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Ultracold bosons in optical lattices are one of the few systems where bosonic matter is known to
exhibit strong correlations. Here we push the frontier of our understanding of interacting bosons
in optical lattices by adding synthetic spin-orbit coupling, and show that new kinds of density-
and chiral-orders develop. The competition between the optical lattice period and the spin-orbit
coupling length – which can be made comparable in experiments – along with the spin hybridization
induced by a transverse field (i.e., Rabi coupling) and interparticle interactions create a rich variety
of quantum phases including uniform, non-uniform and phase-separated superfluids, as well as Mott
insulators. The spontaneous symmetry breaking phenomena at the transitions between them are
explained by a two-order-parameter Ginzburg-Landau model with multiparticle umklapp processes.
Finally, in order to characterize each phase, we calculated their experimentally measurable crystal
momentum distributions.

PACS numbers: 67.85.-d,67.85.Hj,67.85.Fg

The physics of spin-orbit coupling (SOC), which links
the spin and momentum degrees of freedom in quantum
particles, is ubiquitous in nature, ranging from the mi-
croscopic world of atoms, such as Hydrogen, to macro-
scopic solid materials, such as semiconductors. Recently,
the effects of SOC have been explored in condensed mat-
ter physics in connection with topological insulators [1],
as well as with topological superconductors [2], and su-
perconductors without inversion symmetry [3]. In these
naturally occurring systems, it is very difficult to con-
trol the magnitude of SOC and yet more difficult to
study correlated bosons. However it is now possible
to create controllable artificial SOC for trapped ultra-
cold fermionic and bosonic atoms [4–9], the physics of
which was recently analyzed theoretically in the contin-
uum limit [4, 10–13]. One of the emerging frontiers in this
broad area of physics is the interplay of the spin-orbit and
lattice characteristic lengths, which can be made compa-
rable in optical lattice systems, where additional contri-
butions from a Zeeman field and strong local interactions
also play an important role.

In this Letter, we obtain first the ground-state phase
diagrams for two-component (↑, ↓) bosons in the pres-
ence of artificial SOC, an effective Zeeman field (created
from Rabi coupling and detuning), and local interactions.
With zero detuning, we identify four phases: uniform,
non-uniform and phase-separated superfluids, along with
Mott insulating phases, depending on interactions. Sec-
ondly, we develop a Ginzburg-Landau theory for further
characterizing these phases. Lastly, we calculate their
crystal momentum distributions, which can be compared
with experiments.

To describe the quantum phases of two-component
bosons with SOC, we begin by introducing the indepen-

dent particle Hamiltonian

Ĥ0 =
∑

k

(

b̂†k↑ b̂†k↓

)

(

ǫk↑ − µ ~Ω/2
~Ω/2 ǫk↓ − µ

)(

b̂k↑
b̂k↓

)

(1)

in momentum space. Here, ǫks = −2t[cos(kx + skT ) +
cos ky + cos kz] + s~δ/2 for a three-dimensional (3D) op-
tical lattice and kT = (kT , 0, 0) is the SOC momen-
tum. The length scale 2π/kT is of the order of the op-
tical lattice spacing a, chosen to be one. The operator
b̂†ks describes a creation of s ∈ {↑, ↓} ≡ {+,−} boson
with momentum k. In addition, the chemical poten-
tial µ tunes the average particle density ρ = ρ↑ + ρ↓ ≡
∑

ks〈b̂
†
ksb̂ks〉/M withM being the number of lattice sites.

In cold-atom experiments, the effective Zeeman energy
Ω · F̂ with Ω = (Ω, 0, δ) and F̂ being the total angular
momentum operator for spin-1/2 has two parts: spin flips
through the Rabi frequency Ω and a Zeeman shift via the
detuning δ. The Hamiltonian above can be engineered in
the laboratory either through Raman processes [4, 5, 14]
or via radio-frequency chips [15, 16].

The diagonalization of Ĥ0 gives two energy branches

Ek± =

(

ǫk↑ + ǫk↓ − 2µ±
√

(ǫk↑ − ǫk↓)
2 + (~Ω)2

)

/2.

For δ = 0 and small ~Ω/t, the lower branch Ek− has
two degenerate minima at kx ≈ ±kT and ky = kz = 0.
The two minima approach as the Rabi frequency (spin-
hybridization) Ω is increased, and eventualy they col-
lapse into a single minimum at k = 0 when ~Ω/t ≥
4 sinkT tan kT . This double-minimum structure, the in-
troduction of a new length scale 1/kT and the interac-
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tions between particles

Ĥint =
1

2

∑

kq

∑

ss′

Uss′ b̂
†
ksb̂

†
k+qs′ b̂k−qs′ b̂ks (2)

provide additional contributions that are absent in the
standard spinless Bose-Hubbard system [17]. In this
work, we explore the special case where the same spin
repulsions Uss are nearly identical (U↑↑ ≈ U↓↓ = U), but
the opposite spin repulsion is different from U , that is,
U ≥ U↑↓ = U↓↑ ≥ 0. For instance, in the case of a mix-
ture of the mF = 0 (↓) and mF = −1 (↑) states from
the F = 1 manifold of 87Rb, these repulsions are nearly
identical (U↑↑ ≈ U↓↓ ≈ U↑↓) [18].
We begin our analysis of the quantum phases of

this complex system by investigating first the regime of
weak repulsive interactions. In the semi-classical regime
(U ≪ tρ), the bosonic fields b̂ks can be written as

b̂ks =
∑′

q

√
Mψqsδk=(q,0,0)+ âks, where

√
Mψqs and âks

describe the Bose-Einstein condensate (BEC) with mo-
mentum k = (q, 0, 0) and the residual bosons outside
the condensate, respectively. Considering the single and
double minima features of Ek− within the first Brillouin
zone, we allow for multiple BECs with different momenta
and take the sum

∑′
q to be over the set of possible mo-

menta {q} along the (kx, 0, 0) direction. The energy per
site of the condensates is

E0

M
=

′
∑

q

(

ψ∗
q↑ ψ∗

q↓
)

(

ǫk↑ − µ ~Ω/2
~Ω/2 ǫk↓ − µ

)(

ψq↑
ψq↓

)

+

′
∑

{qi}

[

U

2

∑

s

ψ∗
q1s
ψ∗
q2s
ψq3sψq4s + U↑↓ψ

∗
q1↑ψ

∗
q2↓ψq3↓ψq4↑

]

,(3)

where the sum
∑′

{qi} is over momenta qi satisfying mo-

mentum conservation q1 + q2 = q3 + q4 [mod 2π].
After minimization of Eq. (3) with respect to ψqs and

{q}, we find four different ground states as shown in
Fig. 1(a) for the weak-coupling regime with parameters
U = t/ρ, U↑↓ = 0.9U , and kT = 0.2π. In the superfluid
phases (SF±), the set of BEC momenta {q} consists of
a single value (q̄ > 0 in SF+ and −q̄ < 0 in SF−) since
the detuning δ tilts the single-particle spectrum and lifts
the degeneracy of the double minima in Ek−. In these
“single-q” states, the particle density is uniform, while
the phase of the condensate spatially varies with pitch
vector (±q̄, 0, 0). In the striped superfluid (ST) phase for
relatively small ~Ω/t, a BEC is formed with two different
momenta −q̄1 and q̄2 due to a double-minimum disper-
sion in Ek−. The interference of these two momenta leads
to a non-uniform density profile along the x direction,
resulting in a stripe pattern. Moreover, the scattering
process under momentum conservation q1 + q2 = q3 + q4
with q3 = q4 = −q̄1 and q2 = q̄2 (or vice-versa) gives rise
to a higher harmonic component with q1 = −2q̄1 − q̄2
(or q1 = q̄1+2q̄2). Similar processes generate higher har-
monics with interval q̄1+q̄2, thus making the set {q} have

FIG. 1: (color online). Ground-state properties in the weak-
coupling regime with U/t = 1/ρ and U↑↓ = 0.9U . (a) Phase
diagram of detuning δ versus Rabi frequency Ω for kT = 0.2π.
The thick red (thin black) curves denote first- (second-) order
transitions and the black dots indicate multicritical points. In
the δ > 0 (δ < 0) region to the left side of the dash-dotted
line, the SF− (SF+) exists only as a metastable state. (b)
Roton-like softening in the elementary excitations for quasi-
momentum k = (kx, 0, 0) and ~Ω/t = 0.4. We set ~δ/t = 0.4
(in SF+) for the dotted lines and ~δ/t = 0.06 (at the SF+-ST
boundary) for the solid lines. (c) The kT dependence of the
ground state when ρ↑ = ρ↓ (δ = 0). The yellow and darker
green regions limited by the black-dashed and red lines are
the CSF and period-locked ST phases illustrated in (e). (d)
The plateaux in q̄ of the CSF and period-locked ST phases as
a function of kT for ~Ω/t = 1.0. The dashed lines denote the
width of dominant plateaux with commensurate wavenumber
q̄. (e) Density (the size of dots) and chiral (the direction of
arrows) patterns in the commensurate phases.

a large number of different momenta −q̄1 + n(q̄1 + q̄2),
where n is an integer.

When ~Ω/t is large, the SF+ and SF− phases are con-
tinuously connected at δ = 0 through the conventional
superfluid (SF0) with zero-momentum BEC. However,
when ~Ω/t has intermediate values, a direct first-order
transition from SF+ to SF− takes place, and thus the
spin population difference ρ↓−ρ↑ exhibits a sudden jump
from positive to negative. Therefore, in the experimental
situation where the population of each spin is balanced
(ρ↓=ρ↑), the system is unstable against spatial phase sep-
aration (PS) of spin-down-rich SF+ and spin-up-rich SF−
states.
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The quadratic part of the Hamiltonian in terms of âks,

ĤB =
∑

k â
†
kH

(2)
k âk, is a generalized Bogoliubov Hamil-

tonian and includes quantum fluctuations outside the
condensate perturbatively. We diagonalize ĤB numeri-
cally via a generalized Bogoliubov transformation [1, 20],
and obtain the spectrum of elementary excitations. In
Fig. 1(b) we show typical excitation spectra of the SF+

states. We can see a roton-like minimum at a finite quasi-
momentum with the excitation energy approaching zero
as the detuning δ is decreased (increased) as we move
from the SF+ (SF−) phase towards the ST phase. The
transition from SF+ (or SF−) to ST is induced by the
softening of the roton-like minimum, similar to the stan-
dard superfluid-supersolid transition [21]. The momen-
tum of the roton-like excitations largely determines the
characteristic reciprocal vector q̄1 + q̄2 of the ST state
resulting from the phase transition. Furthermore, the
transition from SF+ or SF− to the ST phase can also
be first order as indicated by the red solid line shown in
Fig. 1(a). In this case, the energy gap of roton-like ex-
citations jumps discontinuously to zero at the SF±/ST
boundary.
The weak coupling phase diagram shown in Fig. 1(a)

reveals ground states which are very similar to those in
the continuum limit [4, 10–13], where the band structure
due to the optical lattice is not important. However,
the phase diagram of SOC momentum kT /π versus ~Ω/t
at ρ↓=ρ↑, shown in Fig. 1(c), illustrates the remarkable
competition between the intrinsic reciprocal vector of the
underlying optical lattice and characteristic vector q̄1+q̄2
of the ST phase. In the spin symmetric case (ρ↑ = ρ↓),
the two wavevectors q̄1 and q̄2 are equal, that is, q̄1 =
q̄2 ≡ q̄ leading to q̄1 + q̄2 = 2q̄. The phase diagram of
kT /π versus ~Ω/t in the range of kT = π to 2π is exactly
the same as that of Fig. 1(c) since the lattice Hamiltonian
Ĥ0 + Ĥint is invariant under the gauge tranformation
b̂ks → b̂k+(π,0,0)s, as easily verified by direct substitution.
In Fig. 1(d), when kT is nearly commensurate to the

lattice reciprocal wavenumber 2π, such as kT ≈ π/4,
2π/3, and π/2, the pitch vector q̄ of the ST state sponta-
neously takes an exact commensurate value over a finite
range of kT . As a result, the curve of q̄/π versus kT /π ex-
hibits multiple plateaux in the ST phase. This effect can
be attributed to umklapp processes q1+q2−q3−q4 = 2πn
with nonzero integer n that contribute to lower the en-
ergy of the system. In particular, when kT ≈ π/2,
BEC occurs with only two momenta ±q̄ = ±π/2 since
all the higher-harmonics momenta are reduced to ±π/2
due to the Brillouin zone periodicity. In this special
case where q̄/π = 1/2, the interference of the two mo-
menta does not lead to striped density pattern, but to
Z2 chiral symmetry breaking. This state is analogous
to the chiral superfluid (CSF) state, which has been dis-
cussed in Bose-Hubbard ladders [22–25]. In the present
case, the 3D lattices for the two spin components and
the Rabi couplings play the role of rails and rungs, re-

FIG. 2: (color online). Ground-state phase diagrams in the
(t/U ,µ/U) plane, obtained by the Gutzwiller self-consistent
calculations for different values of ~Ω/t. We set the other
parameters as U↑↓ = 0.9U , kT = 0.2π, and ρ↑ = ρ↓ (δ = 0).

spectively, of a synthetic “two-leg ladder” in four (three
spatial plus one extra spin) dimensions as illustrated in
Fig. 1(e). For other commensurate ST phases, where
q̄/π takes an irreducible fraction ζ/η with ζ and η be-
ing integers, the superfluid phases break Zη symmetry,
but preserve a stripe pattern in the atom density. The
stabilization of these commensurate phases is a specific
feature of spin-orbit coupled systems in optical lattices
with interactions and are completely absent in interacting
continuum systems. Had we illustrated all the possible
commensurate/incommensurate transitions in Fig. 1(d),
the graph of q̄/π versus kT /π would have had an infinite
number of steps at rational values of q̄/π, producing a
mathematical function known as the Devil’s staircase.

In addition to the interplay between different
length/momentum scales discussed above in the weak
coupling regime, another particular feature of lattice sys-
tems is the existence of Mott insulator (MI) phases in-
duced by strong interactions and commensurate particle
fillings. To describe the Mott physics in the presence
of SOC and Zeeman fields, we employ the Gutzwiller
variational method [20]. Under the assumption that
the ground state is given by a direct product state in
real space, the Hamiltonian can be mapped into an ef-
fective single-site problem with variational mean fields
ψis ≡ 〈b̂is〉, where b̂is is the annihilation operator of spin-
s boson at lattice site i. To deal with the ST phases,
we solve simultaneously all inequivalent single-site prob-
lems connected via mean fields due to the nonuniformity.
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Here, we consider up to 2× 103 mean fields ψis along the
x direction for each spin and thus the momentum resolu-
tion is δkx ∼ 0.001π [20], while the y and z directions are
assumed to be uniform. In the ST phase, the inhomoge-
neous state is a result of the length scale introduced by
the SOC, while in the absence of SOC a new length scale
leading to a supersolid state appears due to long-range
interactions [26].

Figure 2 shows phase diagrams in the µ/U -t/U plane
for several values of the Rabi frequency Ω in the spin sym-
metric case ρ↑ = ρ↓ (δ = 0). In Fig. 2(a), where there is
no hybridization of the two spin components (~Ω/t = 0),
the phase boundaries of the MI lobes are identical to
those in the absence of SOC [27] since the gauge transfor-

mation b̂ks → b̂k+skT s eliminates the momentum transfer
kT from the problem. The even-filling Mott transitions
become first order in a two-component Bose-Hubbard
model for large inter-component repulsions (for exam-
ple, U↑↓ & 0.68U when ρ = 2) [27–30]. In the superfluid
phase outside the Mott lobes for kT 6= 0, the spin-down
and spin-up bosons independently form the SF+ state
with q̄ = kT and SF− with −q̄ = −kT , respectively.
The phase diagrams displayed in Figs. 2(b-d), illustrate

the effects of increasing ~Ω. When the Rabi frequency Ω
is non-vanishing, the two spin components mix, forming
a nonuniform ST state with two opposite momenta −q̄
and q̄ and their associated higher harmonics, analogous
to the stripe phase in continuum systems. Figure 2(b)
shows that the transition from the odd-filling MI to the
ST phase occurs via an intermediate SF0 state. A direct
transition to the ST state occurs only for very small ~Ω/t
(not shown: ~Ω/t . 0.04 for ρ = 1). As seen in Figs. 2(c-
d), when the value of ~Ω/t is increased, the SF0 phase
also emerges near the tip of the ρ = 2 MI lobe, and
eventually joins other SF0 regions. The SF+ and SF−
states only phase separate for small fillings ρ . 1 and a
very narrow region around the ρ = 2 MI lobe for large
~Ω/t.

To see the interplay between local correlations and
spin mixing, we plot in Figs. 3(a-c) phase diagrams of
U/t versus ~Ω/t for fixed density ρ = 2. As shown in
Fig. 3(a), large spin hybridization Ω mixes the two spin
components, and destabilizes the ST state. As seen in
Figs. 3(b-c) the transition between the MI and ST state
is discontinuous (first-order) for any ~Ω/t when opposite
spin repulsion U↑↓/U is large, but for small U↑↓/U , the
transition is continuous. In order to clarify this effect, we
develop next a Ginzburg-Landau theory.

The nature of the superfluid-insulator transition when
ρ↑ = ρ↓ can be described by the Ginzburg-Landau energy

EGL

M
= ξ(k)

(

Φ2
I +Φ2

II

)

+
Γ1

2

(

Φ4
I +Φ4

II

)

+ Γ2Φ
2
IΦ

2
II (4)

up to fourth order of the order parameters ΦI = |Φq̄| and
ΦII = |Φ−q̄|, which describe the BEC with k = (±q̄, 0, 0).

FIG. 3: (color online). Nonuniform superfluid-insulator tran-
sitions at ρ = 2 for (a) U↑↓ = 0.9U and (b) U↑↓ = 0.2U . We
set kT = 0.2π and ρ↑ = ρ↓ (δ = 0). The vertical dashed
line in (a) marks ~Ω/t = 0.72. The enlarged view of the re-
gion indicated by the dashed box in (b) is shown in (c). The
fourth-order Ginzburg-Landau coefficients and the value of q̄
along the MI transition line of (c) are plotted in (d).

Note that the higher harmonics are negligible in the vicin-
ity of the transition. The value of q̄ is determined so
that the function ξ(k) attains its minimum value −µ̄ at
k = (±q̄, 0, 0). When µ̄ > 0, the bosons condense at q̄
and/or −q̄ with q̄ 6= 0, or simply at q̄ = 0. For Γ1 < Γ2,
the minimization of Eq. (4) gives |Φq̄| 6= 0 and |Φ−q̄| = 0
(or vice-versa), and thus the Z2 symmetry related to q̄ or
−q̄ is broken. In this case, the transition from MI to PS
takes place. On the other hand, the condition Γ1 > Γ2

gives |Φq̄| = |Φ−q̄| ≡ Φ 6= 0, resulting in the transition to
the ST or CSF phase. When q̄/π is an irreducible frac-
tion ζ/η, the relative phase φ = Arg(Φq̄/Φ−q̄) is deter-
mined by the minimization of additional η-particle umk-
lapp process, Γ ′

η((Φ
∗
q̄)

η(Φ−q̄)
η + (Φ∗

−q̄)
η(Φq̄)

η) ∝ cos ηφ,
which still has η-fold degeneracy. Thus the ST transition
is associated with U(1) × Zη symmetry breaking about
the global and relative phases of Φ±q̄.

The coefficients ξ(q), Γ1, Γ2 and Γ
′
η are related to the

microscopic system parameters in the original Hamilto-
nian by performing a perturbative expansion based on
a direct-product MI state. For the specific relations see
supplemental material [20]. We show in Fig. 3(d) the
values of Γ1 and Γ2 along the line that separates the MI
phase from the others as seen in Fig. 3(c). Note that
if Γ1 < 0 for Γ1 < Γ2 or Γ1 + Γ2 < 0 for Γ1 > Γ2,
the condensates have a negative compressibility, and the
transition becomes first-order.

To assist in the experimental identification of these
quantum phases, Fig. 4 shows the crystal momentum
distribution 〈b̂†ksb̂ks〉 at fixed density ρ↑ = ρ↓ = 1.

For the PS and ST states, we evaluate 〈b̂†ksb̂ks〉 via the

Bogoliubov Hamiltonian ĤB at relatively weak inter-
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FIG. 4: (color online). The crystal momentum distributions

〈b̂†
ks
b̂ks〉 (k = (kx, 0, 0)) of the four different states along the

line of ~Ω/t = 0.72 in Fig. 3(a) (at U/t = 0.5, 1.5, 30, and
44). The contribution from SF+ (SF−) in the PS phase is
plotted by the solid (dashed) lines.

actions. However, for the SF0 and MI states, we cal-
culate 〈b̂†ksb̂ks〉 via a generalized Holstein-Primakoff ap-
proach [20] based on the Gutzwiller variational state de-
scribing the strongly coupled regime. Since the PS state
consists of independent domains of SF+ and SF−, we plot
the simple average of the two contributions. The crystal
momentum distribution discussed here does not include
the effects of Wannier functions, but can be easily ex-
tracted from standard momentum distribution measure-
ments.

As seen in Figs. 4, the momentum distribution of
the PS state exhibits two independent peaks around
k = (q̄, 0, 0) and k = (−q̄, 0, 0), which come from the
SF+ and SF− contributions, respectively, while the ST
state shows additional peaks due to the higher harmon-
ics. The SF0 state exhibits a peak around k = 0 as in
the case of a standard uniform superfluid state, although
the reflectional symmetry with respect to kx → −kx is
absent for each spin component. In the MI state, only a
broad peak is observed at the momenta where the con-
densation occurs in the neighboring superfluid state. The
stark differences between these crystal momentum dis-
tributions also enable the direct imaging of the different
phases present in inhomogeneous trapped systems.

In summary, we investigated the quantum phases of
two-component bosons in optical lattices as a function
of spin-orbit coupling, Rabi frequencies and interactions.
In phase diagrams at zero detuning, we identified four
different regions occupied by uniform, non-uniform and
phase-separated superfluids or Mott insulators. Finally,
we characterized these phases by calculating their crystal
momentum distributions, which can be easily measured
experimentally.
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[4] Y.-J. Lin, K. Jiménez-Garćıa, and I. B. Spielman, Nature
471, 83 (2011).

[5] J.-Y. Zhang, S.-C. Ji, Z. Chen, L. Zhang, Z.-D. Du, B.
Yan, G.-S. Pan, B. Zhao, Y.-J. Deng, H. Zhai, S. Chen,
and J.-W. Pan, Phys. Rev. Lett. 109, 115301 (2012).

[6] P. Wang, Z.-Q. Yu, Z. Fu, J. Miao, L. Huang, S. Chai, H.
Zhai, and J. Zhang, Phys. Rev. Lett. 109, 095301 (2012).

[7] L. W. Cheuk, A. T. Sommer, Z. Hadzibabic, T. Yefsah,
W. S. Bakr, and M. W. Zwierlein, Phys. Rev. Lett. 109,
095302 (2012).

[8] H. Zhai, Int. J. Mod. Phys. B, 26, 1230001 (2012); V.
Galitski and I. B. Spielman, Nature 494, 49 (2013).

[9] J.-R. Li, Jeongwon Lee, W. Huang, S. Burchesky, B.
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Supplementary Material for “Quantum Phases of Two-Component Bosons with Spin-Orbit Coupling in

Optical Lattices”

In this Supplementary Material, we provide more technical details on the theoretical treatment of the two-component
Bose-Hubbard model with spin-orbit coupling in the frameworks of (I) the Bogoliubov approach and (II) the Gutzwiller
theory.

I. BOGOLIUBOV APPROACH

We use the Bogoliubov approach to provide a mean-field description of Bose-Einstein condensates (BECs), and to
construct a systematic expansion in quantum fluctuations around the mean field. Under the assumption of multiple
BECs with different momenta, the bosonic fields b̂ks can be separated in the form:

b̂ks =
′
∑

q

√
Mψqsδk=(q,0,0) + âks, (S1)

where
√
Mψqs and âks describe condensates with momentum k = (q, 0, 0) and the residual bosons outside the

condensates, respectively. Here, M is the number of lattice sites and the sum
∑′

q runs over a set of momenta {q}
of multiple BECs. For U ≪ tρ, i.e., when the particle density is very high or the interactions between particles are
much weaker than the hopping amplitude, we can treat the fluctuations âks in a perturbative fashion, and expand
the Hamiltonian Ĥ = Ĥ0 + Ĥint into a power series of âks.

A. Mean-field theory

The lowest-order terms, which involve no fluctuation operators, describe the energy of the condensates:

E0

M
=

′
∑

q

(

ψ∗
q↑ ψ∗

q↓
)

(

ǫq↑ − µ Ω
Ω ǫq↓ − µ

)(

ψq↑
ψq↓

)

+

′
∑

q1,q2,q3,q4

δ
(2π)
q1+q2,q3+q4

[

U

2

∑

s

ψ∗
q1s
ψ∗
q2s
ψq3sψq4s + U↑↓ψ

∗
q1↑ψ

∗
q2↓ψq3↓ψq4↑

]

, (S2)

where q ≡ (q, 0, 0) and the Kronecker delta implements momentum conservation (modulo 2π). The particle density

ρ ≡ 1
M

∑

ks〈b̂
†
ksb̂ks〉 is given by

∑′
q

∑

s |ψqs|2 at the lowest-order approximation. The minimization of E0 with respect
to ψqs leads to the following time-independent Gross-Pitaevskii equation for the mean-field condensate configuration
in the momentum space:

(ǫqs − µ)ψqs +Ωψqs̄ +

′
∑

q2,q3,q4

δ
(2π)
q+q2,q3+q4

[

Uψ∗
q2s
ψq3sψq4s + U↑↓ψ

∗
q2 s̄
ψq3 s̄ψq4s

]

= 0 (for q ∈ {q}, s =↑, ↓). (S3)

Here s̄ = −s.
When the set of condensate momenta {q} consists of only a single value q̄ corresponding, for example to phases

SF± and SF0 defined in the main text), the Gross-Pitaevskii equation is reduced to the simple form

(

ǫq̄↑ − µ+ U |ψq̄↑|2 + U↑↓|ψq̄↓|2 Ω
Ω ǫq̄↑ − µ+ U |ψq̄↓|2 + U↑↓|ψq̄↓|2

)(

ψq̄↑
ψq̄↓

)

= 0. (S4)

We solve the set of self-consistent equations (S4) using the Newton-Raphson method under the constraint
∑

s |ψq̄s|2 =
ρ. At the same time, the condensate momentum q̄ has to be determined such that the energy (S2) is also minimized
with respect to q̄.
In the striped superfluid (ST) phase, the condensates with two different momenta −q̄1 ≡ (−q̄1, 0, 0) and q̄2 ≡

(q̄2, 0, 0) coexist, and higher harmonics are generated at an interval of q̄1 + q̄2 due to scattering processes induced
by interactions U and U↑↓. Therefore, the set of condensate momenta {q} consists of multiple components given by
−q̄1 + n(q̄1 + q̄2) where n is an integer. When (q̄1 + q̄2)/2π is an irreducible fraction in the form ζ/η, the number of
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independent momenta in {q} remains finite (= η) since the momenta that lie outside the first Brillouin zone (−π ≤
kx < π) can be reduced to equivalent ones located inside the first zone by suitable addition or subtraction of a reciprocal
lattice vector. In this case, the integer n varies in the range from nmin to nmax with (nmin, nmax) = (−η/2+1, η/2) for
even η and (nmin, nmax) = (−(η − 1)/2, (η − 1)/2) for odd η. Therefore, Eq. (S3) becomes a set of 2η self-consistent
equations, which must be solved with the density sum rule

∑′
q

∑

s |ψqs|2 = ρ and the minimization of the condensate
energy (S2) with respect to the values of the fundamental momenta q̄1 and q̄2. If η is very large or (q̄1 + q̄2)/2π is
irrational (i.e. η ≫ 1), we need to introduce a large number of variables ψqs (q ∈ {q}) to solve Eq. (S3). In practical
calculations, we truncate our system at very high harmonic components and keep a finite number of condensate mean
fields to obtain well-converged energies. Note that for zero detuning δ = 0, the pseudospin symmetry of the system
leads to q̄1 = q̄2 ≡ q̄.

B. Excitation spectra and momentum distribution

The terms involving a single fluctuation operator âks (or â†ks) vanish when the solution of Eq. (S3) is substituted
into ψqs. Therefore, the first correction to the mean-field theory arises from the quadratic terms

∑

k

(

â†
k↑ â†

k↓

)

(

ǫk↑ − µ Ω
Ω ǫk↓ − µ

)(

âk↑
âk↓

)

+
1

2

′
∑

q1,q2

∑

k1,k2

[

δ
(2π)
k1x+q1,k2x+q2

δk1y ,k2y
δk1z ,k2z

∑

s

(

4Uψ∗
q1s
ψq2sâ

†
k1s
âk2s + 2U↑↓(ψ

∗
q1s
ψq2s̄â

†
k1s̄
âk2s + ψ∗

q1s
ψq2sâ

†
k1s̄
âk2s̄)

)

+δ
(2π)
k1x−q1,q2−k2x

δk1y,−k2y
δk1z ,−k2z

(

U
∑

s

ψ∗
q1s
ψ∗
q2s
âk1sâk2s + 2U↑↓ψ

∗
q1↑ψ

∗
q2↓âk1↓âk2↑ +H.c.

)

]

, (S5)

which can be rewritten in a simpler form:

1

2

∑

k

(â†
k (â−k)

T )

(

Ak Bk

B
∗
−k A

∗
−k

)(

âk

(â†
−k)

T

)

− 1

2

∑

k

Tr
(

A
∗
−k

)

. (S6)

For the SF± or SF0 phases with a single condensate momentum q̄ = (q̄, 0, 0), the column vector âk and the matrices
Ak,Bk are given by âk = (âq̄+k↑, âq̄+k↓)T and

Ak =

(

ǫq̄+k↑ − µ+ 2U |ψq̄↑|2 + U↑↓|ψq̄↓|2 Ω+ U↑↓ψ∗
q̄↓ψq̄↑

Ω + U↑↓ψ∗
q̄↑ψq̄↓ ǫq̄+k↓ − µ+ 2U |ψq̄↓|2 + U↑↓|ψq̄↑|2

)

, Bk =

(

Uψ2
q̄↑ U↑↓ψq̄↓ψq̄↑

U↑↓ψq̄↑ψq̄↓ Uψ2
q̄↓

)

.

For the striped superfluid (ST) phase in which (q̄1 + q̄2)/2π is a rational number ζ/η, the column vector âk consists
of 2η components:

âk = (â−q̄1+nmin(q̄1+q̄2)+k↑, · · · , â−q̄1+n(q̄1+q̄2)+k↑, â−q̄1+n(q̄1+q̄2)+k↓, · · · , â−q̄1+nmax(q̄1+q̄2)+k↓)
T

with integers n ∈ [nmin, nmax]. The 2η × 2η matrices Ak and Bk are given by

Ak =

















Ānmin,nmin
· · · Ānmin,n · · · Ānmin,nmax

...
. . .

... . .
. ...

Ān,nmin
· · · Ān,n · · · Ān,nmax

... . .
. ...

. . .
...

Ānmax,nmin
· · · Ānmax,n · · · Ānmax,nmax

















and Bk =

















B̄nminnmin
· · · B̄nmin,n · · · B̄nmin,nmax

...
. . .

... . .
. ...

B̄n,nmin
· · · B̄n,n · · · B̄n,nmax

... . .
. ...

. . .
...

B̄nmax,nmin
· · · B̄nmax,n · · · B̄nmax,nmax

















with

Ān,n′ ≡
(

ǫ−q̄1+n(q̄1+q̄2)+k↑ − µ Ω
Ω ǫ−q̄1+n(q̄1+q̄2)+k↓ − µ

)

δn,n′

+

′
∑

q,q′

δ
(2π)
q−q′,−(n−n′)(q̄1+q̄2)

(

2Uψ∗
q↑ψq′↑ + U↑↓ψ∗

q↓ψq′↓ U↑↓ψ∗
q↓ψq′↑

U↑↓ψ∗
q↑ψq′↓ 2Uψ∗

q↓ψq′↓ + U↑↓ψ∗
q↑ψq′↑

)

and

B̄n,n′ ≡
′
∑

q,q′

δ
(2π)
q+q′+2q̄1,(n+n′)(q̄1+q̄2)

(

Uψq↑ψq′↑ U↑↓ψq↓ψq′↑
U↑↓ψq↑ψq′↓ Uψq↓ψq′↓

)

.



9

Note again that when η is very large or (q̄1 + q̄2)/2π is irrational, we truncate the higher harmonic components that
give no meaningful contribution to the result.
The operator part of Eq. (S6) can be numerically diagonalized by the generalized Bogoliubov transformation

(â†
k (â−k)

T ) = (α̂†
k (α̂−k)

T )P†
k with a paraunitary matrix Pk [1] as

1

2

∑

k

(α̂†
k (α̂−k)

T )Pk

(

Ak B

B
∗

A
∗
−k

)

P
†
k

(

α̂k

(α̂†
−k)

T

)

=
1

2

∑

k

(α̂†
k (α̂−k)

T )

(

ωk 0

0 ω−k

)(

α̂k

(α̂†
−k)

T

)

=
∑

k

α̂
†
kωkα̂k +

1

2

∑

k

Tr (ω−k) , (S7)

where ωk is a diagonal matrix and 0 is the null matrix. The paraunitary matrix Pk satisfies the relations

(

Ak Bk

B
∗
−k A

∗
−k

)

Pk = ΣPk

(

ωk 0

0 −ω−k

)

, P†
kΣPk = Σ, and PkΣP

†
k = Σ, (S8)

where Σ is the diagonal matrix of dimensions 2η×2η, whose diagonal elements are 1 for the upper-half and −1 for the
lower-half entries. The latter two conditions are required such that the transformed operators α̂k still obey bosonic
commutation relations.

The elements of the diagonal matrix ωk give the excitation spectra of the Bogoliubov quasiparticles. Moreover,
using the transformation coefficients Pk and the relation 〈α̂kα̂

†
k
〉 = 1 (at zero temperature) with 1 denoting the

identity matrix, one can evaluate the fluctuation part 〈â†ksâks〉 of the momentum distribution

〈b̂†ksb̂ks〉 =M

′
∑

q

|ψqs|2δk=q + 〈â†ksâks〉. (S9)

Now that we have discussed the technical details of the regime where the particle density is high or the interaction
energy is much smaller than the hopping, we are ready to discuss next the opposite regime, where the Gutzwiller
theory is a more suitable approach.

II. GUTZWILLER THEORY

The Hamiltonian Ĥ = Ĥ0 + Ĥint considered in the main text is written in real space as

Ĥ0 = −
∑

ijs

tsij b̂
†
isb̂js +Ω

∑

i

(

b̂†i↑b̂i↓ + b̂†i↓b̂i↑
)

+ δ
∑

i

(n̂i↑ − n̂i↓)− µ
∑

is

n̂is, (S10)

Ĥint =
U

2

∑

is

n̂is(n̂is − 1) + U↑↓
∑

i

n̂i↑n̂i↓, (S11)

where n̂is = b̂†isb̂is. The hopping term depends on the spin state s = + (↑) or − (↓) as

tsij =

{

teiskT ·(rj−ri) (|rj − ri)| = 1)
0 (otherwise)

, (S12)

where kT = (kT , 0, 0) is the momentum transfer and ri = (xi, yi, zi) is the three dimensional coordinate at lattice site
i, with lattice constant set to be 1.

In order to describe Mott insulator (MI) transitions at strong interactions, we need to keep all onsite terms of the
Hamiltonian defined in Eqs. (S10) and (S11), but we can decouple the hopping term as

−
∑

ijs

tsij b̂
†
isb̂js ≈ −

∑

ijs

(

tsjiψ
∗
js b̂is + tsijψjs b̂

†
is − tsijψ

∗
isψjs

)

, (S13)

where ψis ≡ 〈b̂is〉 are Gutzwiller-type variational fields. This approximation is equivalent to approximating the
ground-state wavefunction by a direct product state in real space. The Gutzwiller fields play the role of order
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parameter for superfluid states. The total Hamiltonian of the system becomes a sum of effective local Hamiltonians:

Ĥ ≈∑i

(

ĥGW
i +

∑

js t
s
ijψ

∗
isψjs

)

with

ĥGW
i = −

∑

js

(

tsjiψ
∗
jsb̂is + tsijψjsb̂

†
is

)

− µ (n̂i↑ + n̂i↓) + Ω(b̂†i↑b̂i↓ + b̂†i↓b̂i↑)

+
U

2
(n̂i↑(n̂i↑ − 1) + n̂i↓(n̂i↓ − 1)) + U↑↓n̂i↑n̂i↓. (S14)

Next, we analyze in detail the Gutzwiller ground state.

A. Gutzwiller ground state

The effective local Hamiltonian ĥGW
i is now given only in terms of local operators b̂is and n̂is at site i. Nevertheless,

the local Hamiltonians are still coupled with each other since the coefficients contain the Gutzwiller variational fields
ψjs of the neighboring sites. The value of ψis at each site i must be determined self-consistently from the condition

ψis = 〈b̂is〉 in the ground state of the local Hamiltonian ĥGW
i .

For the SF± or SF0 phases, the mean fields have the form

ψis = ψq̄se
iq̄xi (S15)

with a single condensate momentum q̄ = (q̄, 0, 0). Therefore, under the gauge transformation b̃is ≡ b̂ise
−iq̄xi the

hopping part of the effective Hamiltonian can be rewritten as

−2t (cos(skT + q̄) + 2)
(

ψ∗
q̄sb̃is + ψq̄sb̃

†
is

)

. (S16)

The remaining part of ĥGW
i keeps its original form since the phase factor eiq̄xi is cancelled out. In the tilde repre-

sentation, the coefficients of the operators become all site-independent, and thus the effective local Hamiltonians at
different sites are now completely decoupled and equivalent.
In order to obtain the values of the Gutzwiller fields ψq̄s, we need to carry out a self-consistent calculation

at a single site i. For this purpose, we use the following procedure: (i) start with certain initial values for

ψq̄↑ and ψq̄↓; (ii) express ĥGW
i in the tilde representation as a matrix h

GW
i in the two-component Fock basis

|n↑, n↓〉 = |0, 0〉, |1, 0〉, |0, 1〉, |2, 0〉, |1, 1〉, |0, 2〉, · · · , where ns is the occupation number of each pseudospin; (iii) nu-

merically diagonalize h
GW
i and evaluate the expectation values 〈b̃is〉 in the lowest eigenstate; (iv) update ψq̄s with

〈b̃is〉; (v) repeat (ii-iv) until self-consistency is reached.
In (ii) and (iii), we make a restriction on n↑ and n↓ to a maximum occupation of 12 throughout the present work

in order to truncate the infinite Hilbert space of bosons. The matrix h
GW
i is diagonalized with a unitary matrix R

giving

R
†
h
GW
i R =











ǫ0
ǫ1

. . .

ǫntr











(S17)

where we choose R such that the eigenvalues ǫ0, ǫ1, · · · ǫntr
are sorted in ascending order. The number of excited

states ntr depends on the truncation of the local Hilbert space. The expectation values 〈b̃is〉 are given by [R†
b̃isR]11

with b̃is being the matrix representation of b̃is. We repeat the diagonalization procedure (ii-iv) until the difference
between the input and output values of ψq̄s becomes negligible. To accelerate the convergence, we employ the
Newton-Raphson technique. In parallel with the self-consistent calculation, we also determine the value of q̄ from the
minimization of the ground-state energy per site, which is the sum of the lowest eigenvalue ǫ0 and the c-number term
∑

js t
s
ijψ

∗
isψjs = 2t

∑

s (cos(skT + q̄) + 2) |ψq̄s|2 originated from the decoupling (S13).

On the other hand, for the striped superfluid (ST) phase, we cannot transform the effective Hamiltonian ĥGW
i into a

form where the coefficients are site-independent. Hence, we have to solve simultaneously a set of single-site problems
coupled through the mean fields ψis. The Gutzwiller fields for the ST phase are simply ψis =

∑′
q ψqse

iqxi . The sum
∑′

q runs over a set of condensate momenta {q}, whose components are given by −q̄1+n(q̄1+ q̄2), where n is an integer.
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When (q̄1+q̄2)/2π is an irreducible fraction ζ/η, the number of independent mean fields is 2η with the factor of 2 coming
from the spin index. Notice that the means fields are periodic along the x direction, that is ψ(xi+η,yi,zi)s = ψ(xi,yi,zi)s,
while they are uniform along the y and z directions. Therefore, we diagonalize simultaneously the η different local
Hamiltonians, which are functions of the mean fields ψis =

∑′
q ψqse

iqxi , and calculate the expectation values 〈b̂is〉 at
each site. The cycle is repeated until the self-consistent condition ψqs =

1
η

∑η

xi=1〈b̂is〉e−iqxi (q ∈ {q}) is achieved. The
values of the fundamental momenta q̄1 and q̄2 have to be determined by minimizing the ground-state energy. In the
present work, we consider the ST state with periodicity up to η = 2×103, and thus the interval of possible momenta is
given by δkx = 2π/η ∼ 0.001π, corresponding to the momentum resolution between two consecutive momenta along
the x direction.

B. Excitation spectra and momentum distribution

In the following, we present a treatment of non-local correlation effects beyond the Gutzwiller approximation. For
simplicity, we restrict ourselves to the specific procedure only for single-q states, SF± (q̄ 6= 0) and SF0 (q̄ = 0),
although our method can be generalized in a straightforward way for multi-q states. Using the unitary matrix R

[Eq. (S17)] that diagonalizes the Gutzwiller Hamiltonian matrix h
GW
i , we introduce a multi-flavor Schwinger-boson

representation of local operators Ôi = b̃is, b̃
†
isb̃is′ , ñis, and ñisñis′ :

Ôi = (â†i,0 â
†
i )R

†
OiR

(

âi,0
âi

)

, (S18)

where âi,0 and âi = (âi,1, âi,2, · · · , âi,ntr
)T are Schwinger bosons and Oi is the matrix representation of the operator

Ôi in the two-component Fock basis. The operator â†i,0 describes the creation of the local Gutzwiller ground state

(the lowest eigenstate of hGW
i ), while the other Schwinger bosons â†i,n6=0 create the other (higher) eigenstates and

thus describe the fluctuations around the Gutzwiller ground state. The physical subspace of states is obtained by
imposing the constraint

â†i,0âi,0 + â
†
i âi = 1. (S19)

We rewrite the original Hamiltonian H = H0 +Hint in terms of Schwinger bosons by substituting Eq. (S18) into

Eqs. (S10) and (S11). If we take â†i,0âi,0 = 1 and â†i,nâi,n = 0 for n 6= 0, we reproduce the Gutzwiller ground-state
energy. In order to take into account fluctuations around the Gutzwiller ground state, we expand the Hamiltonian into
a power series about the fluctuation operators âi,n6=0. To that end, we eliminate the operator âi,0 via the constraint
(S19) leading to the relations

â†i,0âi,0 → 1− â
†
i âi and â†i,0âi,n →

√

1− â
†
i âiâi,n =

(

1− 1

2
â
†
i âi + · · ·

)

âi,n for n 6= 0. (S20)

The expansion of the square root can be justified when the fluctuation â
†
i âi is sufficiently small.

After the expansion, the terms that are linear in âi,n6=0 and â†i,n6=0 vanish since the ground-state energy at the
level of the Gutzwiller approximation (the zeroth order terms of the expansion) is already minimized by substitut-
ing the self-consistently converged values of ψq̄s. Thus the first correction to the Gutzwiller approximation arises
from the quadratic terms. The quadratic Hamiltonian can be written in the same form as in Bogoliubov theory
[Eq. (S6)] after the Fourier transformation, where the corresponding matrices Ak and Bk in this case are derived
from Eqs. (S18) and (S20). The excitation spectrum is obtained by the generalized Bogoliubov transformation

(â†
k (â−k)

T ) = (α̂†
k (α̂−k)

T )P†
k [Eqs. (S7) and (S8)]. The momentum distribution of the particles

〈b̂†ksb̂ks〉 =
1

M

∑

ij

〈b̃†isb̃js〉ei(k−q̄)·(ri−rj) (S21)

is also calculated in the following way: (i) express the operator 〈b̃†isb̃js〉 in the Schwinger-boson representation (S18);
(ii) eliminate âi,0 using Eq. (S20) and keep only the terms up to second order in the fluctuation operator âi,n6=0;

(iii) evaluate the expectation values such as 〈â†k,nâk,n′〉 using the transformation coefficients Pk and the relation

〈α̂kα̂
†
k〉 = 1.
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C. Ginzburg-Landau theory

Finally, we present the details of the Ginzburg-Landau description of the Mott-Insulator (MI) transition when the
spin population is the same, that is, ρ↑ = ρ↓ (δ = 0). The effective Hamiltonian within the Gutzwiller approximation

is Ĥ ≈∑i

(

ĥGW
i +

∑

js t
s
ijψ

∗
isψjs

)

and can be separated as
∑

i ĥ
GW
i =

∑

i ĥ
(0)
i +

∑

i ĥ
t
i with the local fields containing

the interactions being

ĥ
(0)
i = −µ (n̂i↑ + n̂i↓) + Ω(b̂†i↑b̂i↓ + b̂†i↓b̂i↑) +

U

2
(n̂i↑(n̂i↑ − 1) + n̂i↓(n̂i↓ − 1)) + U↑↓n̂i↑n̂i↓ (S22)

and with the local fields containing the kinetic terms being

ĥti = −
∑

js

(

tsjiψ
∗
jsb̂is + tsijψjsb̂

†
is

)

. (S23)

In the vicinity of the MI transition, where the Gutzwiller fields ψis are small, we can treat
∑

i ĥ
t
i as a perturbation

about the Hamiltonian
∑

i ĥ
(0)
i . To solve the eigenvalue problem for ĥ

(0)
i

ĥ
(0)
i |ϕλ

ρ〉 = ελρ |ϕλ
ρ〉, (S24)

we diagonalize the matrix form of ĥ
(0)
i in each sector of the Hilbert space with filling factor ρ. The λ-th eigenstate

|ϕλ
ρ〉 for filling ρ (λ = 0, 1, · · · , ρ) is given by a superposition of the local Fock states |n↑, n↓〉 that satify n↑ + n↓ = ρ:

|ϕλ
ρ〉 =

∑

n↑+n↓=ρ

uλ(n↑,n↓)
|n↑, n↓〉. (S25)

When ρ = 2, for example, the eigenenergies ελρ=2 and the corresponding eigenvectors uλ
ρ=2 = (uλ(2,0), u

λ
(1,1), u

λ
(0,2))

T

are

ε02 =
U+U↑↓

2 −
√

(

U−U↑↓

2

)2

+ 4Ω2 − 2µ; u0
2 =

(−2
√
2Ω,U−U↑↓+ε2

2
−ε0

2
,−2

√
2Ω)T√

16Ω2+(U−U↑↓+ε2
2
−ε0

2
)2

,

ε12 = U − 2µ; u1
2 = (1,0,−1)T√

2
,

ε22 =
U+U↑↓

2 +

√

(

U−U↑↓

2

)2

+ 4Ω2 − 2µ; u2
2 =

(−2
√
2Ω,U−U↑↓−ε2

2
+ε0

2
,−2

√
2Ω)T√

16Ω2+(U−U↑↓−ε2
2
+ε0

2
)2

.

(S26)

The semi-classical description of the MI state, where each site is occupied by ρ bosons, is given by the direct product
of the local eigenstates ⊗i|ϕ0

ρ〉i and the energy of the system is Mε0ρ, with M being the number of lattice sites. From

standard perturbation theory, the second-order correction to the energy due to the perturbation
∑

i ĥ
t
i is given by

∑

i

∑

ρ′=ρ±1

ρ′

∑

λ′=0

|〈ϕ0
ρ|ĥti|ϕλ′

ρ′ 〉|2

ε0ρ − ελ
′

ρ′

=
∑

i

∑

r=±1

u0†
ρ V

ρ+r†
ρ,i Uρ+rGρ+rU

†
ρ+rV

ρ+r
ρ,i u0

ρ

=
∑

i

(

∑

j t
↑
jiψ

∗
j↑
∑

j t
↓
jiψ

∗
j↓

)

(

a↑↑ a↑↓
a↓↑ a↓↓

)

(

∑

j t
↑
ijψj↑

∑

j t
↓
ijψj↓

)

, (S27)

where Vρ′

ρ,i is a (ρ′+1)×(ρ+1) matrix whose components are 〈n′
1, n

′
2|ĥti|n1, n2〉 with n′

1+n
′
2 = ρ′ and n1+n2 = ρ, Uρ′

is a (ρ′+1)×(ρ′+1) eigenvector matrix matrix with rows defined by
(

u0
ρ′ u

1
ρ′ · · · u

ρ′

ρ′

)

, and Gρ′ is a (ρ′+1)×(ρ′+1)

diagonal matrix with diagonal components

{

1
ε0ρ−ε0

ρ′
, 1
ε0ρ−ε1

ρ′
, · · · , 1

ε0ρ−ε
ρ′

ρ′

}

. In the first line of Eq. (S27), we need to

consider only the eigenstates with filling factor ρ′ = ρ± 1 as intermediate states, since the perturbation
∑

i ĥ
t
i creates

or annihilates a single boson. The explicit expressions of Vρ±1
ρ,i for ρ = 2 are given by

V
1
2,i =

(

−
√
2
∑

j t
↑
jiψ

∗
j↑ −

∑

j t
↓
jiψ

∗
j↓ 0

0 −∑j t
↑
jiψ

∗
j↑ −

√
2
∑

j t
↓
jiψ

∗
j↓

)

(S28)
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and

V
3
2,i =











−
√
3
∑

j t
↑
ijψj↑ 0 0

−
∑

j t
↓
ijψj↓ −

√
2
∑

j t
↑
ijψj↑ 0

0 −
√
2
∑

j t
↓
ijψj↓ −∑j t

↑
ijψj↑

0 0 −
√
3
∑

j t
↓
ijψj↓











. (S29)

The matrix elements ass′ in the last line of Eq. (S27) are only a function of the paramters µ, Ω, U , U↑↓, and ρ.
Therefore, together with the constant term

∑

ijs t
s
ijψ

∗
isψjs caused by the Gutzwiller decoupling, the total second-

order contribution in ψis can be written in Fourier space as

∑

k

(

ψ∗
k↑ ψ∗

k↓
)

(

a↑↑ǫ2k↑ − ǫk↑ a↑↓ǫk↑ǫk↓
a↓↑ǫk↓ǫk↑ a↓↓ǫ2k↓ − ǫk↓

)(

ψk↑
ψk↓

)

=
∑

k

(

ξ(k)
∣

∣

∣
ψ̃
(−)
k

∣

∣

∣

2

+ ξ+(k)
∣

∣

∣
ψ̃
(+)
k

∣

∣

∣

2
)

(S30)

with ǫks = −2t(cos(kx + skT ) + cos ky + cos kz). (Note that a↓↑ = a∗↑↓.) Here, the diagonalization with respect to the
pseudospin index was performed by the transformation

(

ψk↑
ψk↓

)

=

(

cos θk −e−iχ sin θk
eiχ sin θk cos θk

)

(

ψ̃
(−)
k

ψ̃
(+)
k

)

, (S31)

which gives the following two branches for the excitation energies above the MI state with filling factor ρ:

ξ(k) =
a↑↑ǫ2k↑ − ǫk↑ + a↓↓ǫ2k↓ − ǫk↓

2
−

√

√

√

√

(

a↑↑ǫ2k↑ − ǫk↑ − a↓↓ǫ2k↓ + ǫk↓

2

)2

+ a↑↓a↓↑ǫ2k↑ǫ
2
k↓

ξ+(k) =
a↑↑ǫ2k↑ − ǫk↑ + a↓↓ǫ2k↓ − ǫk↓

2
+

√

√

√

√

(

a↑↑ǫ2k↑ − ǫk↑ − a↓↓ǫ2k↓ + ǫk↓

2

)2

+ a↑↓a↓↑ǫ2k↑ǫ
2
k↓. (S32)

The components of the diagonalization matrix satisfy the conditions

sin 2θk =
2
√

a↑↓a↓↑ǫ2k↑ǫ
2
k↓

ξ+(k)− ξ(k)
, cos 2θk =

a↑↑ǫ2k↑ − ǫk↑ − a↓↓ǫ2k↓ + ǫk↓

ξ+(k)− ξ(k)
, and χ = −Arg[a↑↓]. (S33)

If the lower branch of excitation energies ξ(k) is positive for any value of k, the minimization of the second-order

energy (S30) gives the solution
∣

∣

∣ψ̃
(±)
k

∣

∣

∣ = 0, which means that the system remains in the MI state. When the minimum

excitation energy of ξ(k) becomes negative, BEC occurs and the system undergoes a phase transition to a superfluid
phase. When the excitation spectrum ξ(k) exhibits a double minimum structure at k = q̄ and −q̄ with q̄ ≡ (q̄, 0, 0),
due to the presence of spin-orbit couplings, the excited particles can be condensed at either or both of the two k

points. Thus we define the condensate order parameters as Φ±q̄ ≡ ψ̃
(−)
k=±q̄/

√
M , that is,

ψks =
√
M
(

νsq̄Φq̄δk=q̄ + νs−q̄Φ−q̄δk=−q̄

)

with νs±q̄ ≡
{

cos θ±q̄ (s =↑)
eiχ sin θ±q̄ (s =↓) . (S34)

For zero detuning δ = 0, the energies of the condensates with two opposite momenta (and any superposition of
them) are degenerate: ξ(q̄) = ξ(−q̄) ≡ −µ̄. In order to lift the degeneracy, it is required to take into account the

fourth-order contribution from
∑

i ĥ
t
i:

∑

i

∑

r=±1

[

u0†
ρ

(

V
ρ+r†
ρ,i Gρ+rV

ρ+2r†
ρ+r,i Gρ+2rV

ρ+2r
ρ+r,iGρ+rV

ρ+r
ρ,i +

∑

r′=±1

[

V
ρ+r′†
ρ,i Gρ+r′V

ρ†
ρ+r′,iḠρV

ρ
ρ+r,iGρ+rV

ρ+r
ρ,i

]

)

u0
ρ

−
(

u0†
ρ V

ρ+r†
ρ,i G2

ρ+rV
ρ+r
ρ,i u0

ρ

)(

u0†
ρ V

ρ+r†
ρ,i Gρ+rV

ρ+r
ρ,i u0

ρ

)]

=
∑

i

(

(

∑

j t
↑
jiψ

∗
j↑

)2
∑

jl t
↑
jit

↓
liψ

∗
j↑ψ

∗
l↓

(

∑

j t
↓
jiψ

∗
j↓

)2
)





b↑↑↑↑ b↑↑↑↓ b↑↑↓↓
b↑↓↑↑ b↑↓↑↓ b↑↓↓↓
b↓↓↑↑ b↓↓↑↓ b↓↓↓↓















(

∑

j t
↑
ijψj↑

)2

∑

jl t
↑
ijt

↓
ilψj↑ψl↓

(

∑

j t
↓
ijψj↓

)2











, (S35)
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where we use the notation Gρ′ ≡ Uρ′Gρ′U
†
ρ′ and Ḡρ ≡ UρḠρU

†
ρ with Ḡρ being obtained from Gρ via the replacement

of the first diagonal component 1
ε0ρ−ε0ρ

by 0 to remove the initial state |ϕ0
ρ〉 from the perturbation process. The matrix

elements bs1s2s3s4 in the last line of Eq. (S35) are again only a function of the paramters µ, Ω, U , U↑↓, and ρ.
Performing a Fourier transformation, we rewrite Eq. (S35) in the form:

1

M

∑

{si}

∑

k1,k2,k3,k4

δ
(2π)
k1+k2,k3+k4

Πs1s2;s3s4
k1k2;k3k4

ψ∗
k1s1

ψ∗
k2s2

ψk3s3ψk4s4 =M

(

Γ1

2

(

|Φq̄|4 + |Φ−q̄|4
)

+ Γ2|Φq̄|2|Φ−q̄|2
)

, (S36)

where the sum
∑

{si} runs over the spin indices that span the nine components of bs1s2s3s4 shown in Eq. (S35) and

Πs1s2;s3s4
k1k2;k3k4

≡ bs1s2s3s4ǫk1s1ǫk2s2ǫk3s3ǫk4s4 . Substituting Eq. (S34) on the left hand side of Eq. (S36), we obtain the
effective interactions between the condensed particles with same momentum (Γ1) and with opposite momenta (Γ2) as

Γ1 = 2
∑

{si}
Πs1s2;s3s4

q̄q̄;q̄q̄ νs1∗q̄ νs2∗q̄ νs3q̄ ν
s4
q̄ = 2

∑

{si}
Πs1s2;s3s4

−q̄−q̄;−q̄−q̄ ν
s1∗
−q̄ ν

s2∗
−q̄ ν

s3
−q̄ν

s4
−q̄,

Γ2 =
∑

{si}

[

Πs1s2;s3s4
q̄−q̄;q̄−q̄ ν

s1∗
q̄ νs2∗−q̄ ν

s3
q̄ ν

s4
−q̄ +Πs1s2;s3s4

q̄−q̄;−q̄q̄ ν
s1∗
q̄ νs2∗−q̄ ν

s3
−q̄ν

s4
q̄

+Πs1s2;s3s4
−q̄q̄;−q̄q̄ν

s1∗
−q̄ ν

s2∗
q̄ νs3−q̄ν

s4
q̄ +Πs1s2;s3s4

−q̄q̄;q̄−q̄ ν
s1∗
−q̄ ν

s2∗
q̄ νs3q̄ ν

s4
−q̄

]

, (S37)

as shown on the right hand side of Eq. (S36).
In summary, the effective energy function up to the forth-order in the order parameters Φ±q̄ is given by

EGL

M
= ε0ρ − µ̄

(

|Φq̄|2 + |Φ−q̄|2
)

+
Γ1

2

(

|Φq̄|4 + |Φ−q̄|4
)

+ Γ2|Φq̄|2|Φ−q̄|2. (S38)

The minimization of EGL with respect to the order parameters yields two types of ground states:

For Γ1 < Γ2, |Φq̄|2 =
µ̄

Γ1
and Φ−q̄ = 0 (or vice versa),

EGL

M
= ε0ρ −

µ̄2

2Γ1
;

For Γ1 > Γ2, |Φq̄|2 = |Φ−q̄|2 =
µ̄

Γ1 + Γ2
,
EGL

M
= ε0ρ −

µ̄2

Γ1 + Γ2
. (S39)

Notice that if Γ1 < 0 for Γ1 < Γ2 or Γ1 + Γ2 < 0 for Γ1 > Γ2, the condensates on the MI phase have negative
compressibility, which means that the transition to a superfluid phase becomes first-order.
For Γ1 < Γ2 and q̄ 6= 0, the transition from the MI phase spontaneously breaks the Z2 symmetry regarding q̄ or

−q̄ in addition to breaking the global U(1) gauge symmetry. In this case, the condensation yields the transition from
the MI phase to a phase separated (PS) state when the condition ρ↑ = ρ↓ is imposed. For Γ1 > Γ2, although the
amplitudes of the two order parameters are identical (|Φq̄| = |Φ−q̄| ≡ Φ 6= 0), the relative phase of the two condensates
φ = Arg(Φq̄/Φ−q̄) is undetermined as can be seen from Eq. (S38). When q̄/π is an irreducible fraction ζ/η with ζ and
η being integers, the η-particle umklapp scattering process Γ

′
η((Φ

∗
q̄)

η(Φ−q̄)
η + (Φ∗

−q̄)
η(Φq̄)

η) = 2Γ ′
ηΦ

2η cos ηφ takes
place since ηq̄ − (−ηq̄) = 0 (modulo 2π), which determines the relative phase φ. In this case, the condensation yields
the transition from the MI phase to the striped superfluid (ST) or the chiral superfluid (CSF) phases.
Notice that the η-particle process∝ cos ηφ still possesses η-fold degeneracy in the determination of the relative phase

φ. Therefore, at the transition from the MI to ST (or CSF) phase with q̄/π being an irreducible fraction ζ/η, the Zη

symmetry is spontaneously broken as well as the U(1) gauge symmetry. This corresponds to a discrete translational
symmetry that the ST state has both in the amplitude and phase of the order parameter in real space. For the CSF
state, the amplitude of the order parameter is uniform in real space, but its phase breaks chiral Z2 symmetry. When
q̄/π is an irrational number, umklapp processes are absent and as a result the additional phase terms just discussed
do not appear in the Gintzburg-Landau energy. Therefore, the relative phase is undetermined and is spontaneously
chosen by the system in its ground state. In this case, the MI-ST transition is associated with spontaneous U(1)×U(1)
symmetry breaking, rather than the U(1)× Zη symmetry breaking that occurs in the commensurate case.
The value of Γ ′

η can be calculated in a similar way to those of Γ1 and Γ2, and in general it has a very complex
structure. In the simplest example, when q̄ = π/2 the coefficient of the two-particle umklapp process 2Γ ′

η=2Φ
4 cos 2φ

is given by

Γ
′
η=2 =

∑

{si}
Πs1s2;s3s4

q̄q̄;−q̄−q̄ ν
s1∗
q̄ νs2∗q̄ νs3−q̄ν

s4
−q̄ =

∑

{si}
Πs1s2;s3s4

−q̄−q̄;q̄q̄ ν
s1∗
−q̄ ν

s2∗
−q̄ ν

s3
q̄ ν

s4
q̄ . (S40)
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This completes our analysis of the Ginzburg-Landau theory used to describe the transition between the superfluid
and the Mott insulator phases.
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