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Abstract—Fabricating powerful neuromorphic chips the size 

of a thumb requires miniaturizing both hardware synapses 

and neurons. The challenge for neurons is to scale them down 

to submicrometer diameters while maintaining the properties 

that allow for reliable information processing: high signal to 

noise ratio, endurance, stability, reproducibility. The best way 

to test if an artificial neuron possesses these characteristics is 

to quantify its ability to realize an actual cognitive task. Here 

we analyze the performance of spin-torque nano-oscillators 

for Reservoir Computing. 

I. INTRODUCTION 

Reservoir computing is based on a neural network 

designed to process temporal waveforms (Fig. 1) [1], [2]. The 

reservoir is composed of non-linear neurons that are 

recurrently connected through fixed connections (Fig. 1a). 

Input waveforms modify the activities of neurons inside the 

reservoir and the perturbed activities propagate through the 

recurrent network. The outputs of the reservoir are linear 

combinations of some or all neuron responses in the reservoir. 

The coefficients of these weighted sums are trained to obtain 

the desired outputs. A reservoir can classify waveforms due to 

the non-linearity of its neurons. It can also perform prediction 

tasks due to the recurrent connections which allow a fading 

memory of past inputs [3]. The limited number of connections 

to train make reservoir computing a good starting point to test 

if a novel technology is fit for neuromorphic computing.  

Using time-multiplexing, a reservoir can be emulated with 

a single neuron, which plays the role of all neurons one after 

the other (Fig. 1b) [3]. This strategy requires that the state of 

this neuron at time t+dt depends on its state at time t, in the 

same way than a downstream neuron usually depends on the 

state of upstream neurons. This behavior can be achieved by 

pre-processing the input through multiplication with a binary 

fast-paced sequence that drives the oscillator into a transient 

state. We have recently shown that a single spin-torque nano-

oscillator can implement reservoir computing through time 

multiplexing [4]. Despite the sub-micrometer diameter of the 

spintronic artificial neuron, the experimental results for 

spoken digit recognition reach state of the art for existing 

hardware and software (99.6 % recognition). Here, by 

analyzing a simple task, the classification of sine and square 

waveforms, we give a recipe for high classification 

performance with spin-torque nano-oscillators. 

II. EXPERIMENTAL PROCEDURE  

Spin-torque nano-oscillators (Fig. 2a) are magnetic tunnel 

junctions driven by dc current injection into a regime of 

sustained magnetization precession [5]. Magnetic oscillations 

are converted into voltage oscillations 𝑉𝑜𝑠𝑐 through tunnel 

magneto-resistance (Fig. 2c). Our oscillators have FeB free 

layers with diameters of 375 nm, and a magnetic vortex as a 

ground state. A schematic of the experimental set-up is 

provided in Fig. 2b. We use the dc current to set the amplitude 

of voltage oscillations �̃� in the absence of inputs, and apply 

the input waveforms as an additional superposed ac current. 

To compute, we use the fact that the amplitude of voltage 

oscillations across the junctions, �̃�, is a non-linear function of 

the injected current, as shown in Fig. 2d.  

Figure 3 illustrates the procedure for reservoir computing. 

An input waveform, composed of randomly arranged periods 

of sines and squares, is shown in Fig. 3a [6]. The pre-

processed input is displayed in Fig. 3b. It multiplies the input 

segment-wise with a binary sequence which has a total 

duration 𝜏 and is composed of 𝑁𝜃 points separated by a time 

interval 𝜃  (𝑁𝜃  = 𝜏 / 𝜃). The number of points in the binary 

sequence, 𝑁𝜃, defines the size of the emulated network. For 

clarity, we have chosen in Fig. 3 to illustrate the working 

principle with a small neural network of only 12 neurons (𝑁𝜃 

= 12). The non-linear response of the amplitude of voltage 

oscillations �̃� to the pre-processed input is shown in Fig. 3c.  

The response of the network is shown in Fig. 4a in a 

zoom-in of the response �̃�  to a single input segment of 

duration 𝜏. Thanks to the oscillator non-linearity, each voltage 

amplitude value �̃�𝑖 (i = 1…12) is a non-linear transform of the 

input value. In addition, �̃�𝑖+1 depends on �̃�𝑖. Indeed, magnetic 

oscillations have a relaxation time of about 300 ns, larger than 

the time interval 𝜃 = 100 ns between each �̃�𝑖. The equivalent 

ring neural network is illustrated in Fig. 4c. The output of the 

neural network (Fig. 4b) is a sum of all �̃�𝑖 : output = ∑ 𝑤𝑖�̃�𝑖
𝑁𝜃
𝑖=1  

weighted by the strength of each connection, 𝑤𝑖  chosen to 
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make the output match the target. The target for the output is a 

constant value for each waveform: one for squares, and zero 

for sines [6]. This output is reconstructed on a computer from 

the sampled experimental oscillator response �̃� by calculating 

the optimal weights through matrix inversion. Fig. 5 shows the 

reconstructed output obtained by experimentally emulating a 

24-neuron network. The root mean square deviation between 

target and output is 11 %, which is small enough to distinguish 

between sines and squares without any error (perfect 

classification) for the chosen choice of parameters: dc current 

= 7.2 mA, magnetic field = 447 mT, input amplitude = 500 

mV (equivalent to 6 mA). 

III. RESULTS 

The classification performances vary strongly depending 

on the experimental parameters. Indeed, the voltage amplitude 

�̃� (Fig. 6), the non-linearity 𝜕2�̃� 𝜕𝐼2⁄  (Fig. 7) and the voltage 

noise ∆𝑉  (Fig. 8), vary considerably with dc current and 

magnetic field. Since spin-torque oscillators have a small 

magnetic volume, thermal noise affects the magnetization 

dynamics. The resulting voltage amplitude noise is large for 

large non-linearity, which quantifies the sensitivity of the 

system to perturbations [7]. The correlation between voltage 

noise and non-linearity appears clearly in the comparison of 

Figs. 7 and 8. Neuron non-linearity is a key ingredient for 

classification as it allows the separation of input data [3]. On 

the other hand, noise in neuron response �̃� is detrimental for 

classification as it directly affects the output = ∑ 𝑤𝑖�̃�𝑖
𝑁𝜃
𝑖=1 .  

Fig. 9 shows the classification performance as a function 

of dc current and field. We find good performance by 

choosing a bias point with intermediate non-linearity and 

therefore intermediate noise, and where the neuron output �̃� 

changes strongly in response to the ac input. Such bias points 

allow enough non-linearity to classify while keeping large 

enough signal to noise ratios to distinguish between outputs. 

As can be seen from Fig. 10, the larger the ac input variations 

(between 300 mV and 500 mV), the lower the rms deviations 

between output and target. Indeed, larger inputs lead to larger 

responses and improved signal to noise ratios. 

Fig. 10 shows the evolution of the rms deviations between 

the output and the target as a function of the length of the time 

interval 𝜃  between �̃�  samples. The evolution is completely 

different when the target is in exact phase with the input (Fig. 

10a) and when the target is shifted by 𝜏/2 with respect to the 

input (Fig. 10b). Indeed, classification of sines and squares 

requires the network to have a short term memory of past 

inputs. This comes from the fact that the two input waveforms 

have some overlap: some input points in the two different 

patterns are identical (+1 and -1 at their extrema). Therefore 

they can only be distinguished if the output of the network 

depends on the previous values of the input. When input and 

target are in phase (Fig. 10a), the only source of memory in 

the network comes from the relaxation time of the oscillator, 

of the order of 300 ns in our case [3]. This is why the 

classification performances are degraded for 𝜃 > 300 ns in Fig. 

10a. For sampling intervals that are too long, �̃�𝑖+1  does not 

depend on �̃�𝑖  anymore, and input sines and squares become 

difficult to separate. When 𝜃  is much smaller than the 

oscillator relaxation time, the oscillator cannot respond to the 

rapidly varying pre-processed input. Changes in �̃�  become 

very small, the signal to noise ratio degrades and poor 

classification follows.  

There is an optimum for the sampling interval 𝜃. In our 

case this optimum is 𝜃 =100 ns for ac input amplitudes of 500 

mV. However, there is another way to endow the network 

with memory. Since the output is reconstructed offline after 

recording the whole response �̃� to inputs, it is possible to shift 

the target with respect to the input [8]. In that case, some of 

the samples �̃�𝑖   used for reconstructing the output belong to 

the previous segment 𝜏. In other words, the current output is 

reconstructed partly from the present value of the input and 

partly from the last value of the input. The best results with 

this strategy, shown in Fig. 10b, are obtained when the 

number of samples is evenly distributed between the past and 

current input value. As in Fig. 10a, results are bad for small 𝜃 

due to the low signal to noise ratio but they are not degraded 

for large 𝜃  values. The artificially introduced memory 

compensates for the loss of intrinsic memory. 

The recipe for high performance classification through 

reservoir computing with spin-torque nano-oscillators is the 

following. Good classification requires intermediate non-

linearity and a high signal to noise ratio in the neural output. 

For tasks requiring short term memory, the intrinsic memory 

coming from magnetic relaxation times can be sufficient. 

When output reconstruction is done offline, an alternative 

strategy to endow the network with longer term memory is to 

shift the target with respect to the input. In the future, it will be 

interesting to introduce on-line long term memory through 

time-delayed feedback strategies.  
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Fig. 2. (a) Spin-torque nano-oscillators used for neuromorphic computing: 

magnetic tunnel junction (CoFe/MgO/FeB) driven by spin transfer torque. (b) 

Schematic of the experimental set-up. A dc current IDC as well as a fast-varying 
waveform encoding the input Iin are injected in the spin-torque nano-oscillator. 

(c) The microwave voltage 𝑉𝑜𝑠𝑐 emitted by the oscillator is measured with an 

oscilloscope. For computing, the amplitude �̃�  of the oscillator is used, and 

measured directly with a microwave diode. (d) Voltage amplitude �̃�  as a 

function of current at µ0H= 430 mT. The typical resulting excursion of current 

amplitude is highlighted in magenta when an input signal with maximum 

amplitude 3 mA (corresponding to 250 mV), is injected. 

Diode

Spin torque

Current

140 160 180 200
-16

-8

0

8

16

V
o

s
c
 (

m
V

)

Time (ns)

0 2 4 6 8 10

0

5

10

15

A
m

p
lit

u
d
e

 (
m

V
)

dc current (mA)

Iin

IDC

IDC

Arbitrary 
Waveform 
Generator Vosc

H

CoFeB

FeB
MgO

Input Iin

+

(a) (b)

(c) (d)

  

  

  

 
Fig. 3. (a) Input waveform. The task is to discriminate sines from 

squares at each red point. There are 8 discrete red points in each sine 

and square waveform. (b) Zoom-in on the preprocessed input 
waveform for a sine and a square. The corresponding fast binary 

input sequences are numbered from 1 to 16 (8 for the sine, 8 for the 

square. (c) Envelope �̃�(𝑡)  of the experimental oscillator emitted 
voltage amplitude (µ0H = 466 mT, IDC = 7 mA). The trajectories 

created in response to the input waveform are numbered from 1 to 16 

(8 for the sine, 8 for the square). 
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Fig. 4. (a) Oscillator voltage amplitude  �̃� changes corresponding to 

a single time segment : here, 12 neurons (12 samples �̃�𝑖 separated 

by the time step  are used to construct the output. (b) The transient 
states of the oscillator give rise to a chain reaction emulating the 

neural network with a ring structure (c) Target for the output 

reconstructed from the voltages �̃�𝑖 in each time segment : output =
∑ 𝑤𝑖�̃�𝑖
𝑁
𝑖=1 .  
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Fig. 5. Reconstructed output (red) and target (grey) in response to an 
input waveform with 80 randomly arranged sines and squares. The 

magnetic field is µ0H= 447 mT, and the applied current 7.2 mA. The 

results are based on 24 neurons separated by  = 100 ns.  
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Fig. 1. (a) Illustration of reservoir computing concept. The network 

is composed by a large number of interconnected non-linear neurons. 

The internal connections are kept random and fixed and only 
external connections are trained. (b) Single neuron reservoir 

computing approach using time-multiplexing: the input is pre-

processed in order to emulate neurons interconnected through time. 
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Fig. 6. Amplitude Voltage �̃� of the oscillator in 

the steady state: map in the IDC - µ0H  plane. 
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Fig. 9. Root mean square of output-to-target deviations: map as a function of dc current IDC and magnetic field µ0H. The oscillator voltage amplitude 

curves (in red) in response to the input waveform (in gray) are plotted for selected dc currents (3, 4.5, 6.5, 7.5 and 9) mA and magnetic field µ0H  = 380 

mT. Here Vin= 300 mV and  = 100 ns is used. RMS map corresponds to the target shifted by 𝜏/2 with respect to the input. 
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Fig. 10. Root mean square of output-to-target deviations as a function of the time step  (separation between transient states of the oscillator �̃�𝑖) for 

different amplitudes of the input signal (300, 400 and 500) mV: (a) the target is in exact phase with the input and (b) the target is shifted by 𝜏/2 with 

respect to the input. 
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Fig. 7. The non-linearity 𝜕2�̃� 𝜕𝐼2⁄  of the 
oscillator: map in the IDC - µ0H  plane. 
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Fig. 8. Amplitude noise ∆�̃� of the oscillator in 
the steady state: map in the IDC - µ0H  plane. 

 

3 4 5 6 7 8 9

200

300

400

500

600

DC current (mA)

M
a
g
n
e
ti
c
 f
ie

ld
 (

m
T

) 0.0

0.4

0.8

1.1

1.5

1.9

V
0
 (mV)∆   (  )


