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Abstract. Multivariate Public Key Cryptography (MPKC) is one of 
the main candidates for secure communication in a post-quantum era. 
Recently, Yasuda and Sakurai proposed in [7] a new multivariate encryp-
tion scheme called SRP, which combines the Square encryption scheme 
with the Rainbow signature scheme and the Plus modifier. 
In this paper we propose a practical key recovery attack against the SRP 
scheme, which is based on the min-Q-rank property of the system. Our 
attack is very efficient and allows us to break the parameter sets recom-
mended in [7] within minutes. Our attack shows that combining a weak 
scheme with a secure one does not automatically increase the security of 
the weak scheme. 
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1 Introduction 

Multivariate cryptography is one of the main candidates to guarantee the se-
curity of communication in the post-quantum era [1]. Multivariate schemes are 
in general very fast and require only modest computational resources, which 
makes them attractive for the use on low cost devices such as RFIDs or smart 
cards [2, 3]. While there exist many practical multivariate signature schemes such 
as UOV [4], Rainbow [5] and Gui [6], the number of secure and efficient multi-
variate public key encryption schemes is quite limited. 

At ICISC 2015, Yasuda and Sakurai proposed in [7] a new multivariate en-
cryption scheme called SRP, which combines the Square encryption scheme [8], 
the Rainbow signature scheme [5] and the Plus method [9]; hence the name SRP. 
The scheme is very efficient and has a comparably small blow up factor between 
plain and ciphertext size. In [7] it is claimed that, by the combination of Square 
and Rainbow into one scheme, several attacks against the single schemes are no 
longer applicable. 
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In this paper we present a new practical key recovery attack against the SRP en-
cryption scheme, which uses the min-Q-rank property of the system to separate 
the Square from the Rainbow and Plus polynomials. By doing so, we can easily 
find (parts of) the linear transformations T and U used to hide the structure 
of the central map F in the public key. The attack is completed by using the 
known structure of the Rainbow part of the central map. 

Our attack is very efficient and allows us (even with our limited resources) to 
break the SRP instances proposed in [7] for 80, 112 bit security in 8 minutes 
and less than three hours respectively. By switching to a larger server we could 
break the parameters proposed for 160 bit security, too. Our attack therefore 
shows that this attempt to combine several multivariate schemes into one brings 
no extra security into the system. 

Our paper is organized as follows. In Section 2, we give an overview of the 
basic concepts of multivariate public key cryptography and introduce the SRP 
encryption scheme of [7]. In Section 3 we recall the concept of the Q-Rank of 
a quadratic map, while Section 4 describes the main ideas and results of the 
Kipnis-Shamir attack on HFE needed for the description of our attack. Section 
5 describes our key recovery attack against the SRP scheme in detail, whereas 
Section 6 deals with the complexity of our attack. In Section 7 we present the 
results of our computer experiments, and Section 8 concludes the paper. 

2 The SRP Encryption Scheme 

In this section, we recall the SRP scheme of [7]. Before we come to the description 
of the scheme itself, we start with a short overview of the basic concepts of 
multivariate cryptography. 

2.1 Multivariate cryptography 

The basic objects of multivariate cryptography are systems of multivariate quadratic 
polynomials over a finite field F. The security of multivariate schemes is based 
on the MQ Problem of solving such a system. The MQ Problem is proven to be 
NP-Hard even for quadratic polynomials over the field GF(2) [10] and believed 
to be hard on average (both for classical and quantum computers). 

To build a multivariate public key cryptosystem (MPKC), one starts with an 
easily invertible quadratic map F : Fn → Fm (central map). To hide the struc-
ture of F in the public key, we compose it with two invertible affine (or linear) 
maps T : Fm → Fm and U : Fn → Fn . The public key of the scheme is given 
by P = T ◦ F ◦ U : Fn → Fm. The relation between the easily invertible central 
map F and the public key P is referred to as a morphism of polynomials. 

Definition 1 Two systems of multivariate polynomials F and G are said to be 
related by a morphism iff there exist two affine maps T , U such that G = T ◦F ◦U . 
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The private key consists of the three maps T , F and U and therefore allows to 
invert the public key. 

To encrypt a message M ∈ Fn, one simply computes C = P(M) ∈ Fm . 
To decrypt a ciphertext C ∈ Fm, one computes recursively x = T −1(C) ∈ Fm , 
y = F−1(x) ∈ Fn and M = U−1(y). M ∈ Fn is the plaintext corresponding to 
the ciphertext C. This process is illustrated in Figure 1. 

Decryption 

T −1 F−1 U−1 

C ∈ Fm x ∈ Fm y ∈ Fn M ∈ Fn 

6 

P 

Encryption 

Fig. 1. Encryption and decryption process for multivariate public key encryption 
schemes 

Since, for multivariate encryption schemes, we have m ≥ n, the pre-image of 
the vector x under the central map F and therefore the decrypted plaintext will 
(with overwhelming probability) be unique. 

2.2 SRP 

The SRP encryption scheme was recently proposed by Yasuda and Sakurai 
in [7] by combining the Square encryption scheme [8], the Rainbow signature 
scheme [5] and the Plus method [9]. Since both Square and Rainbow are very 
efficient, the same holds for the SRP scheme. Furthermore, the combination with 
Rainbow provides an efficient way to distinguish between correct and false so-
lutions of Square. In [7] it is claimed that, by the combination of Square and 
Rainbow into one scheme, several attacks against the single schemes are no longer 
applicable. 

In this paper, we restrict to variants of SRP in which the Rainbow part is 
replaced by UOV [4]. Note that the parameter sets proposed in [7] are of this 
type. However we note that our attack can easily be generalized to variants of 
SRP which use a Rainbow (and not UOV) map FR and that these modifications 
have no significant effect on the running time of the attack. 
We choose a finite field F = Fq of odd characteristic with q ≡ 3 mod 4 and, 
for an odd integer d, a degree d extension field E = F d . Let φ : Fd → E be an q

isomorphism between the vector space Fd and the field E. Moreover, let o, r, s 
and l be non-negative integers. 
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0Key Generation Let n = d + o − l, n = d + o and m = d + o + r + s. The 
0 → Fmcentral map F : Fn of the scheme is the concatenation of three maps FS , 

FR, and FP . These maps are defined as follows. 

(i) The Square part FS : Fn 0 → Fd is the composition of the maps 

0 φ−1πd φFn −→ E 
X 7→X2 

−→ Fd −→ E −→ Fd . 

Here πd : Fd+o → Fd is the projection to the first d coordinates. 
(ii) The UOV (Rainbow) part FR = (f (1), . . . , f (o+r)) : Fn 0 → Fo+r is con-

structed as the usual UOV signature scheme: let V = {1, . . . , d} and O = 
{d + 1, . . . , d + o}. For every k ∈ {1, . . . , o + r}, the quadratic polynomial 
f (k) is of the form X X X 

(k) (k) (k)
f (k)(x1, . . . , xn0 ) = α β γ xi +η(k),i,j xixj + i,j xixj + i 

i∈O,j∈V i,j∈V,i≤j i∈V ∪O 

(k) (k) (k) 1with α , β , γ , η(k) randomly chosen in F.i,j i,j i 

(iii) The Plus part FP = (g(1), . . . , g(s)) : Fn 0 → Fs consists of s randomly chosen 
(1) (s)quadratic polynomials g , . . . , g . 

We additionally choose an affine embedding U : Fn ,→ Fn 0 of full rank and an 
affine isomorphism T : Fm → Fm. The public key is given by P = T ◦ F ◦ U : 
Fn → Fm and the private key consists of T , F and U . 

Fd 
;; 

"" 
Fn 

>> 
U // Fn+l 

FS 

FP ## 

FR // Fo+r // Fm T // Fm 

Fs 

<< 

P 

Encryption: Given a message M ∈ Fn, the ciphertext C is computed as C = 
P(M) ∈ Fm . 

Decryption: Given a ciphertext C = (c1, . . . , cm) ∈ Fm, the decryption is ex-
ecuted as follows. 

(1) Compute x = (x1, . . . , xm) = T −1(C). 
(2) Compute X = φ(x1, . . . , xd) ∈ E. 

1 Note that, while, in the standard UOV signature scheme, we only have o polynomials, 
the map FR consists of o + r polynomials of the Oil and Vinegar type. This fact is 
needed to reduce the probability of decryption failures (see footnote 3). 
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= ±X(q d(3) Compute R1,2 
+1)/4 ∈ E and set 

(i) (i)
y(i) = (y , . . . , y ) = φ−1(Ri) ∈ Fd (i = 1, 2). 2 

1 d 
(i) (i)

(4) Given the vinegar values y1 , . . . , yd (i = 1, 2), solve the two systems of 
o + r linear equations in the n0 − d = o variables ud+1, . . . , un given by 0 

(i) (i)
f (k)(y1 , . . . , yd , ud+1, . . . , un0 ) = xd+k (i = 1, 2) 

for k = 1, . . . , o + r. The solution is denoted by (yd+1, . . . , yn0 ). 3 

(5) Compute the plaintext M ∈ Fn by finding the pre-image of (y1, . . . , yn0 ) 
under the affine embedding U . 

3 Q-Rank 

A critical quantity tied to the security of multivariate BigField schemes is the 
Q-rank (or more correctly, the min-Q-rank) of the public key. 

Definition 2 Let E be a degree n extension field of Fq. The Q-rank of a quadratic 
map f(x) on Fn is the rank of the quadratic form φ ◦ f ◦ φ−1 in E[X0, . . . , Xn−1]q 

via the identification Xi = φ(x)q i 
. 

Quadratic form equivalence corresponds to matrix congruence, and thus the 
definition of the rank of a quadratic form is typically given as the minimum 
number of variables required to express an equivalent quadratic form. Since con-
gruent matrices have the same rank, this quantity is equal to the rank of the 
matrix representation of this quadratic form, even in characteristic 2, in which 

i2qthe quadratics x are additive, but not linear for q > 2. 

Q-rank is invariant under one-sided isomorphisms f 7→ f ◦U , but is not invariant 
under isomorphisms of polynomials in general. The quantity that is often meant 
by the term Q-rank, but more properly called min-Q-rank, is the minimum Q-
rank among all nonzero linear images of f . This min-Q-rank is invariant under 
isomorphisms of polynomials and is the quantity relevant for cryptanalysis. 

In particular, min-Q-rank can be defined in circumstances for which Q-rank 
may make little sense. Specifically, consider the case in which there are more 
equations than variables, or the case in which we consider an extension field of 
smaller degree than the number of variables. We may then define min-Q-rank in 
the following manner. 

2 The fact of q ≡ 3 mod 4 and d odd allows us to compute the square roots of X by 
this simple operation. Therefore, the decryption process of both Square and SRP is 
very efficient. 

3 (1) (1)
In [7, Proposition 1] it was shown that the probability of both (y1 , . . . , yd ) and 

(2) (2)
(y1 , . . . , yd ) leading to a solution of the linear system is about 1/q−r−1. Therefore, 
with overwhelming probability, one of the two possible solutions is eliminated during 
this step. 
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Definition 3 Let E be a degree d < n extension field of Fq. The min-Q-rank of 
a quadratic map f : Fn → Fm over E isq q 

min-Q-rank(f) = min max{Q-rank (L1 ◦ f ◦ L2)}, 
L1 L2 

where L1 : Fq
d → Fm and L2 : Fn → Fq

d are nonzero linear transformations. q q 
As above, “Q-rank” computes the rank of its input as a quadratic form over 
E[X0, . . . , Xd−1] via the identification Xi = φ(x)q i 

. 

4 The KS Attack and Minors Modeling 

The property of low min-Q-rank is a weakness of many BigField schemes and 
has been exploited in many attacks, see [11–15]. While the attack in [12] ex-
ploits the low min-Q-rank property to speed up a direct algebraic attack, the 
other cryptanalyses use the Kipnis-Shamir (KS) attack of [11] with either the 
original KS modeling or with the minors modeling approach pioneered in [13]. 

The KS-attack recovers a related private key for a low min-Q-rank system with 
codomain isomorphic to a degree n extension field E by exploiting the fact that 
a quadratic form embedded in the homogeneous quadratic component of the 
private key is of low rank, say r. Using polynomial interpolation, the public key 
can be expressed as a collection of quadratic polynomials G over E, and it is 
known that there is a linear map N such that N ◦ G has rank r as a quadratic 
form over E; thus, there exists a rank r matrix that is an E-linear combination of 
the Frobenius powers of G. This turns the task of recovering the transformation 
N into solving a MinRank problem over E. 

Definition 4 (MinRank Problem(n,r,k)): Given k n × n matrices Pk
M1, . . . , Mk ∈ Mn×n(E), find an E-linear combination M = · Mi sat-i=1 αi 

isfying 
Rank(M) ≤ r. 

The key recovery attack of [13] revises the KS approach by modeling the low 
min-Q-rank property differently. The authors show that an E-linear combination 
of the public polynomials has low rank as a quadratic form over E. Setting the 
unknown coefficients in E of each of the public polynomials as variables, the 
polynomials representing (r + 1) × (r + 1) minors of such a linear combination, 
which must be zero due to the rank property, reside in Fq[t0,0, . . . , t0,m−1]. Thus 
a Gröbner basis needs to be computed over Fq and the variety computed over 
E. This technique is called minors modeling and dramatically improves the effi-
ciency of the KS-attack. The complexity of the KS-attack with minors modeling 

(dlogqis asymptotically O(n (D)e+1)ω), where 2 < ω ≤ 3 is the linear algebra con-
stant. 

One should note that the situation is more complicated when multiple variable 
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types are utilized in a scheme. In the case that there are more variables than the 
degree of E over Fq , the dimensions of the matrices do not match the degree of 
the extension. Still, if there is a central map with low min-Q-rank with a small 
subspace of the plaintext space as its domain, as it is the case of SRP, it may 
remain possible to recover a low rank map. Specifically, using fewer variables 
does not increase the rank of a quadratic form. 

5 Key Recovery for SRP 

In this section we explain our key recovery attack on SRP in detail. For the 
purpose of simplicity of exposition, we restrict to the homogeneous quadratic 
case. The method extends to the general case trivially. 

We note that a public key of SRP is isomorphic to an analogous scheme without 
the embedding as long as πd ◦U is full rank, which occurs with high probability. In 
this case, let πd 

0 : Fq
n → Fq

d be the projection onto the first d coordinates and find 
a projection ρ : Fn+l → Fn

q such that U 0 = ρ◦U has full rank and π0 ◦U 0 = πd ◦U .q d 
Let F∗ : E → E represent the squaring map so that FS = φ−1 ◦F∗ ◦ φ ◦ πd. Then 
given the central maps F 0 = FR ◦ U ◦ U 0−1 and F 0 = FP ◦ U ◦ U 0−1, which are R P 
of Rainbow shape and of random shape respectively, one easily checks that ⎡ ⎤ ⎡ ⎤ 

F∗ ◦ πd F∗ ◦ π0 d 
T ◦ ⎣ FR ⎦ ◦ U = T ◦ ⎣ F 0 ⎦ ◦ U 0 .R 

F 0FP P 

It therefore suffices to consider the scheme with l = 0; however, for specificity, 
we analyze the embedding explicitly in the following discussion. 

The attack is broken down into two main steps. The first is finding a related 
Square component private key. Then we discuss how to systematically solve for 
the Rainbow and Plus polynomials to complete key recovery. 

5.1 The min-Q-Rank of SRP 

While it is true that the min-Q-rank of the public key of an instance of SRP over 
a degree n extension is expected to be high, the public key retains the property 
that there exists a linear combination of the public forms which is of low Q-rank 
over the degree d extension used by the Square component. We verify this claim. 

Let α be a primitive element of the degree d extension E of Fq. Fix a vector Pd−1
space isomorphism φ : Fd → E defined by φ(x) = i=0 xiα

i. Furthermore, fix a q 
Φ d−1 q qone dimensional representation Φ : E → A defined by a 7−→ (a, a , . . . , a ). 

Define Md : Fq
d → A by Md = Φ ◦ φ. We can explicitly represent this map 
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with the matrix ⎤⎡ 
Md = 

⎢⎢⎢⎢⎢⎢⎣ 
1 1 · · · 1 

αq αq d−1 
α · · · 
α2 α2q · · · α2q d−1 

. . .. . . . . .. . . 
d−1 

αd−1 α(d−1)q α(d−1)q· · · 

⎥⎥⎥⎥⎥⎥⎦ ∈Md×d(E), 

acting via right multiplication (so that we may use algebraists’ left-to-right com-
position). Thus we can pass between the two interesting representations of ele-
ments in E of the form (x0, . . . , xd−1) ∈ Fd and (X, Xq, . . . , Xq d−1 

) ∈ A simplyq 

by right multiplication by Md or M
−1 .d 

The above map Md provides another way of expressing an SRP public key. Note 
first that any homogeneous Fq-quadratic map from E to E induces a quadratic 
form on A that can be represented as a d × d matrix with coefficients in E. 
Since the maps FR and FP can be written as vectors of quadratic forms over 
Fq[x1, . . . , xn] in matrix form, the entire public key can be expressed as a matrix 
equation. 

To achieve this matrix representation of the public key, we need some additional 

f
notation. We blockwise define 

Md 

�� 
Md 0 ∈Mm×m(E)= 
0 Io+r+s 

and �� 
Md ∈Mn0×d(E).cMd 

Φ ⊕ ido+r+s 

= 
0o×d 

c

c

c

c

cc

c

c

c

c

fMd Md 

matrix representation of the quadratic form over A corresponding to the map 
2qx 7→ x

i 
. 

Let (FS,0, . . . , FS,d−1, FR,0, . . . , FR,o+r−1, FP,0, . . . , FP,s−1) denote the m-dimensional 
vector of (d + o) × (d + o) symmetric matrices associated to the private key. The 
function corresponding to the application of each coordinate of a vector of such 
quadratic forms followed by the application of a linear map represented by a 
matrix will be denoted by the right product of the vector by the matrix. Next, 
note that 

MdF ∗0 MdF ∗1 MdF ∗d−1

MdF ∗d−1

Furthermore, let F∗iΦ ◦ πd.Note that and be the = = 

(FS,0, FS,1, . . . , FS,d−1)Md = ( M> 
d ),M> 

d , M> 
d , . . . ,

ccc
which yields 

> >(xFS,0x ,xFS,1x , . . . , xFS,d−1x >)Md 

MdF ∗0 MdF ∗1> > >),= (x M> 
d x , x M> 

d x , . . . , x M> 
d x 
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as functions of x. Then we obtain the equation 

Md 

M> 
d , FR,0, . . . , FP,s−1). 

f(FS,0, . . . , FS,d−1, FR,0, . . . , FP,m−1)

MdF ∗0 MdF ∗d−1cccc (1) 
= ( M> 

d , . . . ,

Next, consider the relation between the public key and the central maps of the 
private key. 

(P0, . . . , Pm−1)T
−1 = (UFS,0U

> , . . . , UFP,s−1U
>). 

By Equation (1), we have 

(P0, . . . , Pm−1)T
−1

MdF ∗0cc fMd 

d U
> cMdF ∗d−1, . . . , U cM> 

d U
> , UFR,0U

> , . . . , UFP,s−1U
>). 

fMd [ti,j ] ∈ M= m×m(E) and let W cMd.U Then we ha= ve 

M>= (U

T−1Let Tb = 
that 

c

m−1

ti,0Pi = WF ∗0W> . (2) 
i=0 

X 
Since the rank of F∗i is one for all i, the rank of this E-linear combination 
of the public matrices is bounded by one. Indeed, if the rank were zero, then 
W = 0, and the scheme reduces to a weak version of Rainbow+ whose kernel is 
the vinegar subspace. In particular, for all practical parameters one sets d > l, 
implying d + o − l > o, which verifies that W 6 0 (due to the fact that U is= 
required to be full rank). Thus we obtain the following: 

Theorem 1 The min-Q-rank of the public key P of SRP(q, d, o, r, s, l) is, with 
high probability, given by: 

Md

(
0 if d ≤ l and U = 0,

min-Q-rank(P ) =
1 otherwise. 

cc

cMd 

thus the min-Q-rank of P is zero. Otherwise, with high probability, the public 
polynomials are linearly independent. In this case, for any choice of L1, there 
exists an L2 such that the Q-rank of the composition L1 ◦ P ◦ L2 is positive. 

Consider, in particular, L1 to be the Fq-linear transformation defined by the 
matrix consisting of the first d columns of T−1. Let L2 : Fd → Fn be linear of q q 
full rank. Then 

φ ◦ L1 ◦ P ◦ L2 ◦ φ−1 = F ∗ ◦ φ ◦ πd ◦ U ◦ L2 ◦ φ−1 . 

Let L2 be the d × n matrix representation of L2. Then the matrix representation 
of the above quantity is 

MdF ∗0

Proof. If U = 0, then the span of P is of dimension at most m − d, and 

M−1 
d M> 

d U
>L> 

2 M
> 
d .L2U
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Since F∗0 is of rank one and the image of c is A, the product is of rank one Md 

exactly when L2UcMd is nonzero, otherwise, the rank of the above matrix is zero. 
Since L2 is chosen to maximize rank, the Q-rank is zero exactly when Uc isMd 

zero, which necessitates that d ≤ l. 

One may note here that the matrix Tb unmixes the Square equations from the 
Rainbow and Plus polynomials. It further mixes the Rainbow and Plus polyno-
mials, but this is no issue since this phase of the attack is aimed at ultimately 
recovering a representation of F∗ . 

5.2 Recovering the Output Transformation with MinRank 

As demonstrated in the previous subsection, the recovery of Tb begins by solving 
a MinRank instance over E. This phenomenon is well studied and has been the 
basis of previous cryptanalyses, see [13–15]. We may use the minors modeling 
approach to take advantage of the fact that we can compute the Gröbner basis 
over the small field, Fq. 

Due to the extremely low min-Q-rank of the system, the system of minors is 
homogeneous quadratic. The ideal generated by these minors is one dimensional, 
so we may set a single variable to a fixed value, say 1. We then recover a sys-
tem of many quadratic equations in m − 1 variables. This system is massively 
overdefined, so a solution can be recovered via linearization. 

To accomplish this, we have to compute only as many minors as there are mono-� � 
m+1mials in m − 1 variables of total degree ≤ 2. There are exactly monomials2 

in m − 1 variables of degree less than or equal to two, so we randomly select � � � � � � 
m+1 m+1 m+1minors and arrange their coefficients in a × matrix. As we 2 2 2 
will show in Section 6, we expect such a matrix to have full rank with high prob-

q−1ability, roughly q for large n and m. We may then linearly solve, recovering 

the first column of Tb . 
Once the first column of Tb is recovered, the first d columns can be generated by 
the relation 

qti,j = t for j = 1, . . . , d − 1.i,j−1 

We will return to the issue of computing the remaining columns of Tb and sepa-
rating the Rainbow and Plus polynomials in Subsection 5.5. 

5.3 Recovering the Input Transformation 

Once the first column of the transformation Tb = [ti,j ] is discovered, we have 
access to the rank one matrix 

m−1X 
ti,0Pi. 

i=0 

This matrix encodes the representation of the squaring map. 
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Theorem 2 Given the first column of Tb , the recovery of W requires the solution 
of a linear system of d + o − l − 1independent equations in d + o − l variables. 

k qProof. First, note that W = [wi,j ] is of the form = w for all i ∈wi,j i,j−k 
{0, 1, . . . , d + o − l} and for all 0 ≤ j, k < d. Thus, it suffices to solve for the first 
column of W. Let K be the left kernel of the low rank matrix 

m−1X 
ti,0Pi. 

i=0 

Let K be the matrix whose rows form a basis of K. By Equation (2), we know 
that 

0d+o−l−1×d+o−l = KWF ∗0W> , 

and since W is of full rank, it must be the case that 

KWF ∗0 = 0d+o−l−1×d. 

Thus KW = ker(F∗0). In a proper basis the representation of F∗0 contains a 
single nonzero entry in the first row and first column. Thus, the relation that 
KW = ker(F∗0) is equivalent to the condition that the first column of W is 
in the right kernel of K. Since this right kernel is one dimensional, this process 
recovers all equivalent matrices W. 

Recall that we have the relation � � 
MdW = UMcd = U . 
0o×d 

Then multiplying on the right by M−1 yieldsd � � � � 
Md IdWM−

d 
1 = U M−1 = U . (3)

0o×d
d 0o×d 

Thus, we obtain the first d columns of U. We may extend this matrix in any 
manner to obtain a full rank n × (d+o) matrix. With high probability, a random 
concatenation of o columns produces a full rank matrix U. For the sake of 
recovering FS , we insist that the first n columns of U form an invertible matrix. 

5.4 Recovering the Square Map 

We now assume that we have recovered the first column, [ti,0], of Tb and that we bhave recovered U. Let U represent the matrix consisting of the first d + o − lh i 
columns of U. By construction, Ub is invertible. We set U = b U0U b . 

We can now explicitly compute 

m−1X 
ti,0Pi = WF ∗0W> . 

i=0 
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Note that � � �h i � 
Md MdW = Uc U b bMd = b U0 = U . 
0o×d 0(o−l)×d 

Thus we have � �m−1X � �Mdb F ∗0 bti,0Pi = U M> 0d×(o−l) U
> .d0(o−l)×d 

i=0 

Therefore, we may compute !� � m−1� � XMd F ∗0 M> U−1 U−>0d×(o−l) = b ti,0Pi 
b , (4)d0(o−l)×d 

i=0 

Now, by taking the top left d × d submatrix, we recover MdF
∗0M>. Finally, by d 

multiplying on the left by M−1 and on the right by M−> , we recover F∗0 .d d 

5.5 Unmixing the Rainbow and Plus Polynomials 

Having identified the vinegar subspace of linear forms on the input variables, we 
can identify the Rainbow polynomials as those linear combinations of the public 
polynomials which become linear when their inputs are restricted to the kernel 
of those linear forms. In other words, we can find the Rainbow polynomials by 
linearly solving for ti such that: ! � �m−1� � X 

U−1 U−> 0d×(o−l)0(o−l)×dIo−l 
b tiPi 

b = 0. (5)
Io−l 

i=0 

A basis ti,j of the solution space of this equation forms the columns d+1 through 
d+o+r of T−1. We can place any selection of column vectors in the last s columns 
of T−1 making it full rank, since no party is concerned with the values of the 
plus polynomials. 

Having recovered the complete transformation T−1, we can compute the Rain-
bow and Plus part of the central map by 

(Fs,0, . . . , FS,d−1, FR,0, . . . , FR,o+r−1, FP,0, . . . , FP,s−1) 

U−> U−>)T−1U−1P0 U−1Pm= ( b b , . . . , b b . (6) 

Algorithm 1 shows the process of our attack in algorithmic form. In the appendix 
of this paper, we illustrate our attack using a toy example. 
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Algorithm 1 Our Key Recovery Attack on SRP 

Input: SRP parameters (o, d, r, s, l), SRP public key P : Fn 0 → Fm 

Output: equivalent private key (T , (FS , FR, FP ), U) 
1: Solve a MinRank problem on the m public polynomials with target rank 1. Denote 

the solution by v ∈ Em . 
q2: Define the elements of the m × d matrix T̂0 by t̂ij 

0 
= vi 

j−1 
(j = 1, . . . , d). 

3: Compute the first d columns of the matrix T−1 by T0−1 
= T̂ · M−

d 
1 . 

4: Let K be the (n − 1) × n matrix representing the left kernel of the low rank matrix P m−1 ti,0Pi and choose an element w ∈ Fn of its right kernel. i=0 

5: Define the elements of the n × d matrix W by wij = wi
qj−1 

(j = 1, . . . , d) 
6: Recover the first d columns of the matrix U by equation (3). 
7: Extend U to an invertible n × n matrix b U to a full rank n × (d + o) matrix U and b

U. 
8: Recover the map FS by equation (4). 
9: Compute the columns d + 1, . . . , d + o + r of the matrix T−1 by solving the linear 

system of equation (5). Append randomly columns to get an invertible m × m 
matrix T−1 . 

10: Recover the matrices representing the Rainbow and plus polynomials by equation 
(6). 

6 Complexity of Attack 

To estimate the complexity of our attack, we compute the Hilbert series of the 
ideal generated by the 2 × 2 minors of 

m−1X 
ti,0Pi. 

i=0 

We can then recover the degree of regularity dreg explicitly. 

Theorem 3 Let E[T ] = E[t0,0, . . . , tm−1,0]. Let I be the ideal generated by the 
system of minors arising from the minors modeling variant of the KS-attack on 
SRP(q, d, o, r, s, l) with d > l, n = d + o − l and m = d + o + r + s. Then the 
Hilbert series of I (that is, the Hilbert Series of E[T ]/I) is 

Hilbertseries(t) = 1 + mt. 

Consequently the degree of regularity of the minors system is dreg = 2. 

Proof. Consider the ideal I generated by the 2 × 2 minors over E[T ]. There are � �2n /2 distinct 2 × 2 minors in an n × n symmetric matrix; however, each such 2 
minor of the above matrix is a homogeneous quadratic polynomial in m vari-� � � � 

m m+1ables. Thus the dimension of the span of the 2×2 minors is +m = . As 2 2� � 
m+1 a consequence, randomly chosen minors should be linearly independent 2 

with probability approximately 1 − 1 . q 
Since I contains all linear combinations of the minors, I contains all quadratic 
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monomials in E[T ]. Thus E[T ]/I contains representatives of exactly all equiv-
alence classes of degree less than two. Therefore, the Hilbert Series of E[T ]/I 
is 

HS(t) = 1 + mt. 

Technically, the ideal I in Theorem 3 is not what we use in the attack. We use 
I 0 = hI, t0,0 − 1i, for example. However, adding polynomials to I cannot increase 
the degree of regularity; thus, the degree of regularity in the actual attack is still 
two. 

This fact proves that we actually require no Gröbner basis algorithm for the 
attack. Simple linearization and Gaussian elimination are effective in breaking 
all parameters. 

Specifically, recalling that with one variable fixed we have only m − 1 variables, 
we may use the above calculation to estimate the complexity of recovering the 
first column of Tb using the minors modeling variant of the KS-attack. 

Unmixing the Rainbow and plus polynomials only requires 2m matrix multi-
plications of dimension n matrices and solving a linear system in m variables. 
The complexity of these operations is on the order of mω+1, and is therefore 
dominated by the minors modeling step. Thus we obtain the following 

Theorem 4 The complexity of our key recovery attack on SRP(q, d, o, r, s, l) 
with d > l, n = d + o − l and m = d + o + r + s using the minors modeling variant 
of the KS-attack is �� �ω� 

m + 1 O ,
2 

where 2 < ω ≤ 3 is the linear algebra constant. 

7 Experimental Results 

In order to estimate the complexity of our attack in practice, we created a 
straightforward implementation of the key generation process of SRP and our 
attack in MAGMA Code. While the experiments were run on large servers with 
multiple cores, we used, for each of our experiments, only a single core. 

Table 1 shows, for different parameter sets, the results of our experiments. 
The numbers in rows 3 and 10 show the time needed to solve the MinRank 
problem and to recover the maps FS and U as well as the first d columns 
of the matrix T−1 . The numbers in row 4 and 11 show the time needed to 
recover the remaining columns of T−1 and the maps FR and FP . The num-
bers in the fifth and twelfth row show the overall running time of our attack. 
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parameters (q,d,o,r,s,l) (31,16,16,8,3,8) (31,24,24,12,4,12) (31,35,35,15,5,15) 
(m, n) (43,24) (64,36) (90,55) 
time for recovering FS (s) 10.0 74.5 1,295 
time for recovering FR and FP (s) 0.5 2.5 16.5 
time (overall) (s) 10.5 1 77.1 1 1,313 1 

memory (MB) 354.6 1,970.3 11,867 

claimed security level (bit) 80 112 160 
parameters(q,d,o,r,s,l) (31,33,32,16,5,16) (31,47,47,22,5,22) (31,71,71,32,5,32) 
(m, n) (86,49) (121,72) (179,110) 
time for recovering FS (s) 487.0 9,705 27,306 
time for recovering FP and FR 10.0 69.1 183 
time (overall) 497.0 1 9,777 1 27,4942 

memory (MB) 8,518.5 47,988 315,407 

Table 1. Running time of the proposed attack 
1) AMD Opteron @ 2.4 GHz, 128GB RAM 
2) Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz, and 512GB RAM 

As the second column of the table shows, doubling the parameters leads to an 
increase of the running time and memory requirements of our attack by factors 
of about 50 and 25, which corresponds to our theoretical estimations.4 

The parameter sets shown in the bottom half of Table 1 are those proposed by 
the authors of [7] for security levels of 80, 112 and 160 bit respectively. As the 
table shows, we could (even with our limited resources and poorly optimized at-
tack) break the parameter sets proposed for 80 and 112 bit security in very short 
time. Since, for a security level of 160 bit, the memory requirements exceeded 
our possibilities, we had to run these experiments on another server. We want 
to thank Nadia Heninger for running these experiments. 

8 Conclusion 

In this paper we propose a practical attack against the SRP encryption scheme of 
Yasuda and Sakurai [7]. Our attack uses the min-Q-rank property of the scheme 
to recover parts of the linear transformation T , the transformation U and the 
Square part FS of the central map. Following this, we use the known structure 
of the Rainbow polynomials to recover the second half of the map T as well as 
the Rainbow and Plus part of the central map. Our attack is very efficient and 
breaks the SRP instances proposed in [7] in reasonable short time. 
Therefore, our attack shows that the security of a weak multivariate scheme 
like Square is not automatically increased by combining it with another (secure) 
scheme. 

4 For larger parameters, the memory access time plays a major role in the overall 
running time. Therefore the corresponding factors are nuch larger. 
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A Toy Example 

In the following we illustrate our attack using a toy example with small param-
eters. 

A.1 Key Generation 

For our toy example we use GF(7) as the underlying field. We choose the param-
eters of SRP as (d, o, r, s, l) = (2, 2, 1, 1, 1).5 Therefore our public key consists of 
six equations in three variables. The Square map is defined over the extension 
field GF(7)[X] / hX2 +6X +3i. For simplicity, we restrict to linear maps T and 
U as well as homogeneous quadratic maps FR and FP . By doing so, the public 
key P of our scheme will be homogeneous quadratic, too. 

Let the linear maps T and U be given by the matrices 

T = 

⎛ ⎜⎜⎜⎜⎜⎜⎝ 
1 5 1 6 3 3 
5 3 5 2 2 5 
0 4 0 4 5 0 
0 6 6 2 4 3 
3 3 6 3 6 3 
5 3 5 0 4 6 

⎞ ⎟⎟⎟⎟⎟⎟⎠ ∈ F6×6 and U = 

⎛⎝ 6 0 3 2 
2 0 0 4 

⎞⎠ ∈ F3×4 . 
4 1 1 0 

�� 
The Square map FS (X) = X2 is given by the matrix F = 

1 0 ∈ F2×2 . 
0 0 

Let the three Rainbow polynomials be given by the 4 × 4 matrices 

FR,0 = 

⎛ ⎜⎜⎝ 
2 6 2 3 
6 1 6 0 
2 6 0 0 

⎞ ⎟⎟⎠ , FR,1 = 

⎛ ⎜⎜⎝ 
2 1 5 1 
1 5 0 6 
5 0 0 0 

⎞ ⎟⎟⎠ , and FR,2 = 

⎛ ⎜⎜⎝ 
5 4 3 0 
4 2 0 1 
3 0 0 0 

⎞ ⎟⎟⎠ . 

3 0 0 0 1 6 0 0 0 1 0 0 

The Plus polynomial is given by the 4 × 4 matrix 

FP0 = 

⎛ ⎜⎜⎝ 
3 4 3 2 
4 4 0 3 
3 0 5 0 
2 3 0 3 

⎞ ⎟⎟⎠ . 

5 Note that this parameter choice does not meet the description in Section 2.2, where 
d was required to be odd. However, an odd value of d is only needed for the efficient 
decryption. The scheme itself can be defined for any value of d. 
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We compute the public key of our scheme by P = T ◦ (FS , FR, FP ) ◦ U and 
obtain the following 6 3 × 3 matrices representing P 

= 

⎛⎝ 6 6 0 
6 6 0 

⎞⎠ , P1 = 

⎛⎝ 5 2 5 
2 3 4 

⎞⎠ , P2 = 

⎛⎝ 6 4 2 
4 0 1 

⎞⎠P0 

0 0 1 5 4 6 2 1 1 ⎛⎝ ⎞⎠ , P4 = 

⎛⎝ 5 1 5 
1 1 4 

⎞⎠ , and P5 = 

⎛⎝ 2 4 6 
4 3 1 

⎞⎠4 5 3 
5 6 3 P3 = . 
3 3 3 5 4 3 6 1 3 

A.2 Recovery of Transformation of Square Polynomials 

In the first step of the attack, we have to solve a MinRank problem on the 6 
matrices P0, . . . , P5 with target rank 1. One solution is given by 

v = (1, b19, b13, b9, b47, b9), 

where b is a generator of the extension field E=GF(72). 
From this, we obtain the first part of the linear transformation T which 

divides the Square part from the remaining polynomials. Let Tb 0 represent the 
T. 

multiplication by M−1 .d 

b the first d columns of T−1first d columns of We may via right recover 

⎛ ⎜⎜⎜⎜⎜⎜⎝ 

⎞ ⎟⎟⎟⎟⎟⎟⎠ 

⎛ ⎜⎜⎜⎜⎜⎜⎝ 

⎞ ⎟⎟⎟⎟⎟⎟⎠ 
1 1 
b19 b37 

1 1 
1 3 

b13 b43 3 3 
T−10bT0 

b9 b15 0 3 

Note that the entries in the second column of Tb 0 are just the Frobenius powers 
of the first column entries. 

A.3 Recovery of the Input Transformation U 

Next we can use the first column, [ti,0], of Tb 0 to recover the first d columns of 
the matrix representation of the linear transformation U , thus separating the 
vinegar subspace from the oil subspace. To accomplish this, we construct our 
rank one solution to the MinRank step 

bT0M−1 
d = = =, . 

b9 b15 0 3 
b47 b41 5 2 

Xm−1

L = ti,0Pi = 

⎛⎝ b45 b3 b18 

b3 b9 6 

⎞⎠ . 
b18 6 b39i=0 

Let K be the left kernel of L and construct the reduced row echelon form 
matrix K whose rows form a basis of K. �� 

1 0 b3 
K = . 

0 1 b9 
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Any element in the right kernel of K forms the first column of W. The second 
column is the first Frobenius power of the first. For a random selection we obtain 

W = 

⎛⎝ b45 b27 

b3 b21 

⎞⎠ . 
b18 b30 

We next recover the first d = 2 columns of U via the relation �� 
IdWM−1 = U = 

⎛⎝ 5 5 
4 5 

⎞⎠ .d 0o×d 1 2 

Extending this matrix, we construct the invertible ⎛⎝ 5 5 0 
4 5 0 

⎞⎠U = 
1 2 1 

We may now extend this matrix to any n × n + l matrix. The simplest way 
is to append zeros. This technique is always effective due to the isomorphism 

b

described at the beginning of Section 5. Thus we obtain 

. 

U = 

⎛⎝ 5 5 0 0 
4 5 0 0 

⎞⎠ . 
1 2 1 0 

A.4 Recovering FS 

Knowing T−10 and bU, we can recover the Square part of the central map. Specif-
U−>U−1L bically, we recover the top left 2 × 2 submatrix of b : �� 

F ∗0 = 
b3 0 
0 0 

. 

A.5 Recovering FR and FP 

We solve the equation 

bX b m−1

U−1 U−> 

i=0 

for ti and append o + r = 3 linearly independent solutions as column vectors 
onto T−10. The final s = 1 column(s) of T−1can be chosen randomly to achieve 
full rank. Our random selection produces 

��! �� 
0(o−l)×d Io−l tiPi 

0d×(o−l) 

Io−l 

T−1 = 

⎛ ⎜⎜⎜⎜⎜⎜⎝ 
1 1 0 0 0 5 
1 3 0 0 0 6 
3 3 2 6 4 3 
0 3 1 5 4 6 
5 2 2 0 2 1 
0 3 1 0 2 1 

⎞ ⎟⎟⎟⎟⎟⎟⎠ . 
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Now with T−1 we can recover explicitly the Rainbow and Plus polynomials. 
To do so, we compute 

U−>bU−1P0( b U−>)T−1 , . . . , U−1Pm−1 . bb
We may now express the Rainbow and Plus polynomials as quadratic forms 

in n variables by appending l rows and columns of arbitrary values, since our 
choice of U makes these entries obsolete. We obtain 

FR,0 = 

⎛ ⎜⎜⎝ 
0 5 2 0 
5 4 0 0 
2 0 0 0 

⎞ ⎟⎟⎠ , FR,1 = 

⎛ ⎜⎜⎝ 
0 0 6 0 
0 2 0 0 
6 0 0 0 

⎞ ⎟⎟⎠ , FR,2 = 

⎛ ⎜⎜⎝
5 4 0 0 
4 4 5 0 
0 5 0 0 

⎞ ⎟⎟⎠ , 

0 0 0 0 0 0 0 0 0 0 0 0 

and 

FP,0 = 

⎛ ⎜⎜⎝ 
4 5 2 0 
5 4 1 0 
2 1 5 0 
0 0 0 0 

⎞ ⎟⎟⎠ . 

Via composition, one verifies that 

P = T ◦ (FS , FR, FP ) ◦ U . 


