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ABSTRACT: NIST, in collaboration with Vanderbilt University, has assembled an open-source tool set for designing and 
implementing federated, collaborative and interactive experiments with cyber-physical systems (CPS). These capabilities 
are used in our research on CPS at scale for Smart Grid, Smart Transportation, IoT and Smart Cities. This tool set, 
“Universal CPS Environment for Federation (UCEF),” includes a virtual machine (VM) to house the development 
environment, a graphical experiment designer, a model repository, and an initial set of integrated tools including the ability 
to compose Java, C++, MATLABTM, OMNeT++, GridLAB-D, and LabVIEWTM based federates into consolidated 
experiments. The experiments themselves are orchestrated using a ‘federation manager federate,’ and progressed using 
courses of action (COA) experiment descriptions. UCEF utilizes a method of uniformly wrapping federates into a 
federation. The UCEF VM is an integrated toolset for creating and running these experiments and uses High Level 
Architecture (HLA) Evolved to facilitate the underlying messaging and experiment orchestration. Our paper introduces the 
requirements and implementation of the UCEF technology and indicates how we intend to use it in CPS Measurement 
Science.1 

	
	

																																																													
1	NIST	does	not	recommend	or	advocate	any	particular	technology	for	the	purposes	of	federation.	
Specific	technologies	mentioned	are	for	illustrative	purposes	only.	
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1 Introduction 
	

Cyber-Physical Systems (CPS) comprise interacting digital, analog, physical, and human components engineered for 
function through integrated logic and physics[1].  CPS integrate computation, communication, sensing and actuation with 
physical systems to fulfill time-sensitive functions with varying degrees of interaction with the environment, including 
human interaction.  These highly interconnected systems provide new functionalities to improve quality of life and enable 
technological advances in critical areas, such as personalized health care, emergency response, traffic flow management, 
smart manufacturing, defense and homeland security, and energy supply and use.  CPS and related systems (including the 
Internet of Things (IoT) and the Industrial Internet) are widely recognized as having potential to enable innovative 
applications and impact multiple economic sectors in the worldwide economy [2]. 
 
The impacts of CPS will be revolutionary and pervasive – this is evident today in emerging smart cars, intelligent buildings, 
robots, unmanned vehicles and medical devices [3]. The development of these systems cuts across all industrial sectors and 
demands high-risk, collaborative research between research and development teams from multiple institutions. Realizing 
the future promise of CPS will require interoperability between heterogeneous systems and development processes 
supported by robust platforms for experimentation and testing across domains. Meanwhile, current design and management 
approaches for these systems are domain-specific and would benefit from a more universally applicable approach. 
 
The U.S. National Institute of Standards and Technology (NIST) has partnered with the Institute for Software Integrated 
Systems at Vanderbilt University to produce an open-source tool suite for the design and implementation of federated CPS 
experiments [4]. This tool suite integrates the leading simulation engines and hardware-in-the-loop with a distributed 
modeling and simulation architecture defined by the IEEE 1516 High Level Architecture (HLA) standard [5]. The following 
sections enumerate the benefits of a federated testbed architecture, describe the challenges of federated design for CPS, and 
introduce the high-level details of the NIST tool suite. 
 

2 Federated Testbed Architecture 
 
A federated testbed architecture is integrative, reconfigurable and reproducible, scalable and useable and, as such, is agnostic 
to the implementation details and geographic location of the individual entities that participate in an experiment. During 
one experimental run, the experiment entities might be simulations running on a private cloud hosted in one data center. 
The next run of the same experiment might replace these simulations with a collection of hardware entities distributed across 
testbed facilities locally, regionally, or around the world. This federated testbed architecture, when applied to CPS research, 
must be realized across components and their facilities in order to be able to share resources, reduce costs, and enable 
experimentation at both heterogeneous and larger scales. 
  
In addition to the sharing of data and models, federation also includes the capability of a laboratory from one facility being 
able to provide both control and response signals to a laboratory located at another facility. The interactions in this type of 
remote federation are not simple data exchanges, and must contain an abstraction of the policies and disciplines employed 
at each location. This abstraction requires a governance model that communicates research and development priorities, and 
a consensus agreement that describes how the interaction between facilities will be developed and maintained. Furthermore, 
the laboratories involved must share a common architecture to facilitate data exchange, which can be thought of as an open-
source platform that provides for the interaction of data, simulation models, and, in some cases, control signals. 
 
Note that much work on the design and development of federated testbeds has been performed over the years in the forum 
where this paper is presented. Included in this work is a key reference on the recommended practice for the design of 
federated experiments, “Recommended Practice for Distributed Simulation Engineering and Execution Process (DSEEP)” 
[6]. 
 
This section discusses the benefits of a federated testbed architecture for CPS to motivate the need for an open-source 
platform for remote federation between laboratories. 
 
Integrative 
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A CPS contains co-engineered, interacting networks of physical and computational components from multiple domains of 
technology. These domains – such as smart cities, smart manufacturing, and transportation – each have technologies and 
simulation engines tailored to their individual needs and experiences. CPS experimentation requires the integration of these 
heterogeneous, domain-specific tools into a common co-simulation platform. Figure 1 illustrates a subset of the different 
entities that must be integrated together to perform a CPS experiment. 
  

 
Figure	1	Ability	to	federate	across	sectors	and	technologies,	as	well	as	virtual	or	real	instances	of	CPS.	

 
One benefit of a federated testbed architecture is that interactions among heterogeneous federates are abstracted into a 
common, high level language interface where the abstract representation can be used without regard to domain-specific 
implementation details. This allows domain-specific simulation languages, experimental prototypes, and proprietary 
hardware to be integrated into composite experiments without the need to constantly create custom adapters. This adaptation 
should be achieved in a way that is uniform in the native language of a component to ensure the repeatability of an 
experiment. Note that it is not necessary to always expose every detail of a component interface for a federated testbed – 
only so much as is required for collaboration between components. 
 
Reconfigurable and Reproducible 
 
Once a domain-specific hardware or simulation entity has been wrapped as a federate, it can be easily composed into any 
number of different federations. This capability to compose experiments from individual federates is inherent to a federated 
testbed architecture, and facilitates the rapid reconfiguration and reproduction of CPS experiments. Repeatability of 
experiments is crucial to scientific research, hence there is a need for a uniform approach to federation. 
 
Scalable 
 
Experimentation with CPS at scale potentially requires evaluating the behaviors of, and interactions among, large numbers 
of individual components. Such components can be modeled using multiple modeling tools. Where required, the behavior 
of the model can be optimized to match the behavior of its physical equivalent. Once built this way, the models of physical 
systems can be scaled up to enable experimentation with system behaviors that otherwise would be difficult to achieve using 
physical components due to cost and complexity challenges. 
 
Usable 
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A federate produced from domain-specific simulation technologies can be stored in a library with other federates abstracted 
from vastly different domains. A benefit of federated testbed architectures is a library of reconfigurable federates that 
combine: 
 
1. unique or prototype hardware that cannot be relocated, 
2. simulations created using domain-specific tools, and 
3. proprietary components. 
 
A federated testbed architecture provides the community of CPS researchers with a means of creating a rich array of different 
federates that can be incorporated into experiments without the need for significant development or domain-specific 
knowledge. Although an HLA-like integration architecture may constrain the capabilities of a federate, the libraries and 
common interfaces in a federated architecture add reusability to the development process. 

 
3 Challenges for Federated Testbeds 

 
The previous section discussed the benefits of a federated testbed architecture for the design and implementation of CPS 
experiments. However, a federated architecture – especially one that includes the potential to connect remote federations – 
leads to new challenges that would be less critical when using domain-specific and simple self-contained benchtop 
approaches. This section describes several of the unique challenges of federated testbeds. 
 

3.1 Testing and Curation 
 
It is not sufficient to address only the technical challenges required to enable federated experiments across testbeds. As 
experiments become more complex through integration of new federates, and as CPS applications become more reliant on 
experimental results to provide assurance in design and implementation, it becomes critical to characterize, validate and 
curate the individual federate models albeit within the scope of its intended use. It is likely that models developed for one 
project will be repurposed in another. The utilization of models created by others requires a means of model characterization 
that goes beyond the documentation produced solely for single test use. Methods of testing individual federates are necessary 
to gain confidence in their expected operation like unit testing [7][8] in software systems engineering. 
 
The topics of testing and curation require that a given federate be supported by life cycle management, specification of its 
features and capabilities, and control of version and function. 
 
The life cycle for federate development consists of several major steps: 
 
1) design of the federate and its interfaces; 
2) implementation of the federate in hardware or software; 
3) documentation of the federate to describe its scope and usage; 
4) development of an experimental test hardness to validate the federate behavior; 
5) archiving of the federate, its documentation, and its testing results; and 
6) the evolution of the federate with respects to defect management, enhancement and extension and versioning. 
  
We introduce here the concept of a test harness for a re-useable federate. A test harness places the federate under test (FUT) 
in a test environment where its behavior can be monitored and stimulated. The development of a federate must be kept 
synchronized with the development of its corresponding test harness. The test harness should be able to generate a pass-fail 
result to support the validation of federations on a continuous basis. This continuous integration is desirable so that 
regression tests over federates can be periodically invoked to ensure the integrity of the designs. The archived federate must 
utilize versioning so that as the federate is evolved, applications can rely on stable versions for their integration. Semantic 
versioning should be used [9]. 
 
A federate requires description so that a potential integrator of a federate can understand its capabilities and limitations. For 
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example, a federate that acts as a source of weather that provides hourly data, cannot be used in a federation that demands 
minute by minute variations. The “federate descriptor” should provide this level of detail along with the interfaces that 
describe information received and emitted from the federate. The NIST CPS Framework [1] describes a collection of 
“concerns” that a given CPS can satisfy. A federate descriptor based on the specification of these concerns addressed can 
also define the test boundaries of federate testing. The HLA standard supports a version of a federate descriptor and this 
descriptor should be extended to cover more behavioral aspects of the federate. 
 
Together, these dimensions can provide for a robust organization of federate designs and testing that, in turn, can encourage 
re-use. 

 
3.2 Communication Protocols 

 
A CPS can employ one or more communication protocols that its component devices and systems use to interact. There is 
a myriad of communications protocols used in practice for this exchange. An accurate model of the communications 
environment within a CPS is essential for measuring both individual and aggregate behavior. One approach to model this 
communication dimension would be to implement one or more native protocols within the federated experimental 
environment. This has the advantage of using the genuine communications stacks and hardware that the actual devices being 
tested or emulated utilize. An alternative approach would be to integrate one or more network simulators to emulate the set 
of required communication protocols. 
 
The first approach to implement native protocols is straightforward. However, it has the following severe shortcomings: 
 
1) difficult to create large network configurations, 
2) difficult to reproduce network traffic between experiment runs, 
3) difficult to inject protocol fault conditions into the network traffic, 
4) lack of isolation from out of band traffic present in real world deployments. 
 
These challenges inspired the creation of network simulation platforms such as OMNeT++ [10], NS2 [11], and NS3 [12]. 
These network simulators enable precise manipulation and measurement of the communication environment and increase 
the ease with which a given experiment can be reproduced. In situ communications tests are vulnerable to interference from 
coincident communications from uncontrolled sources, and varying latencies due to network design and routing. Such 
variances are important to consider in studying communications. However, they are best studied as control variables rather 
than asynchronous and non-reproducible environments. 
 
With a network simulator as a co-simulator in a federated testbed environment, more accurate and reproducible test scenarios 
can be designed. For example, precise message injection is possible with a network simulator but not necessarily with an 
actual implementation of a communications network. Also, the injection of specific faults and scenarios becomes possible, 
and reproducible, using a network simulator. 
 

3.3 Security and Privacy 
 
The federates involved in remote federations can be at different geographical locations, and are typically resident on 
different network segments under different network security administrative domains. This is a characteristic of many 
Operational Technology (OT) architectures. Often, federates behind a firewall will be prohibited from accepting message 
traffic from federates located outside of the enterprise. To enable federation in this scenario typically requires the existence 
of an outgoing connection to establish a channel for communications with external federates. 
 
Measurements in federated experiments require the same security and privacy protections as other applications in the areas 
of confidentiality, integrity, availability, and identity protection. Therefore, the federations that span multiple network 
segments must communicate through secured channels, especially when communications among federates cross enterprise 
boundaries. 
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In exposing interfaces to federates, there can be different federates with different levels of trust. For example, the developer 
of an experimental apparatus may utilize the federate interfaces for its own proprietary purposes. Yet, there may be some 
public uses of the same federate component. It should be possible to design such a federate once, where differing rights to 
access its interfaces can be determined at runtime. Therefore, it is efficient to build a federate interface that suits a variety 
of needs so that many special-purpose or experiment-unique versions do not need to be created.  
 
For example, a manufacturer may create a federate that represents a proprietary device. In experiments on the internal 
network of that manufacturer, this federate may expose a great deal of information via its interfaces and these are useful in 
testing within the enterprise. Yet, there may be features of this interface that are beneficial to access during a collaboration 
with others outside the enterprise. Rather than creating a second interface for this federate that exposes a limited set of the 
capabilities to external users, Role-Based Access Control (RBAC) [13] can be used to expose a limited subset of capability 
based on the role of each collaborator. The owner role, with access to all the features of the federate, could continue to be 
used within the enterprise. This mixed-rights uses may be desirable with different roles being asserted within the same 
experiment. 
 
Since interfaces between federates must exchange information within and outside a single enterprise environment, methods 
of connection must facilitate the traversing of such boundaries. RBAC permits a design it once and use with varying 
authorities on a per-role basis. This way, a federate can provide extensive access to authorized parties and less access for 
lower authorization classes even within a single federation. 
 
Modern enterprises are protected by firewalls and other tools to defend against cyber-intrusion. Communications methods 
that allow outbound secure connections are more permissive than those allowing inbound communications. Therefore, 
communications models that permit federation exclusively through outbound secured communications, and without virtual 
private network tunnels, are desirable. Such communication channels should be constrained to only carry experiment-
specific network traffic and not be open pipes through which unintended messaging can be injected. 
 

3.4 Community of Collaborators 
 
A requirement to facilitate widespread collaboration and evolution of a federated testbed architecture is that a community 
of developers and users forms around a common approach to identify problems, advance the technology, and increase the 
availability (and number) of integrated federate models. 
 
In the absence of such a community, independent developments continually reproduce the same innovations to integrate 
another capability into an existing base. This produces the classic N x (N-1) permutation problem of interoperability 
translations. For example, if there are 5 solvers, each community has to create adaptors to integrate the other four into their 
scheme – thus 20 adaptations instead of 5. A robust community, should it be successfully formed, allows each new capability 
to be integrated once extending the scope and power of experimental capabilities that preceded it. 

 
4 Universal CPS Environment for Federation (UCEF) 

 
A major challenge to the federated testbed architecture discussed in this paper is the requirement for a common language 
and a set of development tools that facilitate development in that common language. The concept of a testbed-in-a-box is 
one option that could mitigate this challenge and provide a critically needed resource to the CPS research. Ideally, this 
would involve a software platform that handles most of the essential functionality of CPS testbeds such as monitoring 
sensors, controlling actuators, logging data, device interoperability, and co-simulation, as well as an extensible framework 
that allows different CPS applications to be developed on the platform. A facility could make this software available for 
download along with guidance on modeling/simulation tools, sensors, and actuators that have been tested to work with the 
platform.  This could help research laboratories create testbeds much faster than the current approach of building testbeds 
from scratch with very little shared knowledge and experience.  In addition, this could spur an open source community 
that builds applications with this platform, further increasing the adoption of CPS technology nationwide by domain 
experts and citizen scientists. This section describes the testbed-in-a-box developed at NIST called the Universal CPS 
Environment for Federation (UCEF). 
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4.1 Lightweight Wrappers – A Uniform Approach 

 
One benefit of federated architectures is the ability to integrate simulators, emulators, hardware-in-the-loop and other 
domain-specific tools to take advantage of leading technical capabilities. To avoid the onerous requirement to re-implement 
each of these different entities in a common language, a means of lightweight integration is desirable that integrates a 
federate using a ‘template’ that depends only on the native language of the federate. The optimal concept is to provide only 
as much adaptation of an existing component as required for the exchange of information needed for a collaborative 
experiment. That includes being able to recognize its joining and departure, its ability to be synchronized with other 
federates, and to react to pauses and resume as the experiment progresses. Figure 2 illustrates how models built in different 
tool chains can be integrated using this concept of light adaptation. 
 

  
Figure	2	Lightweight	Adaptation	for	Federation2	

 
This figure illustrates four different types of domain-specific hardware and simulation entities, and how light wrappers can 
be used to integrate these entities to a common communication bus. By adding a thin layer of adaptation and a common 
communication means, models constructed on these otherwise separate platforms can be integrated for federated 
experimentation. 
 
The initial release version of UCEF applies this concept of lightweight wrapping to incorporate several simulation engines 
with an implementation of HLA called Portico [14]. Support has been added for the simulators LabVIEWTM and SimulinkTM, 
as well as a grid simulator used in the energy industry called GridLAB-D. Network simulation is also possible in this initial 
release using the network simulator OMNeT++. In addition to these simulation engines, both the Java and C++ programming 
languages are incorporated into UCEF to support the development of software interfaces for hardware-in-the-loop and other 
software with socket and web application user interfaces. 
 

4.2 Graphical Development Environment 
 
Figure 3 shows the Web-based Graphical Modeling Environment (WebGME) developed by Vanderbilt University, which 
has been extended to support the development of HLA federations. Federates (green boxes) and messaging interactions 
(publications and subscriptions) between federates (white boxes) can be dragged in from a component palette and linked 

																																																													
2	NIST	does	not	recommend	or	advocate	any	particular	technology	for	the	purposes	of	federation.	
Specific	technologies	mentioned	are	for	illustrative	purposes	only.	
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together to quickly create federations. All of the simulation engines wrapped into UCEF as discussed in the previous 
subsection are available for use in the component palette. A code generator integrated with the graphical environment can 
turn these models into executable code.   
 

 
Figure	3	Web-based	Modeling	Environment	in	UCEF	

 
4.3 Experimental Dashboards 

 
Situational awareness of the progress of an experiment and its individual components is crucial when running federated 
experiments. Figure 4 illustrates how this situational awareness can have dimensions of geographic dispersion and federate 
status (center), dashboards of experiment status (bottom right), and graphical status of experimental measurements in 
progress (top left and right). This capacity for situational awareness resembles control center consoles deployed across all 
CPS sectors, and its addition to a federated testbed architecture allows research into the human factors of large scale CPS 
deployments. 
  

 
Figure	4	Immersive	Situational	Awareness	

 
The FIWARE platform [15] developed by an open-source community provides the capability to build experimental 
dashboards for CPS. This capability has been integrated into UCEF through development of a wrapper that allows 
interactions exchanged in an HLA federation to be pushed into the FIWARE environment. 
 

5 Conclusion 
 
UCEF presents a valuable assembly of technologies that enables the design, implementation, and execution of experiments 
through a federated architecture that is reconfigurable, reproducible, scalable, and usable.  



	

	
“Universal CPS Environment for Federation (UCEF)”	 	

	 	

 
By assembling this tool set in an easy to acquire and maintain form, better experiment design and more complex scenarios 
can be achieved. 
 
NIST and Vanderbilt seek to inspire an Open Source Community around UCEF so that, as more adaptors are created and 
libraries of modeling components are shared, researchers and other stakeholders of CPS can benefit from these cumulative 
capabilities. 
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