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The field of device-independent quantum cryptography has seen enormous success in the past 
several years, including security proofs for key distribution and random number generation that 
account for arbitrary imperfections in the devices used. Full security proofs in the field so far are 
long and technically deep. In this paper we show that the concept of the mirror adversary can be 
used to simplify device-independent proofs. We give a short proof that any bipartite Bell violation 
can be used to generate private random numbers. The proof is based on elementary techniques and 
is self-contained. 

Quantum cryptography is based on, among other phys-
ical principles, the concept of intrinsic randomness: cer-
tain quantum measurements are unpredictable, even to 
adversary who has complete information about the pro-
tocol and the apparatus used. This intrinsic random-
ness allows a user to generate cryptographic keys that 
are guaranteed to be secure without the need for compu-
tational assumptions. 
Device-independent quantum cryptography is based 

on a more specific observation: two or more devices 
that exhibit superclassical probability correlations (when 
blocked from communicating) must be making quantum 
measurements, and therefore must be exhibiting random 
behavior. This allows the generation of random numbers 
even when the devices themselves are not trusted. This 
idea has been used in multiple cryptographic contexts, 
including randomness expansion and amplification [1, 2], 
key distribution [3], and coin-flipping [4], and has been 
realized in experiment [5, 6]. 
Despite the simplicity of the central idea, proofs for 

device-independent quantum cryptography are challeng-
ing and took several years to develop. One of the central 
challenges is proving that the random numbers generated 
by a Bell experiment are secure even in the presence of 
quantum side information. (This level of security is nec-
essary for quantum key distribution, and also for random 
number generation if one wishes to use the random num-
bers as inputs to another quantum protocol.) While clas-
sical statistical arguments can be used to show that the 
outputs of a Bell violation are unpredictable to a classi-
cal adversary (see., e.g., [7, 8]) these proofs do not carry 
over to the case of quantum side information because of 
the notion of information locking [9]. 
Known proofs of Bell randomness in the presence of 

quantum side information have used tools that are spe-
cific to the context: [10] uses reconstruction properties of 
quantum-proof randomness extractors, and [11–14] are 
based on inductive arguments centered on the quantum 
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Renyi divergence function. Such proofs are long and 
mathematically complex. The recent paper [14] provides 
an easily adaptable framework for proving new results on 
randomness generation, but it is based on the entropy ac-
cumulation theorem [13], the proof of which is technically 
deep. 
The goal of the current paper is provide a compact se-

curity proof of Bell randomness in the presence of quan-
tum side information. The proof is based on the concept 
of the mirror adversary – the idea that a quantum adver-
sary who attempts to guess the random numbers by mir-
roring the devices’ measurements is almost as good as an 
optimal adversary. This idea was discussed in a previous 
paper by the author [15], and is essentially a reframing 
of the commonly used idea of pretty good measurements 
(see expression (7) below). 
In the current paper the mirror adversary technique 

is combined with techniques drawn from other sources 
[16, 17] to give a compact proof of private random number 
generation from Bell experiments. (The paper does not 
attempt to maximize the performance parameters, which 
are suboptimal compared to [10–14].) The proof is self-
contained, with material from other sources reproved as 
needed. The only assertions taken for granted in the 
proof are Azuma’s inequality (see Theorem 7.2.1 in [18]) 
and Holder’s inequality (see Corollary IV.2.6 in [19]). 
The main result is the following (see Theorem 7). 

Theorem 1 (Informal) Suppose that two untrusted de-
vices exhibit a Bell violation of δ > 0 over N rounds. 
Then, Ω(Nδ6) private random bits can be extracted from 
the outputs of the devices in polynomial time, using O(N) 
bits of public randomness (that is, randomness known to 
the adversary but not the devices). The resulting private 
bits are secure against quantum side information. 

The mirror adversary technique is a general way of 
reducing security questions in the quantum context to 
classical statistical statements, and it is potentially use-
ful for any cryptographic task in which security must be 
proved against a passive entangled adversary. 
The author thanks Honghao Fu, Yi-Kai Liu, Ray Perl-

ner, and Thomas Vidick for comments on this paper. 
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Preliminaries. Throughout the paper, a register Z 
is a finite-dimensional Hilbert space with a fixed or-
thonormal basis (the elements of which we call basic 
states). A state φ of Z is a density operator on Z. Let 
|Z| = dim(Z). If Z = Z1 ⊗ Z2 (which we may abbreviate 
as Z = Z1Z2) we will write φZ1 for TrZ2 φ. If Z2 is a 
register and e is a basic state of Z2, then φZ1 denotese 
TrZ2 [φ(IZ1 ⊗|ei he|)]. As a convenience, if X is an opera-
tor on Z and Y is an operator on Z1, then the expression 
XY means X(Y ⊗ IZ2 ) and the expression Y X means 
(Y ⊗ IZ2 )X. 
We give a formalism for nonlocal games and the quan-

tum strategies used in such games. We begin by formal-
izing measurements. An (N -fold) measurement strategy 
on a register Q is a family of positive operator-valued 
measures on Q of the form n� o 

F t , (1)u t∈T N 
u∈UN 

where T and U are finite sets. Such a strategy is sequen-
tial if for any t1, . . . , ti ∈ T and u ∈ UN , the operator X 

F t1 ···ti F t1 ···titi+1 ···tn 
u := (2)u 

ti+1 ···tn 

is independent of the values of ut+1 · · · un. (In such a 
case we can simply write F t1 ···ti for F t1 ···ti .) Sequential u1 ···ui u 
measurements model the behavior of a quantum player 
who receives inputs u1, . . . , uN and produces outputs 
t1, . . . , tN in sequence. In such a case, for any u1, . . . , ui 

and t1, . . . , ti for which F t1 ···ti 6= 0, there is a 1-fold mea-u1 ···ui 

surement strategy on Q given by o�n� �−1/2 � �−1/2 
� 

F t1 ···ti t1 ···ti+1 F t1 ···ti 
u1 ···ui u1 ···ui 

Fu1 ···ui+1 , 
ti+1 ui+1 

which defines the behavior of the player on the (i + 1)st 
round conditioned on the inputs sequence u1, . . . , ui and 
output sequence t1, . . . , ti for the first i rounds. We call 
these the conditional measurement strategies induced by 
{{F t}t}u.u

An r-player nonlocal game H consists of the following 
data: (1) a finite set of input strings I = I1 × · · · × Ir 

and a finite set of outputs strings O = O1 × · · · × Or 

(2) a probability distribution p on I, and (3) a scoring 
function L : I × O → R. For such a game, HN denotes 
the N -fold direct product of H (i.e., the game the game 
played N times in parallel, with independently chosen 
inputs, and where the score is the sum of scores achieved 
on each of the N copies of the game). 
A measurement strategy for H on a register Q is a 

measurement strategy on Q of the form {{F o}o∈O}i∈I .i 
Such a strategy is n-partite Q = Q1 ⊗ · · · ⊗ Qn and 

F o = F o1 ⊗ · · · ⊗ F on (3)i 1,i1 n,in 

where {{F ok }ok ∈Ok }ik ∈Ik are measurement strategiesk,ik 

on Qk for k = 1, 2, . . . , n. A sequential measurement 
strategy for the game HN is an n-partite sequential mea-
surement strategy if all of its conditional strategies are 

n-partite. (This class of strategies models the behavior 
of players who must play the different rounds of the game 
in sequence, and who can communicate in between but 
not during rounds.) 
If F is a strategy on a register Q, and φ is a state of Q, 

then we refer to the pair (F, φ) simply as a (quantum) 
strategy for Q. Let ω(H) denote the supremum of the 
expected score at G among all quantum strategies. 

Proposition 2 Let H be an r-player nonlocal game 
whose scoring function has range [−K, K], and let (F, φ) 
be an n-partite sequential measurement strategy for HN . 
Then, the probability that the score achieved by (F, φ) 
exceeds (ω(H) + δ)N is no more than 

−Nδ2/8K2 

e . (4) 

Proof. For each i = 1, 2, . . . , N , let Wi denote the score 
achieved on the ith round, and let 

W i = E[Wi | Wi−1 · · · W1]. (5) �Pi 
�N 

The sequence (Wi − W i) forms a Martin-j=1
i=1 

gale, and thus by Azuma’s inequality (noting that� � �Wi − W i� ≤ 2K) the probability that 

NX 
(Wi − W i) > δN (6) 

i=1 

is upper bounded by (4). Since W i ≤ w(H), the desired 
result follows. � 
For convenience, we also make the following definition. 

A Bell game is a game G for which we make the following 
assumptions: 

1. The input alphabets and output alphabets are all 
equal to {0, 1, 2, . . . , n − 1} for some n. (We call n 
the “alphabet size.”) 

2. The input distribution is uniform. 

3. The range of the scoring function is [−1, 1]. 

4. The optimal classical score is 0. 

Note that any Bell inequality can be put into this form 
(by an appropriate affine transformation of the scoring 
function). 
The mirror adversary. If α is a quantum-classical P 

state of a register QC (that is, a state of the form αc ⊗ 
|ci hc|) then the pretty good measurement induced by α 
on Q is the C-valued measurement given by 

{(αQ)−1/2αQ(αQ)−1/2}c∈C . (7)c 

This is a common construction. In the cryptographic 
context it can be thought of as a “pretty good” attempt 
by an adversary to use to Q to guess C. 
Let ρ be a state of the register Q. Then, we can con-

struct a purification for ρ as follows: let Q0 be an iso-P 
morphic copy of Q, let Φ = e ⊗ e ∈ Q ⊗ Q0, where e 

c 
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Parameters: 

- A 2-player Bell game G with alphabet size n. 

- A real number δ > 0 (the degree of Bell violation). 

- Positive integers N (the number of rounds), and J 
(the output size). 

1. A pure tripartite state ABE is prepared by Eve, and 
with A possessed by Alice, B possessed by Bob, and 
E possessed by Eve. 

2. The referee generates uniformly random numbers 
x1, y1 ∈ {1, 2, . . . , n}, gives them as input to Alice 
and Bob, respectively, who return outputs s1, t1. 
This is repeated (N − 1) times to obtain input 
sequences x1, . . . , xN , y1, . . . , yN and output se-
quences s1, . . . , sN , t1, . . . , tN . 

3. The referee checks whether the average score ex-
ceeds δ. If not, the protocol is aborted. 

4. Let D be a 2-universal hash family from SN to FJ 
2 

with |D| ≤ 4 SN 2 
(see subsection A 3 in the ap-

pendix). The referee chooses F ∈ D at random and 
outputs F (s). 

����

Let G be a Bell game and (ρ, M, N) a strategy for G. 

1. The register AB is prepared in state ρ. For i = 
1, 2, . . . , n, Alice applies the measurement {Mi

s} to 
A and records the result in a classical register Si. 

2. Referee gives Alice and Bob randomly chosen inputs 
x ∈ X and y ∈ Y, respectively. 

3. Alice returns the register Sx. Bob measures B with 
{Ny

t }t and reports the result. 

FIG. 2. A process in which Alice is forced to behave classi-
cally. 

Let f = Tr[αQ ] andsuccRsuccX 
f 0 = Tr[αQ ]. (10)c,succRc,succ

c 

Then, 

 

 p
f 0 |C| − f, 

denotes the completely mixed state on C. 

αQC − αQ 
succ succ ⊗ UC ≤ (11)

1 

where UC 
FIG. 1. The random number generation protocol. 

the sum is over all basic states of Q. (We call Φ the Bell 
state of QQ0.) Let ρ̂ denote the projector onto the one-
dimensional subspace of Q ⊗ Q0 spanned by ( 

√ 
ρ ⊗ IQ0 )Φ. 

We call ρ̂ the canonical purification of ρ. Note that 
TrQ0 ρ̂ = ρ while TrQρ̂ = ρ> = ρ. 
The following proposition implies that a “pretty good” 

adversary in a Bell experiment simply mirrors the de-
vice’s measurements. (As a consequence, if the devices’ 
measurement were sequential, so are the adversary’s.) 

Proposition 3 Let ρ be a state of a register Q, and let 
ρ̂ be a state of registers QQ0 which is a canonical pu-
rification of ρ. Let α be the state QC that arises from ρ̂
by performing a measurement {Rc}c∈C on Q0 and storing 
the result in a register C. Then, the pretty good measure-
ment induced by α on Q is isomorphic to {Rc}c∈C . 

The proof is given in the appendix. Note that the 
quantity f is the probability of the event that both Z = 
succ and that an adversary who uses the pretty good 
measurement will guess that Z = succ. The quantity 
f 0 is the probability that the previous event holds and 
the adversary guesses C. If f 0 = f/ |C| (that is, if the 
adversary’s guess at C is no better than random) then 
the term on the right side of (11) is equal to zero. 
Guessing games. The following is roughly the same 

as the construction of immunization games in [17]. Let 
G = ((X , Y), (S, T ), p, L) be a 2-player Bell game with 
alphabet size n, and let K > 0. Then we define a new 
3-player game GK as follows. 

1. The input alphabets for the three players are X , Y 
and X ×Y, respectively, and the output alphabets 
are S, T and S, respectively. 

2. The probability distribution is uniform on triples Proof. 
|ci hc| ⊗ ρRc ρ, 

P The state α is given by the expression α = √ √ of the form (x, y, (x, y)), with x ∈ X , y ∈ Y.and αQ = ρ. The pretty good c 
measurement induced by α on Q is thus isomorphic to √ √ {ρ−1/2 ρRc ρρ−1/2} = {Rc}. � 
The next proposition, which is a modification of a re-

sult from [16], expresses the fact that if the pretty good 
measurement yields (almost) no information about a clas-
sical register C, then that register must be (almost) uni-
formly random. We state a version that will be useful in 
the device-independent context. Let Z denote a classical 
register with two basic states, abort and succ. 

Proposition 4 Let α be a state of a tripartite register 
QCZ which is classical on CZ. Let {Rz} and {Rcz }
denote the pretty good measurements on Q: 

= (αQ)−1/2αQ (αQ)−1/2 , (8)Rcz cz

Rz = (α
Q)−1/2αQ(αQ)−1/2 . (9)z 

3. The score assigned to an input triple (x, y, (x, y)) 
0and output triple (s, t, s0) is L(x, y, s, t) if s = s , 

and is (−K) otherwise. 

Proposition 5 For any Bell game G with alphabet size √ 
n, ω(GK ) ≤ 4n/ K. 

Our proof is similar to [17]. We will use the process 
described in Figure 2. 
Proof. Let Y = (Γ, M, N, P) be a quantum strategy 

for GK on a space A ⊗ B ⊗ E. Let ρ = ΓAB , and for any 
x ∈ X , s ∈ S, let ρs denote the subnormalized state of x 
AB induced by the measurement P s on E.xy 
For any x, y, the probability that Alice’s and Eve’s out-

puts will disagree when the input is (x, y, (x, y)) is given 



4 P 
by the quantity (1 − Tr(Msρs 

s x x)), which we denote by 
δx. Note that if the average failure probability δx/n - A 2-player Bell game G with alphabet size n.x 
exceeds 1/K, then (since a score of −K is awarded when 

- A real constant δ > 0 and positive integers N, J . 
Eve fails to guess Alice’s output) the score achieved by 

P Parameters: 

Y - A bipartite state Σ of registers AB.obviously cannot exceed 0. So, we will assume for the 
remainder of the proof that δx/n ≤ 1/K. 1. Registers ABA0B0 are prepared in the canonical pu-x 
By Proposition 8 in the appendix, we have rification of the state Σ. 

P 






 

X 
MsρMs − ρx x 






 
≤ 4

p
δx (12) 

2. The referee prepares n-valued registers 
X1, . . . , XN , X1

0 , . . . , X 0 
1 , . . . , Y N 

0 ,N Y1, . . . , YN , Y 0 

and D-valued registers F, F 0 (where D denotes the 
hash family from step 4 in Figure 1) so that for 

s 1 

for any x, y. Therefore if we let Wx denote the com- each register Z the corresponding primed register 
Z0A given by is in a Bell state with Z. The referee gives all pletely positive trace-preserving map on 

MsXMs 
x x

equalities for the states obtained by applying the maps 3. The referee measures the registers X, Y in the stan-
Wx sequentially: dard bases to obtain x1, . . . , xN and y1, . . . , yN , 

which are given sequentially to Alice and Bob who 
kWiWi−1 · · · W1(ρ) − ρk (13)1 return outputs s1, . . . , sN , t1, . . . , tN . 

P 
X 7→ primed registers to the adversary. , we obtain the following distance in-s 

i

≤ kWiWi−1 · · · Wj (ρ) − Wi−1Wi−2 · · · Wj+1(ρ)k
X 4. The referee checks whether the average score ex-

ceeds δ. If not, the referee considers the protocol 1 
j=1 aborted. If so, the referee measures F , and then 

computes V := F (S). 
δj . (14) 5. The adversary carries out step 3 above herself, us-

ing the registers A0, B0 , X0 , Y0 and the conjugates of 

i i

≤ kWj (ρ) − ρk ≤ 41 

XX 

j=1 j=1

p
the measurements used by Alice and Bob, to obtain 
outputs S0 , T0 . If the average score at G is less than (Here we have used the fact that k·k is non-increasing 1 

under quantum processes.) δ, the adversary considers the protocol aborted. If 
Observe that in the process in Figure 2, the state that not, she computes V0 := F 0(S0). 

Alice and Bob measure at step 3 is separable, and so their 
expected score cannot exceed 0. On the other hand, by 

FIG. 3. The mirrored random number generation protocol. (14), the state of the register AB is never more than trace 

expected score achieved in Figure 2 also cannot be less 

Xn
p

p
P

Pn
distance 4 δj from the original state ρ, and so the j=1 

Setting K = (8n/δ)2 yields the desired result. �n
than ω(G, Y ) − 4 δj . Thus we have j=1 

Note that the event ((V = V0) ∧ succ ∧ succ0) can 
S0) ∧ succ ∧ succ0) occurs, occur only if either ((S =p

ω(G, Y ) ≤ 4
j=1 

δj (15) or if ((S 6= S0) ∧ succ ∧ succ0) occurs but nonetheless 
F (S) = F (S0). Since F is chosen from a 2-universal hash 

√ qP family, we have 
n

which implies ω(G, Y ) ≤ 4 n j=1 δj . Since we have 

≤ n/K, this yields the desired result. �
P P((V = V0 ∧ succ ∧ succ 0)assumed δxx 

Security proof. We will now prove the security of 
the protocol in Figure 1 by considering the “mirrored” 
version of the protocol as shown in Figure 3. 

Proposition 6 For the process in Figure 3, let succ 
0and succ denote the events that the referee and the ad-

versary consider the protocol to have succeeded (respec-
tively). Then, 

−Ω(Nδ6/n4)P((S = S0) ∧ succ ∧ succ 0) ≤ e . (16) 

−Ω(Nδ6/n4 

≤ e ) + 2−J P(succ ∧ succ 0). 

By Proposition 3, the register V0 in Figure 3 is precisely 
the result of the adversary using a pretty good measure-
ment in Figure 1 in order to guess V. Thus by Propo-
sition 4 (with C = V and Q = XYFE), we obtain the 
following. 

Theorem 7 Let ρ denote the final state of the registers 
in Figure 1. Then, 

ρVXYFE − UV ⊗ ρXYFE 

succ succ 



 
1 
≤ 2J/2−Ω(Nδ6/n4). �

Proof. For any K ≥ 1, if the three events on the left 
side of (16) all occur, then Alice and Bob and the adver-
sary have achieved an average score of at least δ at the 
repeated game (GK )

N using a sequential tripartite strat-
egy. By Propositions 2 and 5, the probability of such a 
score is no more than 

√ 
exp(−N(δ − 4n/ K)2/8K2) (17) 

Note that if we fix δ, n and let J = bcNc for some 
sufficiently small c > 0, the expression on the right of the 
inequality above vanishes exponentially. Thus random 
number generation with a linear rate and negligible error 
term is achieved. 
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Appendix A: Supplementary Proofs Proof. Our proof is similar to that of [20], Lemma I.4. 
First suppose that α is concentrated on a single basic 

1. The proof of Proposition 4 state of C, i.e., Pα(C = z) = 1 for some z. Then, 

Tr((P z)α) = 1 − δ, 
We follow the proof of Lemma 4 in [16]. Let X = αQ 

and therefore 
αQC 
succ. Note that Tr(X) = 1, and therefore and Y 

X1/d 


 

 

= 
kP z αP z − αk= 1 for any d. By Holder’s inequality, we have 1 

(P z)⊥αP z + (P z)α(P z)⊥ + (P z)α(P z)⊥ 
d 

 

the following. = 

1

 

 

 

 


 

Y − Y Q ⊗ UC (P z)⊥αP z k1+k (P z)α(P z)⊥ 

(P z )⊥αP z 
1 

(P z )⊥









(P z )⊥α(P z)⊥≤ +1 

X−1/4(Y − Y Q ⊗ UC )X
−1/4 

1



4 







 




 



 



X1/4 ⊗ IC = 2 + δ≤ 

 

√ √2


 αP z≤ 2 α + δ 
X1/4 ⊗ IC 

2 2· 

√ 
δ. 

q
p 1

q
4 k(P z)⊥α(P z )⊥k

(1 − δ)δ + δ 

≤ 2 kP zαP z k + δ1�� �1/2�2
1/4 1/4

X−1/4(Y − Y Q ⊗ UC )X
−1/4 = |C| |C|· Tr = 2� �� �2 

� 
≤ 31/2 

Tr X−1/4Y X−1/4 = |C| √P 
And, kP z αP z − P cαP ck ≤ δ ≤ δ which yields the c 1ih 

−2Tr X−1/2Y X−1/2(Y Q ⊗ UC )X
−1/4 desired result. 

To general case now follows, since any state of CQ is�� ��1/2�2 is a convex combination of states that are concentrated 
+Tr X−1/4(Y Q ⊗ UC )X

−1/4 

on a single value of C, the function k·k is convex, and 1� �� � the square root function is concave. ��2
1/2 

= |C| Tr X−1/4Y X−1/4 

�� ��1/2�2 3. Two-universal hash families 1 
X−1/4(Y Q)X−1/4− Tr 

|C| 
, 

We make use of some standard ideas (see, e.g., section 
where we have used the fact that Tr[(Y Q ⊗ UC )Z] = 
1 Tr[Y QZQ] for any Hermitian operator Z on QC. By|C|
substitution we obtain the desired result. 

2. Predictable measurements 

We reprove an additional result used by other au-
thors [17, 20]. The following proposition asserts that if 
a quantum-classical state of a register QC is such that 
C can be accurately guessed from a measurement on Q, 
then that same measurement does not disturb the state 
by much. 

Proposition 8 Let QC be a classical quantum register 
in state α, and let {P c}c be a projective measurement on 
Q whose outcome agrees with C with probability 1 − δ. 
Then, 

4.6.1 in [21]). Let P, R be finite sets with |R| ≤ |P |. 
Then, a set of functions D from P to R is 2-universal if 
for any distinct p, p0 ∈ P , the probability that a function 
F chosen uniformly at random from D will satisfy F (p) = 
F (p0) is less than or equal to 1/ |R|. 

Proposition 9 Let P be a finite set and let u be a posi-
tive integer with 2u ≤ |P |. Then there exists a 2-universal 

2
set of functions from P to Fu of size ≤ 4 |P | .2 

Proof. Let v be such that 2v−1 < |P | ≤ 2v . Without 
loss of generality, we may assume that P ⊆ F2v . Let D0 

be the set of all affine endomorphisms (X 7→ aX + b) of 
F2v . Fix a function T : F2v → Fu such that each element 2 
of R has exactly 2u−v pre-images, and let D = T ◦ D0 . 

2
Note that |D| ≤ |D0| = (2v )2 ≤ 4 |P | . 

0 0For any p 6 p and q, q in F2v , there is exactly one = 
function in D0 which maps (p, p0) to (q, q0). Thus the 
distribution of (F (p), F (p0)) on P × P is uniform when F 

√ is chosen at random from D0, and likewise (T ◦ F (p), T ◦ 




 

X 
P cαP c − α 






 
≤ 4 δ. (A1) F (p0)) is uniform on R × R. The desired result follows. 
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