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We derive an approach for extrapolating the free energy landscape of multicomponent systems in the
grand canonical ensemble, obtained from flat-histogram Monte Carlo simulations, from one set of
temperature and chemical potentials to another. This is accomplished by expanding the landscape in
a Taylor series at each value of the order parameter which defines its macrostate phase space. The
coefficients in each Taylor polynomial are known exactly from fluctuation formulas, which may be
computed by measuring the appropriate moments of extensive variables that fluctuate in this ensemble.
Here we derive the expressions necessary to define these coefficients up to arbitrary order. In principle,
this enables a single flat-histogram simulation to provide complete thermodynamic information over a
broad range of temperatures and chemical potentials. Using this, we also show how to combine a small
number of simulations, each performed at different conditions, in a thermodynamically consistent
fashion to accurately compute properties at arbitrary temperatures and chemical potentials. This
method may significantly increase the computational efficiency of biased grand canonical Monte
Carlo simulations, especially for multicomponent mixtures. Although approximate, this approach
is amenable to high-throughput and data-intensive investigations where it is preferable to have a
large quantity of reasonably accurate simulation data, rather than a smaller amount with a higher
accuracy. https://doi.org/10.1063/1.5006906

I. INTRODUCTION

Grand canonical Monte Carlo (GCMC) simulation is an
effective tool for studying first order phase transitions in many
fluids.1–5 In this approach, a system with a fixed volume and
temperature is exposed to multiple fictitious thermodynamic
reservoirs with which heat and mass may be exchanged. By
specifying the temperature and chemical potentials of these
reservoirs, respectively, the system of interest reaches equi-
librium based on these inputs. Because energy and particle
number fluctuate in the system, it is easy to observe when
the first order phase separation occurs. A single GCMC sim-
ulation normally pertains to only a single set of conditions
(i.e., temperature and chemical potentials); however, when
combined with histogram reweighting, it is possible to pre-
dict the system’s properties at other conditions which are not
too dissimilar.3,6,7 A macrostate of a system may be defined
as a collection of microstates, or configurations, with the same
energy and particle number, although other definitions are also
possible.3 Reweighting works on the principle that when the
probability of a certain macrostate is known at one set of exter-
nal conditions, it can be predicted at another since the relative
probability of the macrostate at each condition is known from
statistical mechanics.3,6,7 However, due to the finite length
of a conventional GCMC simulation, typically only the most
probable macrostates, consistent with the specified chemical
potentials and temperature, are sampled.

a)Electronic mail: nathan.mahynski@nist.gov

Because of this limitation, the macrostates which become
most probable at chemical potentials and temperatures dif-
fering significantly from those of the simulation are sampled
infrequently, if at all, due to their extremely low probabilities
of being observed. Thus, a conventional simulation provides
little information about state points that differ significantly
from its own. One way to calculate thermodynamic proper-
ties over a more broad range is to perform many simulations
across a diverse set of conditions so that they sample different
but overlapping portions of the phase space.8,9 By combining
many such simulations, a system’s thermodynamic properties
can be determined at very dissimilar conditions, at the cost
of having to perform many simulations.3,6,7,10–12 While poten-
tially effective for single-component systems, this can quickly
become intractable for multicomponent systems since the vol-
ume of the macrostate phase space grows geometrically with
the number of components.

Recently, we developed an alternative approach which
relies on flat-histogram biasing to explore a predefined set of
macrostates determined exclusively by the number of parti-
cles present, either individually, or as a scalar sum.13,14 By
measuring the moments of extensive thermodynamic proper-
ties at each macrostate, one can expand the local free energy
landscape in a Taylor series which can be used to extrapolate
the landscape to arbitrary external conditions, e.g., temper-
ature.13 The logical basis for this approach is as follows. A
Taylor series, truncated to a finite order, requires derivatives
up to that order with respect to the thermodynamic vari-
able(s) in which the extrapolation is to be performed. It is well
known that thermodynamic derivatives may be expressed as

0021-9606/2017/147(23)/234111/12/$30.00 147, 234111-1

https://doi.org/10.1063/1.5006906
https://doi.org/10.1063/1.5006906
mailto:nathan.mahynski@nist.gov
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5006906&domain=pdf&date_stamp=2017-12-21


234111-2 Mahynski, Errington, and Shen J. Chem. Phys. 147, 234111 (2017)

fluctuations of thermodynamic variables.15–18 Since fluctua-
tions may be computed from the appropriately averaged prod-
ucts of such variables, one may obtain the coefficients for the
Taylor expansion by simply averaging the correct set of vari-
ables (moments) over the course of the simulation.15,19 This
enables the extrapolation of the landscape from one set of con-
ditions to another, even when the relevant macrostates occupy
a significantly different region of phase space compared to the
original simulation.

The principles behind such an expansion are hardly new,
especially in the canonical ensemble,15,19 and similar con-
cepts have been applied to estimate fluid phase coexistence
from grand canonical and Gibbs ensemble Monte Carlo sim-
ulations in the past.20–25 However, these efforts have focused
on extrapolating unbiased simulations which only sample the
phase space relatively near to the most likely macrostates at
a given condition; consequently, these approaches only yield
reasonable predictions relatively close to the original simu-
lation’s state point. By invoking flat-histogram methods to
explore a broad range of predefined macrostates, we antici-
pate that these principles can be used to make predictions over
an even more broad range of conditions. Extrapolations are
approximate by nature; their inaccuracies naturally increase
with the difference between the state point of interest and
the reference point. We anticipate that this method should be
less accurate than histogram reweighting approaches if the
latter can make use of simulations which sampled all rel-
evant regions of phase space at the initial and final states;
however, the method described here does not require this. It
simply relies on the straightforward accumulation of moments
at the reference state. Thus, we expect this approach to be
a helpful tool in high-throughput screening and data-driven
investigations where the quantity of reasonably accurate sim-
ulation data, rather than an extremely high level of accu-
racy, is paramount. As we will demonstrate, this method is,
indeed, capable of generating very reasonable predictions over
a broad range of conditions from a relatively small set of initial
simulations.

Previously, we exclusively focused on the temperature
extrapolation of grand canonical landscapes to explore the
phase behavior and self-assembly of fluids at low tempera-
tures.13,14 In this work, we generalize the approach, enabling
one to extrapolate simultaneously in all the intensive thermo-
dynamic variables which define the grand canonical ensemble
for a multicomponent system, i.e., the temperature and chem-
ical potential of each component. These extrapolations can
be used to directly calculate thermodynamic properties in
many cases or may be refined with additional flat-histogram
Monte Carlo simulations. In the latter case, starting from a rea-
sonable estimate of the macrostate distribution often greatly
accelerates the convergence of these simulations. Although we
focus exclusively on the grand canonical ensemble here, this
approach may be applied to other ensembles as well.13,26 This
method often allows the equation of state for a multicompo-
nent fluid to be easily generated from a relatively small number
of simulations. We further demonstrate how to extrapolate
and combine these simulations in a manner which enforces
thermodynamic consistency required by the Gibbs-Duhem
equation.18,27

This paper is organized as follows. We present the rel-
evant statistical mechanics employed in our multicomponent
sampling method in Sec. II. Then, we derive the necessary
equations for the multivariable extrapolation which allows one
to obtain an estimate of the macrostate probabilities (land-
scape) at arbitrary conditions given a macrostate distribu-
tion measured at other conditions. In Sec. III, we present
representative results of this technique for binary fluids and
demonstrate a way of combining multiple individual simu-
lations to produce a self-consistent hypersurface defined by
the component chemical potentials at a given temperature.
We then show how this can be used to compute all rele-
vant thermodynamic properties for a fluid and conclude in
Sec. IV.

II. METHODS
A. Statistical mechanical ensemble

Consider a k-component system in the microcanoni-
cal ensemble, for which the entropy representation of the
fundamental thermodynamic equation is given by

d (S/kB) = βdU + βPdV −
k∑

i=1

βµidNi, (1)

where S, U, V, and N i refer to the extensive entropy, internal
energy, volume, and particle number of each species, i, respec-
tively. Here, β ≡ 1/kBT, where kB is the Boltzmann constant.
The pressure, P, and chemical potentials, µi, are multiplied
by β in this case. However, in what follows, we will separate
them from this factor (which occurs naturally in the energy
representation of the fundamental equation) in order to work
with independent intensive variables (β, µ1, . . . , µk).

Under the appropriate Legendre transforms, we obtain
the expression relevant for the grand canonical ensemble,
in which V, β, and the set of all chemical potentials,
~µ = (µ1, µ2, . . . , µk) are fixed,

d (ln Ξ) = −Udβ + βPdV +
k∑

i=1

Nid (βµi) , (2)

where Ξ is the grand partition function. From a classical
statistical mechanical perspective, this may be expressed as

Ξ
(
~µ, V , β

)
=

∑
N1

∑
N2

· · ·
∑
Nk

exp *
,
β

k∑
i=1

µiNi
+
-

Q(~N , V , β),

(3)
where Q(~N , V , β) is the canonical partition function, hence-
forth referred to simply as Q. For convenience, we assume
that the contributions to Q from the kinetic energy of the sys-
tem in question have been integrated out and neglected so
that we work only with the configurational partition func-
tion (configurational integral).13,14 This has no effect on the
extensive thermodynamic properties of the system, except the
internal energy. Consequently, and without loss of general-
ity, we henceforth take U as referring to only the potential
energy of the system. Furthermore, we emphasize that chem-
ical potentials will not contain any contribution from the de
Broglie wavelength as a result of this.
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In order to obtain a convenient, scalar order parameter to
use for sampling multicomponent fluids, we perform a change
of variables to expressΞ

(
~µ, V , β

)
in terms of the total number

of molecules of each species present, i.e., Ntot =
∑k

i=1 Ni,

Ξ
(
~µ, V , β

)
=

∑
Ntot

exp (βµ1Ntot)

×



∑
N2

· · ·
∑
Nk

exp *
,
β

k∑
i=2

∆µiNi
+
-

Q


=

∑
Ntot

exp (βµ1Ntot)Υ(Ntot;∆~µ, V , β), (4)

where ∆µi ≡ µi � µ1, ∆~µi = (∆µ2,∆µ3, . . . ,∆µk), and
Υ(Ntot;∆~µ, V , β) is the isochoric semigrand partition function
which is given by

Υ(Ntot;∆~µ, V , β) =
∑
N2

· · ·
∑
Nk

exp *
,
β

k∑
i=2

∆µiNi
+
-

Q. (5)

For this order parameter, a macrostate is defined by the value of
N tot; the probability of each macrostate in the grand canonical
ensemble may be expressed as

ln Π (Ntot) = βµ1Ntot + ln Υ − ln Ξ. (6)

Extensions to other thermodynamic order parameters have
been described elsewhere previously and are beyond the scope
of this work.13 However, we point out that if the change of vari-
ables we performed in Eq. (4) to obtain N tot had been omitted,
and instead we employed a single particle number, e.g., N1, as
our order parameter, it follows that

ln Π (N1) = βµ1N1 + lnΥN1 − ln Ξ. (7)

The isochoric semigrand partition function is now defined at
each fixed value of N1,

ΥN1 (N1; ~µ, V , β) =
∑
N2

· · ·
∑
Nk

exp *
,
β

k∑
i=2

µiNi
+
-

Q. (8)

Because of the structural similarity of Eqs. (6) and (7), in the
equations that follow, the reader may substitute N1 for N tot

and µi for ∆µi to obtain the expressions necessary to perform
the extrapolation of the macrostate distribution obtained by
using N1 as the sampling order parameter instead of N tot. This
is especially relevant for conditions where, e.g., liquid-liquid
phase separation occurs.

B. Flat-histogram Monte Carlo simulations

To construct the (logarithm of the) macrostate distribu-
tion, lnΠ(N tot), we performed flat-histogram Monte Carlo
simulations. Specifically, we used a combination of Wang-
Landau and Transition Matrix Monte Carlo (WL-TMMC)
methods.26,28–31 Our implementation has previously been
described in detail elsewhere,13,14 so we will not reproduce
it here. The specific method used to obtain lnΠ(N tot) is ulti-
mately up to the practitioner, and the extrapolation methodol-
ogy we derive here is independent of this choice. Therefore,
we treat lnΠ(N tot) as a known quantity.

In this work, we primarily focus on demonstrating the
extrapolation method for a binary mixture which forms a

TABLE I. Binary square-well parameters used in this work. All energies and
lengths pertaining to these fluids are reported in units of ε1,1 and σ1,1.

i j ε i ,j σi ,j λi ,j

1 1 1.00 1.00 1.50
1 2 1.25 1.00 1.50
2 2 1.00 1.00 1.50

negative azeotrope. In this mixture, all particles i and j interact
with a square-well potential,

ui,j(r) =




∞, r < σ,

−ε i,j, σi,j ≤ r < λi,jσi,j,

0, r ≥ λi,jσi,j.

(9)

Table I gives the parameters used in this mixture, which result
from using the Lorentz-Berthelot (LB) mixing rule for the
molecular “diameters,” σi ,j, but not for their cohesive poten-
tial energy, ε i ,j. The latter has been increased 25% over the
LB result. All these simulations were performed in a periodic,
cubic simulation cell with a volume, V = 729 σ3

1,1. Unless
otherwise stated, all energy and length scales in this work
are non-dimensionalized according to ε1,1 and σ1,1, respec-
tively. For instance, we defined the reduced temperature as
T ∗ = kBT /ε1,1.

We will also demonstrate our approach for a binary, linear
force-shifted Lennard-Jones mixture of particles in Sec. III C.
The interaction between these particles is given by

Ui,j(r) =




ULJ
i,j (r) − ULJ

i,j (rc,i,j)

−(r − rc,i,j)
dULJ

i,j

dr

������rc,i,j

r < rc,i,j

0 r ≥ rc,i,j,

, (10)

where ULJ(r) is the Lennard-Jones potential,

ULJ
i,j (r) = 4ε i,j

[(σi,j

r

)12
−

(σi,j

r

)6
]

. (11)

For this mixture, we set the cutoff radius for each pair to be
rc,i ,j = 3σi ,j; other parameters used are given in Table II. Sim-
ilar non-dimensionalization applies in this case as well. These
simulations were performed in a larger periodic simulation cell
with a volume, V = 103σ3

1,1.

C. Taylor series approach

The key to our approach lies in expanding a known
macrostate distribution as a Taylor series around the

TABLE II. Binary, linear force-shifted Lennard-Jones parameters used in this
work. All energies and lengths pertaining to these fluids are reported in units
of ε1,1 and σ1,1.

i j ε i ,j σi ,j

1 1 1.00 1.00
1 2 2/

√
3 1.25

2 2 4/3 1.50
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reference conditions where the distribution is known. This
is done at each individual macrostate. Truncating the Taylor
series at finite order yields a Taylor polynomial that can be
used to estimate this distribution at some other set of chemi-
cal potentials and temperature. The intensive thermodynamic
variables which are fixed in the grand canonical ensemble are
~φ = (β, µ1, µ2, . . . , µk), or equivalently, ~φ =

(
β, µ1,∆~µ

)
. We

can express the multidimensional Taylor polynomial for any
function, g(Ntot; ~φ), up to second order as

g(Ntot; ~φ) = g(Ntot; ~φ0) + δ~φ · ∇g(Ntot; ~φ0)

+
1
2!

[
δ~φ ·Hg(Ntot; ~φ0) · δ~φT

]
, (12)

where the superscript “T” denotes the transpose of the vector.
Here, ~φ0 denotes the reference point, and

δ~φ = (δ β, δ∆µ2, δ∆µ3, . . . , δ∆µk) , (13)

where δz ≡ z � z0, for each intensive variable, z. Note that µ1

does not appear in δ~φ; this is because Eq. (6) enables “exact”
histogram reweighting from one µa

1 to another µb
1, when all

other conditions are identical,32

ln Π(Ntot; µ
b
1) = ln Π(Ntot; µ

a
1) + β(µb

1 − µ
a
1)Ntot. (14)

Hence, there is no need to extrapolate in this variable.
In Eq. (12), H g(Ntot; ~φ0) represents the symmetric Hessian
matrix,

Hg(Ntot; ~φ0) =



∂2g(Ntot; ~φ0)

∂ β2

������φ[β]

∂2g(Ntot; ~φ0)
∂ β∂∆µ2

������φ[β,∆µ2]

∂2g(Ntot; ~φ0)
∂ β∂∆µ3

������φ[β,∆µ3]

. . .
∂2g(Ntot; ~φ0)
∂ β∂∆µk

������φ[β,∆µk]

∂2g(Ntot; ~φ0)
∂∆µ2∂ β

������φ[∆µ2,β]

∂2g(Ntot; ~φ0)

∂∆µ2
2

������φ[∆µ2]

∂2g(Ntot; ~φ0)
∂∆µ2∂∆µ3

������φ[∆µ2,∆µ3]

. . .
∂2g(Ntot; ~φ0)
∂∆µ2∂∆µk

������φ[∆µ2,∆µk]

...
...

...
. . .

...

∂2g(Ntot; ~φ0)
∂∆µk∂ β

������φ[∆µk,β]

∂2g(Ntot; ~φ0)
∂∆µk∂∆µ2

������φ[∆µk,∆µ2]

∂2g(Ntot; ~φ0)
∂∆µk∂∆µ3

������φ[∆µk,∆µ3]

. . .
∂2g(Ntot; ~φ0)

∂∆µ2
k

������φ[∆µk]



.

(15)

Here and throughout this manuscript, we state partial deriva-
tives with respect to some intensive thermodynamic variable(s)
with the implied understanding that all other intensive vari-
ables are held constant, in addition to volume. This is shown
explicitly here with the subscript, e.g., φ[β], which denotes
that all variables in φ are held constant except β. Subsequently,
we neglect this for notational convenience. It is worth reiterat-
ing that we have chosen ~φ = (β, µ1,∆µ2, . . . ,∆µk) to reflect
the intensive conjugates which more naturally manifest in the
energy representation of the fundamental equation, rather than
the entropy representation, ~φ = (β, βµ1, β∆µ2, . . . , β∆µk). In
the latter case, the fact that chemical potentials are multiplied
by β means that this product (the “activity,” or differences
thereof) must be held constant when taking partial derivatives.
In fact, this approach tends to produce simpler expressions
for the partial derivatives we will derive next; however, when
used to perform an extrapolation with the resulting Taylor
polynomial, one must be cautious of the interdependence of
these conjugate variables. Without loss of generality, we have
elected to separate them for the sake of operational conve-
nience, using the intensive conjugates more natural to the
energy representation of the fundamental equation.

In what follows, we will take the function g(Ntot; ~φ0) either
as the macrostate distribution, lnΠ(Ntot; ~φ0), or as the products
of extensive thermodynamic properties (moments) which are
conjugates of the intensive thermodynamic variables in which

the Legendre transforms have been performed. For the grand
canonical ensemble, this corresponds to particle number, N i,
and potential energy, U. These moments are collected in a
matrix at each value of the order parameter over the course of
the simulation,

Z(Ntot; ~ξ) = N ξ1
1 N ξ2

2 . . .N ξk
k N ξn

totU
ξu , (16)

where ~ξ = (ξ1, ξ2, . . . , ξk, ξn, ξu) such that all ξ i are non-
negative integers, where ξ i ∈ [0, ξ t + 1]. Here, ξ t refers to
the maximum order of extrapolation we wish to achieve using
Eq. (12). Note that we only require all terms such that

∑
ξ i

≤ ξ t to extrapolate the macrostate distribution up to order ξ t.
However, one additional power is required to perform the same
order of extrapolation on first order moments in the Z(Ntot; ~ξ)
matrix, which is required to compute extensive properties at
the new conditions. As previously noted,13 it is not necessary
for the orders used in practice to be the same, but we generally
keep them identical in this work. Note that strictly speaking,
the order parameter, N tot, is also included in the Z(Ntot; ~ξ)
matrix; however, this does not need to be explicitly measured
during a simulation since its value is fixed at each “bin” in the
matrix.

When members of Z(Ntot; ~ξ), the matrix of moments, are
averaged over the course of the simulation, they correspond to
thermodynamic averages in the isochoric semigrand ensemble.
Henceforth, we denote all such averages with a tilde, X̃, where



234111-5 Mahynski, Errington, and Shen J. Chem. Phys. 147, 234111 (2017)

X is some member of the Z(Ntot; ~ξ) matrix. Averages in the
grand canonical ensemble may be obtained from these values
by employing the macrostate distribution,

〈X〉 =
1
Ξ

∑
Ntot

exp (βµ1Ntot) X̃(Ntot)

=
∑
Ntot

Π̄(Ntot)X̃(Ntot). (17)

Here, the macrostate probabilities have been normalized such
that ∑

Ntot

Π̄(Ntot) = 1. (18)

At a first order phase transition between low- and high-
density fluids, the macrostate distribution will display multiple
peaks as a function of N tot. Different peaks correspond to dif-
ferent phases, which are delineated by the local minimum in
lnΠ(N tot) between them. In this way, the macrostate distribu-
tion may be segmented into domains corresponding to different
phases. At a given temperature, the coexistence between these
phases is determined by searching for the chemical poten-
tial(s) that produce phases with equal pressure. The pressure
of a phase, α, may be computed directly from the macrostate
distribution,32

PαV β = ln *.
,

∑
Ntot∈α

Π(Ntot)
+/
-
− ln Π(Ntot = 0). (19)

In a similar way, average grand canonical properties of an
individual phase are computed by considering only those
macrostates assigned to that phase,

〈X〉α =
∑

Ntot∈α

Π̄(Ntot)X̃(Ntot). (20)

D. First order derivatives

We begin by considering the first order derivatives of
the macrostate distribution and the moments matrix. Subse-
quently, in Sec. II E, we will demonstrate how higher order
derivatives may be computed recursively using these results,
due to fortuitous properties conferred by the application of the
chain rule. Beginning with the macrostate distribution, the first
derivative in terms of β follows easily from Eq. (6),

∂ln Π(Ntot; ~φ0)
∂ β

= µ1Ntot +
1
Υ

∂Υ

∂ β
−

1
Ξ

∂Ξ

∂ β

= µ1 (Ntot − 〈Ntot〉) +
k∑

i=2

∆µi

(
Ñi − 〈Ni〉

)
−

(
Ũ − 〈U〉

)
, (21)

which has already been reported in Refs. 13 and 14. Similarly,
one can show that

∂ln Π(Ntot; ~φ0)
∂∆µi

=
1
Υ

∂Υ

∂∆µi
−

1
Ξ

∂Ξ

∂∆µi

= β
[
Ñi − 〈Ni〉

]
. (22)

Together, Eqs. (21) and (22) enable the first order extrapolation
(ξ t = 1) of the macrostate distribution. In order to extrapo-
late the matrix of moments, we require similar expressions for

each member of the Z(Ntot; ~ξ) matrix. For an arbitrary moment
in this matrix, Z, it can be shown13 that in the semigrand
ensemble,

∂Z̃
∂ β
=

k∑
i=2

∆µĩf
(
Z̃ , Ñi

)
− f̃

(
Z̃ , Ũ

)
, (23)

while in the grand canonical ensemble,

∂〈Z〉
∂ β
= µ1 f̂ (〈Z〉, 〈Ntot〉) +

k∑
i=2

∆µi f̂ (〈Z〉, 〈Ni〉) − f̂ (〈Z〉, 〈U〉) .

(24)

Here f̃ (X̃, Ỹ ) and f̂ (〈X〉, 〈Y〉) denote fluctuations of moments X
and Y in the semigrand and grand canonical ensembles, respec-
tively. For instance, in the semigrand ensemble, a fluctuation
may be expressed as

f̃ (X̃, Ỹ ) ≡ X̃Y − X̃Ỹ . (25)

A similar definition holds for the grand canonical ensemble,

f̂ (〈X〉, 〈Y〉) ≡ 〈XY〉 − 〈X〉〈Y〉. (26)

It has been discussed previously13,14 that since members
of the moments’ matrix are used to estimate the derivatives of
the partition functions, Υ and Ξ, it is critical that the energy,
U, being recorded in Z(Ntot; ~ξ) is consistent with the energy
which defines the canonical partition function. Therefore, it is
important to reiterate that we have chosen to work only with
the configurational part of the canonical partition function.
This means that the energy in the moments’ matrix is only the
potential (configurational) energy. Consequently, U is not a
function of β nor does the de Broglie wavelength implicitly
contribute to the chemical potential of a species. In the clas-
sical limit, kinetic and potential energies are separable in the
system’s Hamiltonian and are independent.4 Therefore, it is
always possible to incorporate kinetic effects after the simu-
lations and extrapolations have been performed, if so desired.
This is generally accomplished by adjusting the reference state
of a species’ chemical potential to include a contribution from
the de Broglie wavelength.14

Following a similar procedure as in Refs. 13 and 14 to
obtain the partial derivatives with respect to the difference in
chemical potentials, for the semigrand ensemble, we have

∂Z̃
∂∆µi

= βf̃
(
Z̃ , Ñi

)
, (27)

and in the grand canonical ensemble,

∂〈Z〉
∂∆µi

= βf̂ (〈Z〉, 〈Ni〉) . (28)

E. Second order derivatives

With the equations we have now presented, all subsequent
derivatives necessary to compute the coefficients of the Taylor
series [Eq. (12)] up to an arbitrary order may be found. This
follows from the fact that further derivatives involve invoking
the chain rule on fluctuations,

∂f (X, Y )
∂φi

�����φ[i]
=
∂(XY )
∂φi

�����φ[i]
− X

∂Y
∂φi

�����φ[i]
− Y

∂X
∂φi

�����φ[i]
, (29)
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where φi is some individual thermodynamic variable, such as
β or ∆µk, and X and Y are moments in the Z(Ntot; ~ξ) matrix
averaged according to the ensemble in which the fluctuation
occurs.

To illustrate, we begin by considering the second deriva-
tive of the macrostate distribution. The second derivative in β
follows from Eq. (21),

∂2ln Π(Ntot; ~φ0)

∂ β2
= −µ1

∂〈Ntot〉

∂ β
+

k∑
i=2

∆µi
*
,

∂Ñi

∂ β
−
∂〈Ni〉

∂ β
+
-

−

(
∂Ũ
∂ β
−
∂〈U〉
∂ β

)
. (30)

Through Eqs. (23) and (24), it is clear how the partial deriva-
tives which appear here may be expressed in terms of fluctua-
tions; semigrand fluctuations may be computed directly from
the Z(Ntot; ~ξ) matrix using Eq. (25), whereas grand canoni-
cal fluctuations may be computed through the application of
Eqs. (26) and (17). Similarly, the cross derivatives between
temperature and chemical potential differences follow from
Eq. (22),

∂2ln Π(Ntot; ~φ0)
∂ β∂∆µi

=
∂

∂ β

[
β

(
Ñi − 〈Ni〉

)]

=
(
Ñi − 〈Ni〉

)
+ β



∂Ñi

∂ β
−
∂〈Ni〉

∂ β


. (31)

In general, it can be shown that changing the order of the
differentiation produces the same expression, which we leave
as an exercise for the reader in the interest of brevity. Once
again, applying Eqs. (23) and (24) allows this to be expressed
in terms of fluctuations and evaluated. Also following from
Eq. (22), the final cross derivative we require is

∂2ln Π(Ntot; ~φ0)
∂∆µj∂∆µi

=
∂

∂∆µj

[
β

(
Ñi − 〈Ni〉

)]

= β2
[̃
f
(
Ñi, Ñj

)
− f̂

(
〈Ni〉, 〈Nj〉

)]
, (32)

where we have explicitly substituted the fluctuation formulas
from Eqs. (27) and (28).

First, note that all second order derivatives of the
macrostate distribution involve fluctuations. Second, observe
that derivatives of fluctuations may be expressed in terms of
derivatives of moments [cf. Eq. (29)]. It follows from Eqs. (23)
and (24) that the derivative of a moment involves its fluctuation
with respect to other extensive variables, i.e., moments of one
order higher. This explicitly illustrates why we must measure
moments up to ξ ∈ [0, ξ t + 1] if we are interested in extensive
thermodynamic properties at the extrapolated conditions. Fur-
thermore, it is now evident that iteratively applying the chain
rule [Eq. (29)] and Eqs. (23) and (24) enables one to obtain
expressions for partial derivatives up to arbitrary order.

Second order derivatives of the moments’ matrix follow
similarly, which we state here for completeness,

∂2Z̃

∂ β2
=

k∑
i=2

∆µi

∂ f̃
(
Z̃ , Ñi

)
∂ β

−
∂ f̃

(
Z̃ , Ũ

)
∂ β

, (33)

∂2〈Z〉

∂ β2
= µ1

∂ f̂ (〈Z〉, 〈Ntot〉)
∂ β

+
k∑

i=2

∆µi
∂ f̂ (〈Z〉, 〈Ni〉)

∂ β

−
∂ f̂ (〈Z〉, 〈U〉)

∂ β
, (34)

∂2Z̃
∂ β∂∆µi

=
∂

[
βf̃

(
Z̃ , Ñi

)]

∂ β

= β



∂ f̃
(
Z̃ , Ñi

)
∂ β


+ f̃

(
Z̃ , Ñi

)
, (35)

∂2〈Z〉
∂ β∂∆µi

=
∂

[
βf̂ (〈Z〉, 〈Ni〉)

]

∂ β

= β

[
∂ f̂ (〈Z〉, 〈Ni〉)

∂ β

]
+ f̂ (〈Z〉, 〈Ni〉) . (36)

For the sake of clarity, we once again illustrate how to simplify
these derivatives for the case of the cross derivative involving
chemical potential differences. Using Eqs. (27) and (29), we
have

∂2Z̃
∂∆µj∂∆µi

=
∂

[
βf̃

(
Z̃ , Ñi

)]

∂∆µj

= β2
[

f̃
(
Z̃Ni, Ñj

)
− Z̃ f̃

(
Ñi, Ñj

)
− Ñi f̃

(
Z̃ , Ñj

)]
.

(37)

In the grand canonical ensemble, we can use Eqs. (28) and
(29) to obtain a structurally similar result,

∂2〈Z〉
∂∆µj∂∆µi

=
∂

[
βf̂ (〈Z〉, 〈Ni〉)

]

∂∆µj

= β2
[
f̂
(
〈NiZ〉, 〈Nj〉

)
− 〈Z〉f̂

(
〈Ni〉, 〈Nj〉

)
− 〈Ni〉f̂

(
〈Z〉, 〈Nj〉

)]
. (38)

As a final note, we point out that we have included the
derivatives of averages in the grand canonical ensemble, 〈X〉,
in our derivations merely for the sake of completeness. In
fact, all terms in the Taylor series expansions originating from
derivatives of the grand partition function, Ξ(~µ, V , β), may be
neglected in practice since they are constant across all values of
N tot.14 Consequently, these grand canonical derivatives merely
shift lnΠ(N tot) in log-space leaving the relative macrostate
probabilities unaffected. These terms appear only in the expan-
sion used to extrapolate the macrostate distribution, lnΠ(N tot),
not the matrix of moments, Z(Ntot, ~ξ).

III. RESULTS

We now present a representative, systematic study of how
this extrapolation approach may be used to compute the proper-
ties of binary fluid mixtures across a broad range of conditions,
from a small number of initial simulations. Unless otherwise
stated, we focus exclusively on the binary square-well mix-
ture described in Sec. II B. Thus far, we have provided all
the necessary equations to extrapolate both the macrostate
distribution, lnΠ(N tot), and the moments’ matrix, Z(Ntot; ~ξ),
obtained from a flat-histogram simulation at one set of
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temperature and chemical potentials, ~φ0, to another set of con-
ditions, ~φ. Recall that replacing N tot with N1 and ∆µi with µi

enables the same approach to be used when N1 is used as the
sampling order parameter rather than N tot. Although mathe-
matically the order does not matter,14 here we first reweighted
a simulation using Eq. (14) to a desired µ1 and then performed
the extrapolation to reach a desired δ~φ relative to the original
simulation.

A. Multivariable macrostate extrapolation

First, we assess the ability of this method to accu-
rately predict the macrostate distribution at chemical poten-
tials and temperatures far from those of an initial simula-
tion. Previous work13 has show that temperature extrapolation
can be quantitatively accurate over ranges on the order of
δ β = δ(1/T ∗) ≈ 0.25 when using up to second order extrapo-
lation. In Fig. 1(a), we consider the extrapolation exclusively
in ∆µ2 at fixed β = 1/1.20 ≈ 0.83 for the square-well fluid
mixture. This is a subcritical temperature where converging
both the macrostate distribution and moments’ matrix tends to
be more difficult than at supercritical conditions. Regardless,
these results were obtained after approximately 48 hours of
wall clock time on an Intel Xeon 2.4 GHz processor; to improve
efficiency, each simulation was broken into 10-20 smaller

FIG. 1. Comparison between lnΠ(N tot) for the square-well fluid resulting
from the second order extrapolation of a single simulation performed at
β = 1/T∗ = 1/1.20 ≈ 0.83, ∆µ2 = 0.00 and simulations performed directly
at other conditions. (a) Normalized macrostate distributions from direct sim-
ulation (solid lines) compared to those obtained via extrapolation (dashed)
to different ∆µ2 at fixed β ≈ 0.83. (b) Same comparison as in (a), but when
extrapolation has now been performed in both β (from T∗ = 1.20 to T∗ = 0.95,
δβ ≈ 0.22) and ∆µ2.

overlapping “windows” which were self-consistently com-
bined after this amount of time had passed, as described in
more detail elsewhere.33,34

As we will illustrate later, this square-well fluid mixture
forms a negative azeotrope which occurs at ∆µ2 = 0.00. This
is the initial condition we focus on extrapolating to other ∆µ2

values, although similar results were obtained regardless of
the initial value of ∆µ2. The value of µ1 is also inconse-
quential. We generally consider a range from β∆µi ∈ [�2.95,
+2.95] because it corresponds to a fluid with a mole fraction of
species one, x1, ranging from approximately 0.05 . x1 . 0.95
which is estimated by assuming the fluid behaves as an ideal
gas,

β∆µ2 = ln

(
1
x1
− 1

)
. (39)

As shown in Fig. 1(a), extrapolated predictions deviate only
weakly from those obtained from direct simulations over the
composition range at the reported conditions. This suggests
that simulations corresponding to x1 = 0.50 (∆µ2 = 0.00)
contain sufficient information to predict thermodynamic prop-
erties of mixtures with very different compositions, e.g., x1

= 0.05, 0.95 (δ(β∆µ2) ≈ ±3). We emphasize that there is
nothing unique about initiating the extrapolation from the
azeotrope. In fact, similar or better extrapolations can be
obtained from∆µ2 , 0.00 and are fully capable of reproducing
these macrostate distributions, even on the opposite side of the
azeotrope from which the initial simulation is chosen.

Next, we consider the simultaneous extrapolation in both
the temperature and chemical potential, δ~φ = (δ β, δ∆µ2). In
Fig. 1(b), we extrapolate this single simulation at ∆µ2 = 0.00
from T ∗ = 1.20 to T ∗ = 0.95 (δ β ≈ 0.22) across the same range
of β∆µ2 values as before. As expected, the differences between
these extrapolations and direct simulations are larger but are
still relatively small. The qualitative shape of the curve is well
predicted which is arguably the most significant aspect. This is
because the comparison has been performed at identical (µ1,
∆µ2) values; however, we observe that the differences between
an extrapolated distribution and the one obtained from direct
simulation can be further minimized by slightly adjusting the
value of µ1.14 This observation indicates that there will be
some error in the predicted chemical potential corresponding
to the state point in question, even though the estimation of
the other thermodynamic properties will be generally accurate.
We emphasize that this chemical potential difference is quite
small.

Given the results presented thus far, it would appear that
a similar magnitude of δ β can be employed in multivariable
extrapolation as in scalar β extrapolation (δ β ≈ 0.25) over
which the computation of thermodynamic properties remains
quantitatively accurate. However, this is not entirely true. To
estimate properties such as the mole fraction of species one in
a given phase, x1 = 〈N1〉/〈N tot〉, the moments’ matrix must be
extrapolated so that N1 as a function of N tot is known at the
new conditions, ~φ, enabling the use of Eq. (20). In this work,
we chose to use a second order extrapolation, ξ t = 2, to estimate
the moments’ matrix at the new conditions, which is the same
order of extrapolation used to estimate the new macrostate dis-
tribution. As discussed in Sec. II E, the collection of terms
in the Z(Ntot; ~ξ) matrix that are of one order higher, i.e.,
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ξ t + 1 = 3, is thus required. We will explicitly demonstrate
in Sec. III C that this tends to represent the principal source
of error, rather than the extrapolated macrostate distribution
itself. This is because a simulation must be run progressively
longer to numerically converge each higher order moment.
Therefore simulations must run longer than what is necessary
to converge the moments used to extrapolate lnΠ(N tot) to the
same order (ξ t = 2) as first order moments (ξ t + 1 = 3). It then
becomes an issue of diminishing returns to continue running
a single simulation in an effort to extrapolate to incrementally
larger δ~φ.

Alternatively, one could simply perform a small number
of different simulations at relatively disparate values of ~φ and
then use this “extrapolation” approach to, in fact, “interpo-
late” to any condition bounded by these simulations. In order
to accomplish this, one must be able to self-consistently com-
bine these simulations in a way that predicts the properties
(macrostate distribution and moments’ matrix) at intermedi-
ate values of ~φ. Next, we describe one way in which this might
be achieved and illustrate its effectiveness at predicting the
thermodynamic properties of this mixture over large regions
of ~φ parameter space.

B. Combining simulations in a thermodynamically
consistent manner

Conventional histogram reweighting was developed to
enable individual Monte Carlo simulations performed at spe-
cific values of temperature, chemical potentials, etc., to pro-
duce a macrostate distribution over a continuous range of
values in their neighborhood, increasing the computational
efficiency of GCMC simulations by several orders of mag-
nitude.6,7 In the same spirit, we seek to take a small number of
individual flat-histogram simulations at different ~φ and com-
bine them to produce a continuous surface accurate at (nearly)
all ~φ. To do so, we formulate the problem as one where
we seek to construct a hypersurface (macrostate distribution
and moments) which satisfies the Gibbs-Duhem equation. For
binary systems, we have

ψ = x1
∂µ1

∂x1

�����β,P
+ (1 − x1)

∂µ2

∂x1

�����β,P
. (40)

If this surface is thermodynamically consistent, then ψ = 0.
Since numerical errors will always persist, we formulate
this as an optimization problem where we collect various

isothermal isobars across the domain of interest and then
minimize ψ2.

In the grand canonical ensemble, it is natural to define
our hypersurface in terms of the variables in ~φ. At a fixed
temperature, the coordinates of the surface are defined by the
chemical potentials of each species. For a binary mixture, the
surface is constructed as follows. First, we perform a series
of simulations at a fixed temperature with different values of
∆µ2, e.g., β0∆µ2 = (±2.95, ±1.1, 0.0). If we want to com-
pute the properties of the system at some new state point via
extrapolation, then we first determine the two “closest” direct
simulations that bound the state point of interest in terms of
∆µ2 using a distance, di ≡ |∆µ

target
2 −∆µ

neighbor,i
2 |. In Fig. 2(a),

the simulations which bound the point on the “left” and “right”
are denoted dl and dr , respectively. For these two bounding
direct simulations (or nearest neighbors), the macrostate dis-
tribution and the moments’ matrix can then be extrapolated
to the desired state point. Because extrapolating from the two
neighbors will produce different results, the extrapolations are
combined using a weighting function, w(di),

X =
Xlw(dl) + Xrw(dr)
w(dl) + w(dr)

, (41)

where X represents either lnΠ(N tot) or the Z(Ntot; ~ξ) matrix.
Thus, the simulations performed to the left and right of the
desired state point are extrapolated to the conditions of inter-
est and then “mixed” using this weighting function to produce
the final result. Although it is possible to define a procedure
which mixes all the ∆µ2 simulations, we purposefully choose
not to do so. Since we are using Taylor polynomials to esti-
mate the intermediate properties, it is expected a priori that
the simulations which are performed at the most similar con-
ditions will yield the most accurate estimates. Incorporating
data obtained from increasingly dissimilar conditions will only
introduce unnecessary error. Similarly, we expect that at state
points which lie much closer to one neighbor than the other,
e.g., dl << dr , the closer neighbor should principally determine
the properties at that point.

To accommodate these expectations, we propose the fol-
lowing form of a normalized weighting function inspired by
the Minkowski distance:

w̄(di) = 1 −
dm

i

dm
l + dm

r
, (42)

FIG. 2. Construction of a finely spaced
(βµ1, β∆µ2)-grid from a discrete set of
disparate simulations at a fixed temper-
ature for the square-well fluid mixture.
(a) Distance, di, for a target point, which
is computed from an example set of
simulations performed at theβ∆µ2 indi-
cated by the blue lines. (b) Normalized
weighting function for different expo-
nents, m. (c) Mole fraction of species
one, x1, at each point in the grid when m
= 2.5 and β = 0.83. Only the properties
of the most thermodynamically stable
phase are reported. Isopleths have been
traced out at x1 = (0.1, 0.2, . . ., 0.9).
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FIG. 3. Computing the deviation from
the Gibbs-Duhem equation. (a) Sample
isobars [black lines, values given in (b)]
along which ψ is computed when m =
2.5 for the square-well fluid mixture.
The underlying mole fraction, x1, over
the chemical potential grid at β = 0.83
is shown for reference. (b) Signed error,
ψ, along each isopleth. For this system,
P∗ = 0.40 (black curve) passes near the
azeotrope and corresponds to the gray
region indicated in (a).

where m is some non-negative exponent and i ∈ [l, r]. This
function is graphically depicted in Fig. 2(b). When m = 0, each
of the neighboring simulations makes an equal contribution,
regardless of a point’s proximity to one or the other in ∆µ2-
space. In contrast, when m → ∞, only the nearest neighbor
is used to predict the properties at such a point. The case of
m = 1 represents an intuitive “linear” scheme, which has been
widely used in the past.34,35

Therefore, if we choose m to be a single value, valid
throughout all of ∆µ2-space, we may simply seek the value
which minimizes ψ2 for some predefined set of discrete iso-
bars. In principle, one may allow m to vary throughout different
regions of ∆µ2-space; however, we find that using a single
value is both simple and accurate. In fact, for the systems we
report on here, we found that a value of m ≈ 2.5 was generally
optimal. However, for this square-well fluid, m = 1 did not yield
substantially different results. We note that Eqs. (41) and (42)
may be trivially extended to systems with an arbitrary number
of components. However, in such a case, we anticipate that a
separate exponent, mi, would be necessary for each dimension
of ∆µi.

Figure 2(c) depicts the x1-surface over a range of chemical
potentials when m = 2.5. A few isopleths (constant mole frac-
tion) are drawn as lines to guide the eye which generally show
the fluid to be rather ideal at sufficiently low µ1, as expected;
a phase transition occurs at the abrupt boundary where the
isopleths change sharply. Although we have focused on pre-
senting the x1-surface because it is linked to the calculation
of m, in principle, all thermodynamic properties may be com-
puted at every point in this (βµ1, β∆µ2)-space. A sketch of
how we computed ψ is outlined in Fig. 3(a). Several example
isopleths have been extracted and plotted as black solid lines.
In general, we choose to use isobars which are above or below
coexistence since numerical instabilities tend to arise in the
vicinity of a phase transition. The isobars chosen should span
the region(s) of interest where further computation is intended.
Here, we used linear interpolation on the (βµ1,β∆µ2)-grid to
quickly parameterize the chemical potentials at which pres-
sure is fixed at our desired value. Along these parameterized
isobars, we computed the mole fraction, x1, so that the deriva-
tives in Eq. (40) could be evaluated numerically with cubic
splines.

It is then possible to simply compute the ψ2 error arising
from each isobar and iteratively minimize the sum by changing
the value of m used in the weighting function,

min
[
ψ2(m)

]
= min



∑
P∗
ψ2

P∗ (m)


. (43)

If the initial set of simulations performed at different ∆µ2 val-
ues is not too sparse for the extrapolation order chosen and
the simulations are sufficiently converged, then ψ tends to be
relatively insensitive to m. In Fig. 3(b), we report the error
along each isobar we considered. The weak oscillating devi-
ations in Fig. 3(b) are due to our linear interpolation of the
grid. However, we did not observe any significant differences
in thermodynamic properties computed using more advanced
interpolation schemes, so this level of error was found to be
tolerable. The magnitude of these oscillations may also be
decreased by using a finer grid. For most isobars, the oscilla-
tions are very small but begin to grow as the phase boundary
is approached. It is clear, since we have the signed error, that
fluctuations oscillate around zero, but are enhanced. As we
will show in Sec. III C, the isobar of P∗ ≡ Pσ3

1,1/ε1,1 = 0.40
runs just below the azeotrope for the square-well mixture at
this temperature, which is why the signed error exhibits this
behavior.

C. Phase diagrams

Finally, to demonstrate the versatility and efficiency of this
extrapolation approach, we compute the fluid-phase diagram
for two different binary mixtures over a range of tempera-
tures using only a small set of initial simulations. First, we
consider the binary square-well fluid we have examined in
detail thus far. For comparison, we performed direct simula-
tions of this mixture at several representative temperatures,
T ∗ ∈ [1.20, 1.10, 0.95], across a range of ∆µ2 values to
obtain a phase diagram at each of these temperatures. At these
subcritical temperatures, each ∆µ2 corresponds to a single
coexistence point. In Fig. 4, we report each of these points,
where the lower density (vapor-like) phase is given by the
filled circles, whereas the higher density (liquid-like) phase is
given by inverted triangles. Clearly, the fluid forms a negative
azeotrope.

Initially, we consider the predictions when only a single
simulation is extrapolated. As a representative example, here
we present the results from the simulation performed at T ∗

= 1.20 and ∆µ2 = 0.00 (x1 = 0.5). The corresponding point on
the phase diagram is circled in black in Fig. 4(a). When ∆µ2 is
not too different, the extrapolated phase diagram is reasonably
accurate over 0.3 . x1 . 0.7 even down to T ∗ = 0.95. However,
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FIG. 4. Phase diagram for the binary square-well mixture studied. (a) Symbols represent coexistence points at each T* ∈ [1.20, 1.10, 0.95] (red, blue, and green,
respectively) obtained from direct simulation. The lines correspond to the predictions made by second order extrapolation of the simulation performed at T* = 1.20,
∆µ2 = 0.00. The coexistence point this corresponds to is circled in black. (b) The same predictions now using a grid of ∆µ2 ∈ [±3.54, ±1.01, 0.0] obtained at T*
= 1.20. The corresponding coexistence points are again circled in black.

beyond this range, it is clear that the estimates systematically
diverge from the direct simulations, even to the point of pre-
dicting negative mole fractions. Since we employed Taylor
polynomials to extrapolate the underlying moments’ matrix,
the unbounded growth of this error is to be expected as the mag-
nitudes of δ∆µ2 and δ β increase. In this case, we employed a
second order extrapolation to estimate the macrostate distribu-
tion but only a first order extrapolation to predict the moments’
matrix. There is simply nothing to prevent the underlying poly-
nomial of, e.g., Ñ1(Ntot), from violating a physical bound, such
as Ñ1 ≥ 0 or Ñ1(Ntot) + Ñ2(Ntot) = Ntot; the former of which
results in x1 < 0, while the latter can cause x1 > 1.

This error can be reduced by combining several different
simulations, especially those which correspond to states near
the “edges” of the physically meaningful states. We chose to
use ∆µ2 ∈ [±3.54, ±1.01, 0.0] at T ∗ = 1.20 since they roughly
correspond to a mixture of x1 ≈ 0.05, 0.3, 0.50, 0.7, 0.95
in the ideal gas limit (µ1 → �∞) at this temperature. These
coexistence points are circled in Fig. 4(b). Using the method
discussed in Sec. III B (m = 2.5), we computed these phase

diagrams again. By using several simulations which more com-
pletely span the compositions of interest, the error is greatly
suppressed. Notably, the introduction of the simulations cor-
responding to ideal gas mole fractions of x1 = 0.05, 0.95 helps
prevent the predicted mole fraction from violating its natural
bounds, 0 ≤ x1 ≤ 1. Figure 4(b) shows excellent agreement
between direct simulations and those obtained from the com-
bined extrapolation of these five simulations. In fact, very sim-
ilar results were obtained with only simulations corresponding
to ∆µ2 ∈ [±3.54, 0.0].

To further demonstrate the utility of this approach, we also
consider a binary, linear force-shifted Lennard-Jones mixture
(cf. Sec. II B). Compared to the azeotropic binary square-
well fluid, this mixture has both longer ranged interactions,
and particle size asymmetry. For the parameters chosen (cf.
Table II), the two pure fluids have critical temperatures at
T ∗c,1 ≈ 1.08 and T ∗c,2 ≈ 1.44.36 We again performed five sim-
ulations at a supercritical temperature of T ∗ = 1.50 at β∆µ2

= [±2.95,±1.10, 0.0] and combined the results using m = 2.5.
Using second order extrapolation of both the macrostate

FIG. 5. Second order extrapolation of a
linear force-shifted Lennard Jones mix-
ture. (a) The mole fraction of species
one, x1, present in the most thermody-
namically stable phase at T∗ = 1.50. (b)
x1 present in the most thermodynami-
cally stable phase at T∗ = 1.30 predicted
by extrapolating simulations from T∗

= 1.50 (m = 2.5). (c) Phase diagrams
as predicted by the extrapolation of
supercritical simulations from T∗ = 1.50
(lines) compared to direct subcritical
simulations (circles, triangles).
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distribution and moments matrix, we predicted the binodal
curves over a range of temperatures from T ∗ = 1.40 to
T ∗ = 1.10. The chemical potential phase space is depicted
in Figs. 5(a) and 5(b) which correspond to the original super-
critical state and a representative extrapolation to a subcritical
one (T ∗ = 1.30), respectively. Figure 5(c) depicts a compari-
son between direct simulations and supercritical extrapolations
across a range of subcritical temperatures. We observed excel-
lent agreement across this range of conditions as we extrapo-
lated to lower temperatures; moreover, extrapolating to higher
temperature produced isotherms with a similar level of quan-
titative accuracy. We emphasize that this can be achieved with
only second order moments, which are simple and efficient
to collect. This level of agreement is representative of what
we have found across a wide range of bulk and confined sys-
tems previously explored,13,14,34 as well as those which are the
subject of ongoing investigation.

IV. CONCLUSIONS

We have derived a method to extrapolate the grand canon-
ical macrostate distribution of a multicomponent mixture
from one set of temperature and chemical potential(s) to
another. This is achieved by expanding the distribution as a
multivariable Taylor series at the conditions originally simu-
lated. Truncating the expansion to a finite order yields a Taylor
polynomial which can then be used to predict the system’s
properties at any arbitrary condition. We explicitly derived
the coefficients in this polynomial from classical statistical
mechanics for a single sampling order parameter, N tot; how-
ever, we emphasize that the form of these equations remains
largely the same if a species-specific particle number (e.g., N1)
is used instead. Here, we have presented expressions for these
coefficients up to second order, but we have also demonstrated
how expressions for higher order derivatives follow directly
from the equations provided.

Furthermore, we illustrated how extrapolations from
multiple individual simulations may be combined to pro-
duce a continuous surface, defined by the chemical poten-
tials of the mixture, in a way that optimizes numerical
satisfaction of the Gibbs-Duhem equation. In concert, this
extrapolation approach enables multicomponent fluid phase
behavior to be computed over a broad, continuous range
of conditions using data generated from a systematic, small
number of flat-histogram GCMC simulations at different
conditions. Consequently, the number of overall simula-
tions necessary to compute fluid-phase diagrams and other
thermodynamic properties of multicomponent fluid mix-
tures is greatly reduced compared to other computational
approaches.

This multidimensional extrapolation approach is more
approximate than approaches such as histogram reweighting
but has the benefit of allowing one to easily infer properties
at conditions far away from those of the original simula-
tion(s). Although approximate, these extrapolations are accu-
rate enough to provide reliable thermodynamic information
over a broad range of conditions. As a result, we expect
this approach to serve as a valuable tool especially when
performing data-driven studies, such as high-throughput

screenings, which require the generation of large amounts of
reasonably accurate thermodynamic information quickly and
in a computationally efficient manner.
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