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ABSTRACT 
 
Spectral library searching (SLS) is an attractive alternative to sequence database searching (SDS) 
for peptide identification due to its speed, sensitivity, and ability to include any selected mass 
spectra. While decoy methods for SLS have been developed for low mass accuracy peptide 
spectral libraries, it is not clear that they are optimal or directly applicable to high mass accuracy 
spectra. Therefore, in this paper we report the development and validation of methods for high 
mass accuracy decoy libraries. Two types of decoy libraries were found suitable for this purpose. 
The first, referred to as Reverse, constructs spectra by reversing a library’s peptide sequences 
except the C-terminal residue. The second, termed Random, randomly replaces all non-C-
terminal residues and either retains the original C-terminal residue or replaces it based on the 
amino-acid frequency of the library’s C-terminus. In both cases the m/z values of fragment ions 
are shifted accordingly. Determination of FDR is performed in a manner equivalent to SDS, 
concatenating a library with its decoy prior to a search. The utility of Reverse and Random 
libraries for target-decoy SLS in estimating false positives and FDRs was demonstrated using 
spectra derived from a recently published synthetic human proteome project.1 For data sets from 
two large-scale label-free and iTRAQ experiments, these decoy building methods yielded highly 
similar score thresholds and spectral identifications at 1% FDR. The results were also found to 
be equivalent to those of using the decoy-free PeptideProphet algorithm. Using these new 
methods for FDR estimation, MSPepSearch, which is freely available search software, led to 
18% more identifications at 1% FDR and 23% more at 0.1% FDR when compared with other 
widely-used SDS engines coupled to post-processing approaches such as Percolator. An 
application of these methods for FDR estimation for the recently reported ‘hybrid’ library 
search16 method is also made. The application of decoy methods for high mass accuracy SLS 
permits the merging of these results with those of SDS, thereby increasing the assignment of 
more peptides, leading to deeper proteome coverage. 
 
INTRODUCTION 
 
A critical step in all bottom-up proteomic studies is the accurate identification of as many 
peptides as possible in the biological material under investigation. This has primarily been done 
through sequence database searching (SDS) methods that match input spectra with predicted 
peptide ion spectra contained in a protein sequence database.2,3,4 High-throughput liquid 
chromatography-tandem mass spectrometry (LC-MS/MS) analysis has become routine and the 
sharing of high-quality peptide spectral data from large-scale proteomic studies is now a 
common practice. This has enabled the development of comprehensive mass spectral libraries for 
use in peptide identification by spectral library searching (SLS). In this approach, query spectra 
are matched to a collection of library spectra initially identified by either SDS2,3,4 or from 
synthetic peptides.1 SLS is an attractive alternative to SDS for peptide identification due to its 
speed, sensitivity, and ability to include any selected mass spectra.5,6,7,8 A general view is that 
SDS and SLS results can reinforce each other leading to an increase in numbers of confidently 
identified peptides and proteins. When extensive libraries are unavailable, SDS remains the 
principal choice in discovery proteomics. A main concern in using SLS is the “incompleteness” 
of libraries. However, with the publication of two extensive studies mapping the human 
proteome and the recent release of peptide spectral data expected to lead to a comprehensive 
synthetic human proteome,1,9 the time is ripe for SLS to become routinely used alongside SDS in 
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discovery proteomics for samples of human origin. Preliminary tests show, not surprisingly, that 
improved results are obtained if SDS and SLS results are merged. One reason for the relative 
rarity of such practice is the uncertainty in merging results of SLS with those of SDS. This stems 
primarily from the lack of widely accepted and practiced decoy methods for computing false 
discovery rates (FDRs) in SLS analyses. The principal objective of this paper is to provide such a 
method. 
 
In SDS, estimating FDR (i.e., the estimated fraction of wrong answers in the result) with target-
decoy methods has been extensively investigated,10,11 and is currently the accepted standard 
practice. In a target-decoy SDS analysis, experimental spectra are searched against both a normal 
protein sequence database (i.e., the target) and a concatenated decoy version of the database. The 
number of decoy hits above a chosen threshold score is used to estimate the number of false 
positives and the FDR. The most widely employed methods for generating decoy databases are 
reversing (a simple reversal of presumed amino acid sequences)10 and randomization (randomly 
generating protein sequences according to the occurrence frequencies of amino acids in a target 
database).11 

 

Recently efforts have also been made in adopting the target-decoy approach to SLS. Instead of 
decoy sequences, decoy spectral libraries are constructed for FDR estimation. Several decoy 
library methods have been developed and tested with low-resolution peptide spectral libraries. 
The first such method was reported by Lam et al.13 in which a shuffle-and-reposition strategy 
was used to construct decoy spectra. A refined version, DeLiberator,21 was implemented by 
giving special treatment to unannotated peaks. Another decoy generating method, precursor 
swapping, is also available.12 These decoy methods have been utilized in various SLS 
applications including mining protein modifications.22 However, decoy library methods have not 
been reported for high mass accuracy peptide spectra, which is the focus of this paper. Because 
of the much higher degree of specificity of these spectra, it is not clear to us how well the low 
mass accuracy spectra methods will perform. In fact, as described later, one method that 
performed well for low mass accuracy spectra, the Precursor-Swap method, did not work as well 
for high mass accuracy spectra. 
 
In the present study, we used the general concepts of reversing and randomization from SDS, 
and developed algorithms to create reverse and random peptide spectral libraries for high mass 
accuracy SLS. We tested the performance of these decoy libraries in estimating FDRs with data 
sets in which whether or not an individual spectrum was in the library was known and with data 
sets from large-scale high-resolution LC-MS/MS experiments. In addition, we compared the 
results with those obtained from the decoy-free PeptideProphet algorithm,14,15,20 and with those 
from target-decoy SDS. By applying similar decoy strategies, the methods described in this study 
bridge the gap in target-decoy searches between SDS and SLS, enabling integration of SDS and 
SLS results in a common FDR estimation framework. The integration of results from both will 
benefit the general proteomics community, especially for those interested in exploiting the 
unique strengths of both SDS and SLS and combining their results for greater coverage. 
 
METHODS 
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Decoy library building: Two types of decoy libraries, Reverse and Random, were developed and 
tested for high mass accuracy peptide SLS using NIST-developed libraries and a library 
searching program MSPepSearch (peptide.nist.gov1). Briefly, a decoy library is constructed from 
a target peptide spectral library spectrum-by-spectrum. For each library spectrum, the process 
begins by building a decoy peptide whose sequence is generated either randomly or by reversing 
the target spectrum’s peptide sequence. The target spectrum is then translated into a decoy 
spectrum by shifting its fragment ions to computed m/z values expected for the decoy peptide 
(referred to as reposition in Lam et al.).13 Input msp-formatted libraries are pre-annotated using 
methods described in ref. 8, which is taken advantage of by our decoy methods. The algorithms 
were implemented in ‘R’. The code is available from authors upon request. General descriptions 
of the Reverse and Random algorithms follow below. For both, no alterations to fragment ion 
intensities, the number of amino acids, or precursor charge state are made. 
 
Reverse: For each spectrum in a target library, its associated peptide sequence is reversed to form 
a decoy peptide. The C-terminal residue, mostly K or R for a spectral library of tryptic peptides, 
is kept in its original position and only the order of the non-C-terminal amino acids is inverted. 
For modifications, those that are specific to an amino acid (e.g., oxidation of methionine, 
carbamidomethylation of cysteine, isobaric tag on lysine) move along with the amino acid to its 
new position, and those associated with the N-terminus (e.g., isobaric tagging for quantification) 
remain and are attached to the new N-terminal end after reversing. Exclusion of palindromes 
(peptides whose forward and reversed sequences are the same) is optional, and they are relatively 
infrequent and found to have no noticeable effect on results. Once the decoy sequence and 
modifications are determined, m/z values of fragment ions (e.g., a, b, and y ions for higher-
energy collisional dissociation (HCD) fragmentation, and their 13C isotopes and neutral losses of 
ammonia and/or water) in the target spectrum are shifted to the corresponding m/z values 
predicted for the decoy sequence. Any mass errors (the difference between experimental and 
theoretical masses) of fragment ions are retained in the shifted m/z values. Fragment ions derived 
from losses from the parent ion are not shifted. 
 
Random: In this method, all non-C-terminal amino acids are randomly replaced with amino acids 
with the constraint that the distribution of amino acids in the decoy library matches the 
distribution in the target library. To preserve positions of protease-specific residues, the decoy 
peptide's C-terminus is either taken directly from that of the target peptide (FixC) or randomly 
selected based on the target library's C-terminal residue distribution (RanC). Modifications are 
also randomly assigned to the decoy peptide as per their occurrences in the target library. For 
RanC, we first calculate the frequencies of library peptides’ C-terminal amino acids and their 
modifications, and decoy C-terminal amino acid is generated from this frequency distribution. If 
the target peptide contains an N-terminus-specific modification (e.g., in libraries of isobaric-
tagged spectra), this same modification is added to the N-terminus of the decoy peptide. In 
addition, steps are taken to ensure that (1) a newly generated decoy sequence does not match any 
peptide in the target library or any previously generated decoy sequences, maintaining the 
uniqueness of decoy peptides, and (2) if a peptide ion has multiple spectra (i.e., peptide-spectrum 
matches (PSMs)) in a target library, the same decoy sequence is reused to generate all the 
corresponding decoy spectra, keeping the same number of unique amino acid sequences in the 
                                                           
1 Please go to http://chemdata.nist.gov/dokuwiki/doku.php?id=peptidew:cdownload to download libraries used in 
this work (Table 1). 

http://chemdata.nist.gov/dokuwiki/doku.php?id=peptidew:pepsoftware
http://chemdata.nist.gov/dokuwiki/doku.php?id=peptidew:cdownload
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target and decoy libraries. When the decoy peptide sequence and its modification(s) are 
established, m/z values of fragment ions in the target spectrum are replaced by decoy peptide 
values in the same manner as for the Reverse method. Parent-related fragment ions are also 
shifted by the difference in precursor mass between the original and decoy peptides. 
 
Spectrum Library Searches: Freely available MSPepSearch software (peptide.nist.gov) was used 
to perform SLS using a precursor ion tolerance of 20 ppm and fragment ion tolerance of 50 ppm 
for most searches. For fragment ion tolerance, we tested 50 ppm and 20 ppm, and found no 
significant difference, with 50 ppm giving slightly more IDs in some cases. For the hybrid 
spectral library searches16, the fragment ion tolerance was 40 ppm. Label-free and iTRAQ 4-plex 
labeled human tryptic peptide spectral libraries are available on-line (peptide.nist.gov).17 Spectra 
in these libraries originated from HCD fragmentation, where the best quality spectrum (e.g., 
highest MSGF+ score) was used for each identified peptide ion at each reported fragmentation 
energy.7 Both libraries contain more than 1 million HCD spectra and cover approximately one-
third of all identifiable tryptic peptides in the human proteome.17 The NIST format libraries were 
built using the freely available program Lib2NIST (peptide.nist.gov). 
 
Data Sources: Testing data sets of label-free and iTRAQ 4-plex labeled spectra were obtained 
from PRIDE18, NIST and the NIH/NCI CPTAC program (proteomics.cancer.gov). Table 1 
summarizes data sets and libraries (peptide.nist.gov).17 
 
Determining the Threshold Scores at Fixed FDR levels: A target-decoy strategy was employed 
to establish score thresholds for achieving false discovery rates (FDRs) at desired levels. 
Determination of FDR of SLS is performed in a manner equivalent to SDS, concatenating a 
library with its decoy prior to a search. For example, at 1% FDR, a score cutoff was selected so 
that above that cutoff, the numbers of PSMs from searching a decoy library was approximately 
1% (FDR was estimated by 2xDecoy/(Decoy+Target)) of the numbers of PSMs from searching a 
target library. The target-decoy methods were then compared with the decoy-free PeptideProphet 
algorithm.20 Correct and incorrect MSPepSearch scores were modeled by the distributions 
suggested in ref. 20, to obtain score cutoffs. 
 
Sequence Database Searches: To further compare SLS with SDS, we performed SDS with 
Sequest3 coupled to Percolator19 in Proteome Discoverer (2.1). Testing data sets and mass 
tolerance settings were the same as for the library search for a fair comparison. For label-free 
spectra, oxidation on M was set as a variable modification and CAM on C as fixed modification. 
Semi-tryptic peptides were allowed. The search engine rank was 1 and FDR level was usually set 
at 1% or otherwise mentioned. RefSeq NCBI Aug. 2014 human fasta file was downloaded (55 
926 sequences). 
 
RESULTS AND DISCUSSION 
 
As described above, we developed methods for constructing two types (Reverse and Random) of 
decoy peptide spectral libraries. The methods are conceptually equivalent to the reversing and 
randomization of records in SDS, but are implemented differently because of the spectrum-
centric nature of SLS versus the sequence-centric SDS. Examples of decoy spectra created by the 

http://chemdata.nist.gov/dokuwiki/doku.php?id=peptidew:pepsoftware
http://chemdata.nist.gov/dokuwiki/doku.php?id=peptidew:cdownload
http://chemdata.nist.gov/dokuwiki/doku.php?id=peptidew:pepsoftware
http://proteomics.cancer.gov/
http://chemdata.nist.gov/dokuwiki/doku.php?id=peptidew:pepsoftware
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Reverse and Random methods as well as the corresponding target spectra are displayed in Fig. 
1A and Fig. 1B, respectively. 
 
Unlike SDS, where methods for generating decoy sequence databases are generally accepted, no 
widely practiced decoy methods have been developed for high-resolution SLS. Two reported 
decoy library methods include peptide Precursor-Swap12 and shuffle-and-reposition13 developed 
with low-resolution peptide spectra. For the shuffle-and-reposition method, its limitations 
include a possible failure to produce distinct decoy sequences for target peptides that are of low 
complexity (e.g., sequences consisting of the repeat of only one or a few amino acids) or 
relatively short in length. These will be further discussed later. 
 
When creating decoy peptides, our option for the C-terminus is to either copy it directly from 
target peptides or select randomly based on its distribution in a target library. Since spectral 
libraries are usually composed of peptides resulting from digestion by specific enzymes (mostly 
trypsin), our approach preserves the enzyme-specific property (e.g., tryptic) of the target 
peptides. 
 
Characterizing Decoy Spectral Libraries 
 
Just as a decoy used in hunting should appear indistinguishable from a real prey, ideally a decoy 
library should possess characteristics equivalent to those of a target library – it should be realistic 
and wrong. These characteristics include distributions of peptide length and amino acids, 
precursor mass, and fragment peak abundances, as well as modifications and the number of 
distinct peptide sequences. In other words, decoy and target libraries should resemble each other 
statistically except that their sequences and spectra are different. 
 
Since the basic idea behind the Reverse method is a simple reversal of a peptide's amino acid 
sequence, a decoy peptide spectral library constructed by this method will have identical amino 
acid occurrence frequencies, peptide lengths, precursor mass distributions, numbers of distinct 
peptide sequences, and modifications. A potential concern is that a decoy library may share some 
palindromic peptide sequences with a target library. However, the number of peptide 
palindromes encountered is very small. For example, in the human iTRAQ 4-plex labeled 
library, our largest collection with 390 009 distinct peptides, there were only 65 palindromic 
sequences (e.g. SLDLDISK). No measurable effect was found when these were deleted from the 
decoy library (data not shown). I and L are treated separately as any other amino acids in 
calculating their frequencies and in generating decoy amino acids according to their frequency 
distribution. The only times I and L are considered the same are when determining the 
distinctness of decoy sequences and whether a sequence is palindromic. A more significant 
concern is that peptides from proteins containing significant non-random distributions of amino 
acids will retain this non-random nature even after shuffling. To examine this idea, we defined a 
sequence uniqueness index (SUI) as the number of unique amino acids in a peptide divided by its 
length (the total number of amino acids). An SUI close to 0 suggests low complexity while an 
SUI close to 1 suggests few of the amino acids are repeated. Supplementary table 1 shows that a 
substantial fraction of peptides with low SUI values was found in the target and Reverse 
libraries, but significantly less in the Random library. It suggests that the Random method avoids 
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the problem of non-random distributions of amino acids inherent in the Reverse method, and 
therefore suppresses this variety of “homology”. 
 
Another way of comparing results of different methods is to find relative numbers of matches 
from the target versus decoy libraries at different ranks for target-decoy concatenated library 
searches. Results are shown in Fig. 2A for the top 10 hits using a large-scale label-free proteomic 
data set.23 We found that for the Reverse, Random, and Precursor-Swap methods, the average 
percent of decoy IDs were 48.4%, 45.3%, and 40.3% respectively from ranks 2 to 10 (rank 1 is 
heavily influenced by the fraction of search spectra found in the library). Also shown are results 
from Elias et al.10 for Sequest (an SDS method) using reversed protein sequences as the decoy 
and using a Jurkat cell digest as the test data. Our Reverse method closely matched their results. 
The lower value for the Random versus the Reverse method presumably reflects the elimination 
of sequence “homologies” (discussed in the next section), which, in effect, serves to lower scores 
for some identifications. The 99.4% precursor mass overlap shown in Fig. 3 and supplementary 
table 3 for 20 ppm tolerance suggests that this is not caused by a mismatch in precursor mass 
distributions. It was also found that decoy ratios for the Random method between 10 and 40 ppm 
were virtually the same. In any case, the actual effect on computed score thresholds and number 
of identifications at a fixed FDR level between Reverse and Random methods is rather small (see 
later). The low values (especially for ranks 1 to 3) for the Precursor-Swap method12 appear to 
originate from a mismatch of shifted precursor ion masses and un-shifted product ion masses that 
did not significantly affect results for low mass accuracy spectra. 
 
As detailed in the Methods section, a decoy peptide spectral library constructed by the Random 
method will have the same peptide length distribution and the same number of distinct peptide 
sequences (i.e. search space). A separate step ensures that there are no shared peptide sequences 
between the target and decoy libraries. Supplementary table 2 shows an example of amino-acid 
occurrence frequencies in non-C-terminal residues and in C-terminal residues of a target/decoy 
library pair together with the normalized frequencies of modifications associated with an amino 
acid. The amino-acid and modification frequencies were virtually identical. In addition, all three 
pairwise target/ranC comparisons for both non-C-terminal and C-terminal residues gave virtually 
the same amino-acid distributions (t-test’s p = 1 and correlation coefficient r > 0.9999). 
 
For the Random method to be reliable, derived decoy libraries should: (1) have precursor mass 
distributions similar to target libraries and (2) perform similarly to each other. To test point (1) 
we compared the precursor mass distributions of three random decoy libraries with that of their 
target label-free library. Fig. 3 shows a representative example of histograms for precursor 
masses in a 500 m/z to 500.5 m/z range with an m/z tolerance of 20 ppm. Results of an overall 
examination given in supplementary table 3 show that ≥51.4% of target precursor masses 
(rounded to 4 decimal digits) had exact matches in each of the decoy libraries (this generally 
means that the chemical formulas of the decoy and library peptides match), and ≥96.0%, 
≥98.4%, and ≥99.4% of target precursor masses were found in each decoy library with an m/z 
tolerance of 5, 10, and 20 ppm, respectively, indicating that all three decoy libraries had 
effectively identical distributions of precursor masses to the target library within the mass 
accuracy of a typical proteomic analysis. Furthermore, to test point (2) we compared the 
performance of these three random decoy libraries and found they performed equivalently in 
target-decoy SLS, which will be addressed later. 
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Testing the Reverse and Random Methods in Target-Decoy SLS 
 
The proposed methods in target-decoy SLS were tested using a selected subset of the HCD 
spectra for over 330 000 synthetic tryptic peptides made publicly available through PRIDE.1 We 
downloaded their first pool raw files and performed a target-decoy SDS with MSGF+. After 
passing our criteria for inclusion in a library and excluding short (<10 residues) and long (>25 
residues) sequences, 34 340 spectra (each representing a distinct peptide sequence; if a peptide 
ion had multiple PSMs, only its highest scoring spectrum was selected) were extracted and used 
as a test data set. These spectra were derived from different HCD energies (25, 30, and 35), 
covering a wide range of real-world experimental conditions. This makes them especially 
suitable for testing with our library, whose spectra were collected from different sources and 
conditions (labs, instruments, and energies). A subset (19 343) of these spectra (whose 
corresponding peptide sequences were found to be present in our human label-free spectral 
library) served as “in library” spectra (all expected to match). In Fig. 4A, we used these spectra 
as inputs to search against the original (target) library and its Reverse and Random decoys 
separately. The MSPepSearch score distribution from the target search was well separated from 
two decoy searches, as expected. The other 14 997 spectra whose sequences had no 
corresponding entries in our library served as “not in library” spectra (none expected to match). 
In Fig. 4B, results show that using these spectra as query spectra to search against the original 
(target) library and its Reverse and Random decoys separately, MSPepSearch score distributions 
from two decoy searches were highly similar to that from the target search, as well as from 
searches using ‘in library’ spectra searched against decoy libraries. 
 
While the Reverse and Random methods gave similar results (Fig. 4), as we further examined 
high scoring false hits, we found in Reverse method a high proportion of them were peptides 
with relatively few different amino acids – an extreme case was QQQQLQQQQQR that gave an 
SUI value as low as 0.27. We calculated the peptide SUI values of inputs (“in library” or “not in 
library” spectra as query spectra) for matches scored above 250 (Table 2), and noticed that 
target/Reverse searches had significantly more matches with SUI values of 0.1 to 0.5 than 
Random search had after normalization. In addition, this finding was reliable for the three 
different versions of Random decoys (RanC1, 2, and 3). The result suggests that a low-
complexity peptide spectrum has a higher chance of finding a homologous match in a library. 
This increased “homology matching” could partially explain the slightly higher score cutoff at a 
fixed FDR using a Reverse decoy than a Random one (also supported by Fig. 5 and 6, which will 
be discussed later). 
 
We also show, in Fig. 4A and 4B, score distributions for the Precursor-Swap method using 
synthetic peptide spectra that are present and absent, respectively, in the target library. Most 
notable is its significant lower scores, especially in the higher-score region. This is consistent 
with the findings shown in Fig. 2. 
 
We also determined decoy/target ratios broken down by rank for the 14 997 “not in library” 
synthetic peptide spectra (Fig. 2B). For ranks 1 to 10, ratios for the Reverse and Random 
methods varied from 46% to 48% and 43% to 45% respectively. The former closely matched 
published values by Lam et al.,13 obtained from the shuffle-and-reposition method based on low 
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resolution SLS. On the other hand, the Precursor-Swap method, which worked well for low mass 
accuracy spectra,12 gave poor results for this high mass accuracy test. Decoy ratios for the 
Random method were uniformly about 3% lower than for the Reverse method, consistent with 
experimental proteomic data results (Fig. 2A). 
 
Label-Free and iTRAQ 4-plex labeled Spectrum Searching 
 
To further examine Reverse and Random strategies for library identifications of high mass 
accuracy peptide spectra, we performed target-decoy searches using the NIST-developed 
comprehensive label-free peptide spectral library and iTRAQ 4-plex labeled peptide spectral 
library (peptide.nist.gov)17 with high-resolution Orbitrap HCD data acquired in large-scale 
studies. The results at 1% FDR cutoff were then compared with those obtained by the decoy-free 
PeptideProphet algorithm initially designed for SDS and later adapted for SLS.14,15 
 
We first used 605 113 label-free spectra from PRIDE18 (Table 1) as query spectra to search 
against the NIST-developed label-free spectral library (1 127 970 spectra, 320 824 distinct 
peptide sequences) and its decoys, comparing the thresholds and the number of IDs at 1% FDR 
with that of the decoy-free PeptideProphet algorithm. Fig. 5 shows that the numbers of IDs 
obtained from different methods at 1% FDR were very similar: (A) 331 373 IDs by 
PeptideProphet algorithm, (B) 328 512 IDs by Reverse method (0.86% less than A), (C) 334 940 
IDs by Random method, FixC (1.08% greater than A), (D) 334 951 IDs by Random method, 
RanC (1.08% greater than A). We further compared three different versions of the Random 
libraries (RanC1, 2 and 3) and obtained nearly identical IDs for each: (RanC1) 334 951 vs. 
(RanC2) 335 005 vs. (RanC3) 335 026. 
 
Since isobaric labeling alters the distribution of peak intensities by increasing the contribution 
from b-ions, presumably due to their stabilization by the tag, we separately examined FDR 
results for this class of spectra. We tested a set of iTRAQ 4-plex labeled query spectra (994 133) 
against the NIST human iTRAQ 4-plex labeled spectral library (1 201 632 spectra, 390 009 
distinct peptide sequences) and its decoys. Results are shown in Fig. 6. Again at 1% FDR, the 
numbers of IDs obtained from different methods were quite similar: (A) 304 468 IDs by 
PeptideProphet algorithm, (B) 306 227 IDs by Reverse method (0.58% greater than A), (C) 306 
368 IDs by Random method, FixC (0.62% greater than A), (D) 308 908 IDs by Random method, 
RanC (1.46% greater than A). 

In summary, using both labeled and unlabeled data sets, we found that Reverse and Random 
decoy libraries were suitable for FDR estimation using the target-decoy approach, and results 
were equivalent to those obtained by the decoy-free PeptideProphet algorithm. As discussed 
earlier for the synthetic peptide search results, cutoffs using the Random approach were slightly 
lower than that of using Reverse approach so that the number of IDs were slightly higher (1% to 
2% more IDs), presumably due to the removal of peptides with highly non-statistical amino acid 
occurrences.  
 
While it is customary to create decoy libraries of the same size as the target library, there is no 
inherent need for this, since the number of hits from a decoy library should scale linearly with its 
number of peptides. In fact, if libraries contain too few entries, FDR results could be quite 
unreliable. To examine the issue, we determined effects of library size on FDR estimation, for 

http://chemdata.nist.gov/dokuwiki/doku.php?id=peptidew:pepsoftware
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library subsets diminished in size by factors of two from 1/2 to 1/64 relative to the original label-
free library based on the number of peptides. We tested these new libraries for target-decoy SLS 
using the Random decoy method in triplicates with a test data set of 77 953 label-free spectra as 
input (Table 1). At 1% FDR, the results were highly reproducible for all library sizes tested (the 
variation in number of IDs was less than 3%). We conclude that for the number of search 
spectra, decoy libraries are significantly larger than required to produce reproducible results. We 
also note that Random libraries have an advantage over Reverse libraries in that there is no limit 
of their potential size. Each Random version will contain different sequences. In principle, 
making these libraries large enough, they could be even employed to estimate the false positive 
potential of an individual peptide spectrum. 
 
Comparing Spectral Library and Sequence Database Searching 

The proposed method for FDR measurement for high mass accuracy SLS enables the direct 
integration of SLS and SDS results and provides a basis for comparing differences in results. To 
make this comparison, a set of 77 953 label-free query spectra was used (Table 1) for SLS using 
MSPepSearch, and SDS using Sequest coupled to Percolator,19 which is a widely used post-
processing approach. At 1% FDR, MSPepSearch identified 35 095 PSMs and Sequest found 32 
696 PSMs or 7% fewer. Some 22% (7357 PSMs) of the latter IDs were not found by 
MSPepSearch. Of these, 90% were not represented in the library. If these were added, SLS 
would have made approximately 28% more IDs than SDS. We also compared the performance at 
both the 1% and 0.1% FDR level and found that at the higher level of confidence the relative 
performance of SLS improved further. To illustrate, Fig. 7 shows a scatter plot of library vs. 
Sequest scores for 31 464 common peptide ions identified by both search programs as rank 1 hits 
without any cutoffs. While Sequest scores were evenly distributed across the whole range, 
library scores were more concentrated in the upper score region. At 1% FDR, SDS identified 
only 139 (0.4% of 31 464) additional peptide ions, while SLS identified 5587 (18% of 31 464) 
more peptide ions than SDS. A decrease in the FDR level from 1% to 0.1% reduced the number 
of PSMs for SLS significantly less than for SDS (964 vs. 2229, respectively), showing that SLS 
on average identifies peptides more confidently than SDS. The percentage of SLS-identified-
only further increased to 23% at 0.1% FDR level. The situation is analogous to a scenario where 
the same amount of sample is injected into two mass spectrometers but a higher signal is 
observed in the instrument with a higher sensitivity. This observation demonstrates the additional 
advantage of SLS in validation studies where both high sensitivity and low error rate are 
required. Given the known variations in performance with search settings, spectra, and versions, 
we note that these results should not be taken as a true measure of the relative performance of 
SLS and SDS methods. We simply report our findings for one particular case to show how decoy 
libraries enable such comparisons. They do show that SLS can significantly increase the 
confidence of identification due, no doubt, to its smaller search space and use of product ion 
intensities leading to increased selectivity.  
 
Hybrid Mass Spectral Library Search with Decoy Spectral Libraries 
 
The present methods are applicable to the recently reported ‘Hybrid’ spectral search method for 
finding unexpected modifications.16 Similar to ultra-wide precursor tolerance search in SDS, 
hybrid SLS is an alternative search method allows the matching of both ions containing and not 
containing a modification present in only one of the peptides being compared. This search 
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method is available in NIST MSPepSearch and NIST MS Search (peptide.nist.gov). It can 
identify spectra for which the peptide ion is not in the spectral library but for which a peptide that 
differs by a single modification is in the library. Consequently, multiple high-scoring matches 
can potentially be made for a single query spectrum – a basic difference between this search and 
the traditional SLS. A representative fraction from the PRIDE test data set (Table 1) containing 
43 284 spectra was chosen for a hybrid SLS against the label-free target spectral library and 
either the corresponding Random (Fix C) or Reverse decoy spectral library. The resulting score 
thresholds corresponding to 1% FDR were 600 and 570 for the Reverse and Random decoy 
libraries, respectively. The lower score threshold observed for the Random decoy library 
corresponds to a gain of 11% of target library identifications compared to the Reverse decoy 
library, significantly greater than found for conventional searches, suggesting the hybrid search 
may be more influenced by sequence ‘homologies’ than the conventional search. The higher 
threshold scores presumably result from the fact that hybrid search permits both direct and loss 
peaks to match, resulting in more matching peaks and therefore higher scores. 
 
Conclusions 
 
The methods reported here for determining FDR values for high mass accuracy mass spectral 
library searching enable results of library searches to be directly integrated with those of more 
widely used sequence searching methods. The availability of a reliable means for estimating 
these values should encourage the use of SLS, which offers advantages in speed and sensitivity. 
The reliability of these methods was tested using synthetic peptide spectra available from a 
recent publication.1 These tests show that the Reverse and Random decoy library construction 
methods are both effective for FDR estimation, and results are consistent with the entirely 
unrelated method of Peptide-Prophet.14 We also showed that the Reverse method yields slightly 
higher score thresholds than the Random method presumably due to fewer homology matches in 
the latter. However, differences in these methods are rather small, leading to threshold scores at 
1% FDR for the Reverse method to be approximately 50 higher than for the Random method, 
which we find causes a slight reduction, typically 2%, in reported IDs. We also demonstrated 
that decoy libraries are effective in computing FDRs in the recently reported hybrid SLS method 
16 for identifying unexpected modifications. We point out the recently reported spectral libraries 
of synthesized1 peptides, which were used for testing, will also provide a boost in library 
coverage. However, at its current level of completeness, it is shown that SLS can yield more 
peptide identifications than SDS, especially at the highest levels of confidence. Furthermore, 
SLS performance would be expected to be further enhanced by the application of post-
processing methods, such as Percolator,19 which is commonly used to significantly increase SDS 
identification rates. 
 
SUPPORTING INFORMATION: 
 
Table S1. Comparison of the Sequence Uniqueness Index (SUI) in Label-free Target or Reverse 
Decoy Libraries Relative to Random Library 
 
Table S2. Amino Acid Distribution in non-C-terminal Residues and in C-terminal Residues of a 
Target Library (Human Label Free) and a Decoy Library (by Random Method) 
 

http://chemdata.nist.gov/dokuwiki/doku.php?id=peptidew:pepsoftware
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Table S3. Comparison of the Precursor Mass Distributions at Four Tolerances of Three Random 
Decoy Libraries with Their Target Label-free Library 
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Table 1. Description of Human Test Data Sets and Libraries (All derived from digestion 
with either Trypsin alone or with Lys-C and fragmented by beam-type collision-cell) 

Type Tag Instrument Spectra Source 
Expa Label-

free 
Q Exactive 605 113 PRIDE 

(PXD000695) 
Expa Label-

free 
Fusion 
Lumos 

77 953 NIST 

Expa iTRAQ
4-plex 

Q Exactive 994 133 CPTAC 

Libb Label-
free 

Q Exactive, 
LTQ 
Orbitrap 
Velos 

1 127 970 peptide.nist.gov 
(Sep 23, 2016) 

Libb iTRAQ 
4-plex 

Q Exactive, 
LTQ 
Orbitrap 
Velos 

1 201 632 peptide.nist.gov 
(Nov 26, 2014) 

aExperimental data set. 
bSpectral library. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://chemdata.nist.gov/dokuwiki/doku.php?id=peptidew:cdownload
http://chemdata.nist.gov/dokuwiki/doku.php?id=peptidew:cdownload
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Table 2. Numbers of False Positives Above Score 250 at Various SUI Levels for Reverse 
and Random Methods in Target-Decoy SLSa with Synthetic Peptide Search Spectra 

 Query Not in Library Query in Library 
SUI Target Rev RanC1 RanC2 RanC3 Rev RanC 
0.1-0.2 0 0 0 0 0 1 0 
0.2-0.3 0 0 0 0 0 1 0 
0.3-0.4 3 1 0 1 0 7 1 
0.4-0.5 23 14 6 7 6 18 5 
0.5-0.6 112 61 46 43 40 111 64 
0.6-0.7 175 97 63 59 80 181 111 
0.7-0.8 120 86 65 71 61 115 85 
0.8-0.9 68 41 27 26 29 62 41 
0.9-1 16 15 7 7 8 8 14 
Total 517 315 214 214 224 504 320 

aEither 14 997 synthetic peptide spectra not in library or 19 343 synthetic peptide spectra in library as query spectra 
for searching against the target/Reverse/RanC library. RanC1, 2, and 3 were three different versions of Random 
decoy libraries. 
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FIGURE LEGENDS 

Figure 1. Examples of Decoy Spectra Created by the Reverse and Random Methods. (A) The 
Reversed Method with FixC. A spectrum of the peptide ion AYTDELVELHR/2+ (upper panel, in 
red) has been reversed to create a decoy spectrum, HLEVLEDTYAR/2+ (lower panel, in blue). 
(B) The Random Method with RanC. A spectrum of peptide ion AYVLLGDDSFLER/2+ (upper 
panel, in red) has had both its non-C and C terminal residues randomly replaced to create a decoy 
spectrum of MFHAAHYTLNDIK/2+ (lower panel, in blue). The m/z of fragment ions are shifted 
accordingly with intensity unchanged. For clarity, only major peaks are labeled. Sequence and 
charge state are also labeled. 

Figure 2. Decoy Fraction vs. Rank. (A) The decoy fraction of top 10 identifications of 110 374 
HCD spectra from a proteomic data set.23 110 374 query spectra searched against concatenated 
target-decoy human HCD libraries (Reverse in yellow circle; Random in orange circle; 
Precursor-Swap in gray circle, and linked by solid lines). * Also shown are adapted results of 
Elias et al.10 using an SDS engine (Sequest) for a sequence reversal method (blue circle linked by 
dashed line). (B) The fraction of decoy hits for rank up to 10 of 14 997 not-in-library synthetic 
HCD peptide spectra1. 14 997 query spectra searched against concatenated target-decoy human 
HCD libraries (Reverse in yellow circle; Random in orange circle; Precursor-Swap in gray circle, 
for clarity ranks are linked by solid lines). ** Also shown are adapted results of Lam et al.13 
using a shuffle-and-reposition method based on low-resolution libraries and test data (blue circle 
linked by dashed line). 

Figure 3. Example of histograms for precursor mass overlapping. Precursor distribution 
histogram in target label-free library (Target: orange square, linked by orange line) in the 500 
m/z to 500.5 m/z range, with a mass tolerance of 20 ppm, vs. those of three decoy libraries 
generated by Random method (ranC1: gray triangle; ranC2: yellow cross; ranC3: blue circle, 
linked by blue line). 

Figure 4. Testing Target, Reverse, Random, and Precursor-Swap Libraries with Synthetic 
Peptide Spectra. Library search score distribution histograms (Target in blue; Reverse {rev} in 
yellow; Random {ranC} in orange; Precursor-Swap {swap} in gray) generated either with (A) 
in-library-spectra: 19 343 synthetic peptide spectra or (B) not-in-library spectra: 14 997 synthetic 
peptide spectra as query spectra. MSPepSearch scores are shown on the x-axis (bin=10) and 
frequency counts are shown on the y-axis. 

Figure 5. FDR vs. Score for four methods for label-free spectra. (A) Decoy-free PeptideProphet 
algorithm and three decoy methods: (B) Reverse; (C) Random FixC; (D) Random RanC. 605 
113 label-free HCD query spectra were used to search against the NIST label-free HCD spectral 
library (1 127 970 spectra, 320 824 distinct peptide sequences, peptide.nist.gov)17 and their 
decoys. 1% FDR thresholds are marked by an arrow. MSPepSearch scores are shown on the x-
axis and FDR values are shown on the y-axis in a log scale. Threshold scores and numbers of 
identifications (in parentheses) at the 1% FDR level are shown on each plot. 

Figure 6. FDR vs. Score for four methods for iTRAQ 4-plex labeled spectra. (A) Decoy-free 
PeptideProphet algorithm and three decoy methods: (B) Reverse; (C) Random FixC; (D) 

http://chemdata.nist.gov/dokuwiki/doku.php?id=peptidew:pepsoftware
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Random RanC. 994 133 iTRAQ 4-plex labeled HCD query spectra were used to search against 
the NIST iTRAQ 4-plex labeled HCD spectral library (1 201 632 spectra, 390 009 distinct 
peptide sequences, peptide.nist.gov)17 and their decoys. 1% FDR thresholds are marked by an 
arrow. MSPepSearch scores are shown on the x-axis and FDR values are shown on the y-axis in 
a log scale. Threshold scores and numbers of identifications (in parentheses) at the 1% FDR level 
are shown on each plot. 

Figure 7. A comparison of spectral library search (NIST MSPepSearch) with sequence database 
search (Sequest) scores. The library search and Sequest search were done with the same set of 77 
953 label-free query spectra. Only peptide ions contained in the library (31 464 peptide ions) 
were considered. Each blue dot represents a peptide ion. The x-axis represents Sequest scores 
and the y-axis represents library scores. 1% FDR (black solid line) and 0.1% FDR (dark red dash 
line) cutoff scores of SLS and SDS were determined individually. Total 1: # of PSMs identified 
by SLS at 1% FDR; Total 2: # of PSMs identified by SLS at 0.1% FDR; Total 3: # of PSMs 
identified by SDS at 1% FDR; Total 4: # of PSMs identified by SDS at 0.1% FDR. Total 1 – 
Total 2 = 964; Total 3 – Total 4 = 2229. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://chemdata.nist.gov/dokuwiki/doku.php?id=peptidew:pepsoftware
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Figure 1. Examples of Decoy Spectra Created by the Reverse and Random Methods 
 

(A)  Reverse 
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(B) Random 
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Figure 2. Decoy Fraction vs. Rank 
 

(A)  With Test HCD Spectra 
 

 
 

(B)  With “Not in Library” Synthetic HCD Spectra 
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Figure 3. Example of histograms for precursor mass overlapping 
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Figure 4. Testing Target, Reverse, Random, and Precursor-Swap Libraries with Synthetic 
Peptide Spectra 
 

(A)  With “In Library” Spectra 
 

 
(B)  With “Not in Library” Spectra 
 
 

 
 



24 
 

Figure 5. Label-free Spectra Searched against Label-free Spectral Library 
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Figure 6. iTRAQ 4-plex Labeled Spectra Searched against iTRAQ 4-plex Spectral Library 
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Figure 7. Comparison of Spectral Library Search and Sequence Database Search 
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Table S1: Comparison of the Sequence Uniqueness Index (SUI) in Label-free Target or Reverse Decoy Libraries 
Relative to Random Library

SUI target  or rev (#) target  or rev (%) ranC (#) ranC (%)
0.1-0.2 309 0.03 0 0.00
0.2-0.3 2,648 0.23 82 0.01
0.3-0.4 18,081 1.60 6,209 0.55
0.4-0.5 69,948 6.20 48,505 4.30
0.5-0.6 199,466 17.68 182,337 16.17
0.6-0.7 286,281 25.38 296,658 26.30
0.7-0.8 262,299 23.25 279,767 24.80
0.8-0.9 196,527 17.42 215,072 19.07
0.9-1 92,411 8.19 99,340 8.81
total 1,127,970 100 1,127,970         100 



Table S2: Amino Acid Distribution in non-C-terminal Residues and in C-terminal Residues of a Target Library (Human 
Label Free) and a Decoy Library (by Random Method)

AA*

#_Target %_Target #_Decoy %_Decoy #_Target %_Target #_Decoy %_Decoy

A 1,220,319 8.03 1,215,639 8.00 701 0.06 732 0.06
C 3213 0.02 3240 0.02 2 0.00 1 0.00
C (CAM) 206,436 1.36 206,543 1.36 523 0.05 473 0.04
D 1,010,987 6.65 1,009,284 6.64 1070 0.09 1065 0.09
E 1,455,284 9.58 1,458,374 9.60 984 0.09 967 0.09
F 593,252 3.90 591,183 3.89 2020 0.18 1939 0.17
G 1,072,914 7.06 1,070,270 7.04 1167 0.10 1193 0.11
H 417,912 2.75 415,223 2.73 6571 0.58 6382 0.57
I 788,279 5.19 789,448 5.19 786 0.07 896 0.08
K 281,458 1.85 282,586 1.86 587,092 52.05 585,270 51.89
L 1,595,704 10.50 1,596,433 10.51 1808 0.16 1626 0.14
M 210,485 1.39 211,891 1.39 424 0.04 453 0.04
M (O) 137,378 0.90 138,505 0.91 333 0.03 334 0.03
N 601,281 3.96 605,427 3.98 1516 0.13 1483 0.13
P 1,015,065 6.68 1,014,626 6.68 314 0.03 275 0.02
Q 792,739 5.22 790,466 5.20 826 0.07 886 0.08
R 137,673 0.91 137,329 0.90 517,338 45.86 519,544 46.06
S 1,097,697 7.22 1,100,658 7.24 769 0.07 671 0.06
T 861,850 5.67 861,894 5.67 486 0.04 515 0.05
V 1,094,413 7.20 1,093,668 7.20 1474 0.13 1417 0.13
W 137,872 0.91 137,245 0.90 126 0.01 176 0.02
Y 464,541 3.06 466,820 3.07 1640 0.15 1672 0.15
Total 15,196,752 100 15,196,752 100 1,127,970 100 1,127,970 100
*modifications were labeled as: C (CAM): Carbamidomethyl of C; M (O): Oxidation of M.

Non-C-Terminal C-Terminal



Table S3: Comparison of the Precursor Mass Distributions at Four Tolerances of Three Random Decoy Libraries with 
Their Target Label-free Library

m/z  Tolerance Target ranC1 ranC2 ranC3
0 ppm 1,127,970 580,267 (51.4%) 579,543 (51.4%) 579,790 (51.4%)
5 ppm 1,127,970 1,082,937 (96.0%) 1,083,440 (96.1%) 1,082,918 (96.0%)
10 ppm 1,127,970 1,109,521 (98.4%) 1,109,543 (98.4%) 1,109,599 (98.4%)
20 ppm 1,127,970 1,121,455 (99.4%) 1,121,598 (99.4%) 1,121,486 (99.4%)
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