of the outgoing one4.
• dAij is the aggregation delay at node i incurred by the trace
Data received from node j . This is due to the fact that, in the
multi-path case, each reply is held at node i until a response is
received from all upstreams, so that one single Data packet
aggregating information from all paths through i can be
created and sent downstream (note that dAij = 0 for single-
path tracing).

The information that node i sends to its downstream node in-
cludes the Ti, j and Di, j for each upstream neighbor j used to for-
ward a trace request. Node i will also receive similar information
4The reply signing time can be estimated, for example by maintaining a moving
average from previously processed trace replies.

from these upstream nodes regarding their own upstream nodes,
and this information will be concatenated with node i’s own in-
formation. Obviously, as a trace Data packet is propagating down-
stream toward the client, its payload increases in size due to the
nesting of information from each hop along the path. Once at the
client, the packet will contain all the information needed for the
client to be able to identify all paths that have been successfully
traced.

For each discovered k-hop path, spanning nodes 0, 1, 2, . . . ,k
(where 0 refers to the node where the trace client is running), the
RTT for the whole path is computed as follows:

RTTk = T0,1 −
k−1∑
i=1

Di,i+1 − Dk,k

From the response time measured at node 0 (T0,1) we subtract all
the overhead due to the trace daemon at all intermediate nodes as
well as at the end node (Dk,k ). The result approximates the RTT
experienced when retrieving an already signed Data packet from
node k . However, for dynamic Data that cannot be signed ahead of
time (such as for the ndnpingserver application when signing a
ping reply message), the RTT could be higher than estimated by
this equation.

When needed, the client can also compute the RTT to each
intermediate nodem on this path to k , as follows:

RTTm = T0,1 −
m∑
i=1

Di,i+1 −Tm,m+1

where nodem + 1 is the upstream neighbor ofm on the path to k
(which has RTTk as its round-trip time).

5 IMPLEMENTATION AND EVALUATION
We implemented a prototype5 of NDN-Trace in C++. The trace
client and daemon are based on the ndn-cxx library [14], while the
trace strategy has been implemented for NFD [2].

5.1 Command-line tools
The NDN-Trace client program is called ndntrace, and it can be
run in the following way:

ndntrace -n <NAME> [-s|-m] [-p|-c|-a] [-C]
[-t TIMEOUT] [-r COUNT]

where:
• -n specifies the traced name prefix. This is the only manda-
tory parameter.
• -s and -m choose between single-path and multi-path trac-
ing, respectively. It is the equivalent of parameter P1 de-
scribed in section 3.1. If this option is not specified, the
program defaults to single-path tracing.
• -p|-c|-a is the equivalent of parameter P2, i.e. it indicates
the type of tracing session: -p to trace a producer application,
-c to find a cached copy, -a (the default) for either of them.
• -C activates the retrieval of extended Content Store statistics,
such as hit and miss ratio for the target name prefix, number
of matching Data packets stored in the cache and their size,
and so on. This is disabled by default.

5The complete source code is available at https://github.com/usnistgov/ndntrace.
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Figure 3: NDN topology used for the evaluation. Path 1 is
A→ E; path 2 is A→ B → C; path 3 is A→ B → D → E.

• -t indicates the timeout after which a trace request expires
and should be aborted. The argument is used to set the In-
terestLifetime of the requests.
• -r specifies the number of times that a trace request is re-
transmitted in case a timeout happens. By default, no retry
is attempted.

The NDN-Trace daemon is called ndntraced, and currently ac-
cepts no options. In the future, we plan to make the daemon’s
behavior more configurable via a configuration file, which can be
provided by the operator through a command-line option.

5.2 Sample NDN-Trace execution
To show NDN-Trace in action, we deployed a small network of
5 nodes on the Emulab testbed [1]. The network topology is rep-
resented in Fig. 3. The nodes were connected to each other via
wired Ethernet, each link with a capacity of 1 Gbps and a delay of
10 ms. All 5 machines were running the Linux operating system
(UBUNTU14-64-STD image), and the latest released version of NFD
and ndn-cxx (0.5.1 at the time of writing). We then installed the
NDN-Trace stack: the forwarding strategy and the daemon on every
node, while the client application was installed only on the node is-
suing the trace commands (node A in Fig. 3). Finally, we spawned a
trivial producer application, serving the prefix /example, on nodes
C and E.

In the case of single path tracing, we expect NDN-Trace requests
to follow the path that has the lowest cost among all available
next hops (see section 3.1). In the experiment topology this path is
A→ E, based on static routes that we set on each node beforehand.
If we run the command:

ndntrace -n /example -s -p

on node A, we indeed obtain the expected output, as we can see
from the screenshot in Fig. 4. Note that “localhost” in the tool output
refers to the node on which the client is running.

In order to run a multi-path trace, we simply replace the -s
option with -m, i.e.:

ndntrace -n /example -m -p

This command discovers all paths to any producer application that
can publish content under the /example name prefix. In our case,
three paths are displayed by the trace client, as shown in Fig. 5: path
1 is A→ E, path 2 is A→ B → C , and path 3 is A→ B → D → E.
For instance, the three rows for path 3 listed at the bottom of the
screenshot correspond to the three non-localhost nodes on that
path. Each row shows the abbreviated NFD ID of the node and the
corresponding RTT, as experienced by A and estimated according
to the RTTk expression in section 4.

Figure 4: Screenshot of a single-path tracing session.

Figure 5: Screenshot of a multi-path tracing session.

Table 1: Average and standard deviation of the RTT reported
by the two tools on the emulated topology. “Baseline” is the
total two-way link delay.

Path 1 Path 2 Path 3

Baseline 20 ms 40 ms 60 ms
ndnping 24.26 ± 0.4 ms 50.61 ± 0.7 ms 70.33 ± 1.4 ms
ndntrace 21.91 ± 0.5 ms 47.96 ± 1.0 ms 69.12 ± 0.8 ms

5.3 Comparison with NDN ping
In order to demonstrate the accuracy of the results obtained by
NDN-Trace, we use NDN ping on the topology of Fig. 3, and com-
pare the measured round-trip times as reported by the two tools.
We test both tools on all 3 paths listed in the previous section. Ta-
ble 1 shows the average RTT values obtained from running each
tool 100 times on each path.

We observe from these results that the RTT values measured by
NDN ping are on average slightly higher than those reported by
NDN-Trace. This is easily explained if we consider how NDN-Trace
calculates the round-trip times. As described in section 4, NDN-
Trace subtracts the request/reply processing delay experienced by
the trace daemons at each hop along the path, including the final
node, where the producer application is running. Conversely, NDN
ping does not perform such accounting, and the reported RTT is
simply what is measured by the ping client, which includes the
overhead incurred by the ping server when signing the ping reply
packet. We independently measured the entity of the delay caused
by one Data signing operation, and obtained an average value of
about 3 ms on the hardware used for the experiments, which is
consistent with the difference between the two tools.
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6 DISCUSSION AND FUTUREWORK
In this section we outline some limitations of the current NDN-
Trace design, and discuss potential solutions and future work.

6.1 Carrying signatures in trace replies
When an NDN-Trace daemon receives a reply from its next hop,
the path information is extracted, appended to the values measured
at the current hop, and finally everything is serialized into a new
Data packet. This means that the cryptographic signature from the
upstream trace daemon is discarded after verification, and is re-
placed by this node’s signature. When the reply eventually reaches
the client application, the packet carries only the signature of the
trace daemon running on the same machine as the client.

This has the benefit of making replies smaller, because only the
payload (i.e., the path information reported by all upstream nodes)
is propagated from each hop to its downstream, while all other Data
packet fields, including their TLV (Type-Length-Value) encoding
overhead, are discarded. On the other hand, the duty of verifying
Data signatures falls on every daemon on the traced path(s). This
may not be desirable in some scenarios. For example, the inter-
mediate nodes may not have the resources to perform signature
verification, which may involve fetching the entire certificate chain,
on behalf of the trace client.

An alternative method for constructing the reply packet consists
in concatenating the full Data packets received from the upstream
hops, including the Name, MetaInfo, and Signature TLV fields, and
inserting the resulting blob into the new Data packet, along with
the path information generated by the current node. Thus, the client
that originated the trace request can inspect the signatures of all
intermediate nodes, and therefore the information returned by each
hop can be verified and trusted independently. We leave a more
detailed comparative analysis of the two methods as future work.

6.2 Eliminating the custom forwarding strategy
Our NDN-Trace implementation requires the use of a specific for-
warding strategy for the /Trace name prefix, as detailed in section 3.
This requirement is dictated by two reasons: (1) a strategy can per-
form a Content Store lookup for the traced name prefix, if requested
by the client; (2) a strategy can steer outgoing trace Interests toward
the correct face, as specified by the daemon.

The first requirement can be lifted by augmenting NFD’s man-
agement protocol with a Content Store API. That would enable a
privileged local process to enumerate the Content Store or query
existing entries. As for the second requirement, we can leverage
an NDNLPv2 header field called “NextHopFaceId” [15]. This field
allows local applications to tell the forwarder which face should be
preferred to forward an outgoing Interest. With these two changes,
NDN-Trace does not need a custom forwarding strategy anymore.

6.3 In-forwarder implementation
The design described in section 3 has the important advantage of
not requiring modifications to the NDN forwarding engine, and as
such it can be deployed independently of the forwarder, and it is not
tied to any particular forwarder variant. It also greatly simplifies
the implementation of the trace daemon itself. These were the main
reasons why we chose this approach for our proof of concept.

Other designs are certainly possible, in addition to those already
proposed in the literature (section 2). In particular, we sketched a
design in which the tracing functionality is known to the forwarder.
In this case, all NDN-Trace daemon operations are performed by
the forwarder itself, while the client application maintains the role
of triggering a trace request and displaying the results to the user.

This approach could provide substantial performance advan-
tages, as it would remove all intra-node communications with the
trace daemon. The presence of a /Trace prefix on an incoming In-
terest facilitates splitting trace traffic into a “slow path”, to avoid af-
fecting regular data plane traffic. Moreover, there would be no need
to go through the management protocol to query the forwarder’s
FIB, thus saving costly serialization and signing operations. We
intend to further explore all the ramifications of an in-forwarder
implementation and study its performance impact as future work.

6.4 Discovering all cached copies
While the current NDN-Trace design can be used to discover cached
content, it will only find the first encountered copy on the explored
path (or at most one copy per path in the multi-path case). In order
to discover all cached copies in the network, we plan to augment
NDN-Trace to report other cached copies back to the client. This
can be accomplished by either proceeding further along the path
when a cached copy is found, or iteratively resubmitting new trace
requests from the client with an indication to ignore the nodes
whose cached copies are already known.

This brings up the related issue of path search termination, which
also applies to the other path discoveries discussed above: if a trace
request does not encounter the target name prefix (content producer
or cache) after a certain number of hops have been traversed, do we
need to stop the process, and if yes, how? Some ICN flavors, such
as CCNx, already contain a HopLimit field in their packet format.
NDN does not provide this functionality in its TLV format [9], but it
would be straightforward to implement an equivalent feature at the
application layer, by including a time-to-live counter in the name of
the trace Interest. Another approach is to just rely on an eventual
looping of the trace Interest to stop any further propagation.

7 CONCLUSION
The new networking paradigm introduced by NDN, in particular
its stateful multi-path forwarding plane with caching and named-
based routing, requires a new solution to network path tracing.
We propose NDN-Trace as one such solution that can be used to
discover forwarding path information for a given name prefix. For
ease of deployment, we chose an application-layer implementation
for the first version of our path tracing utility. While we initially
evaluated NDN-Trace through emulation, we intend to deploy and
test it on the NDN testbed [10] soon. NDN-Trace is still a work in
progress: future versions will support more of the features discussed
here and will also provide an in-forwarder implementation.

DISCLAIMER
Any mention of commercial products or reference to commercial
organizations is for information only; it does not imply recommen-
dation or endorsement by NIST, nor does it imply that the products
mentioned are necessarily the best available for the purpose.
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