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By many accounts, the Newtonian constant of gravitation G is the fundamental constant that is most
difficult to measure accurately. Over the past three decades, more than a dozen precision measurements
of this constant have been performed. However, the scatter of the data points is much larger than the
uncertainties assigned to each individual measurement, yielding a Birge ratio of about five. Today,
G is known with a relative standard uncertainty of 4.7 × 10�5, which is several orders of magnitudes
greater than the relative uncertainties of other fundamental constants. In this article, various methods to
measure G are discussed. A large array of different instruments ranging from the simple torsion balance
to the sophisticated atom interferometer can be used to determine G. Some instruments, such as the
torsion balance can be used in several different ways. In this article, the advantages and disadvantages
of different instruments as well as different methods are discussed. A narrative arc from the historical
beginnings of the different methods to their modern implementation is given. Finally, the article ends
with a brief overview of the current state of the art and an outlook. © 2017 Author(s). All article
content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY)
license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.4994619

I. INTRODUCTION

Gravitation is the most tangible interaction of the four
fundamental interactions of nature, having been investigated
long before the discovery of the electromagnetic, weak, and
strong interactions. Based on fundamental studies, mainly
those of Galileo Galilei, Newton1 formulated a description
of the gravitational interaction in 1687. This physical law,
which still gives—to a certain degree—a correct description
of many astronomical and terrestrial observations, contains
a proportionality factor known as the Newtonian constant of
gravitation, abbreviated in equations by the capital letter G.

Newton’s theory is correct for table top gravitational
experiments in the laboratory but fails to describe the grav-
itational interaction in strong gravitational fields and at high
velocities. For these cases, a relativistic model must be used.
General relativity, the current accepted theory of gravitation,
was published in 1915 by Einstein2 and has been subjected to
numerous tests,3 all of which it has passed. Gravity emerges
in general relativity as a property of space-time. Mass, as well
as energy, affects the curvature of space time. The gravita-
tional constant, together with the speed of light, describes the
extent to which space-time is contorted for a given mass. This
article is concerned only with the limits of gravity where the
Newtonian laws are sufficient to describe the system.

G was first measured in the laboratory by Henry
Cavendish in 1798. Since then, more than 200 experiments
have been conducted to precisely determine the value of
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G4—with limited success. In June 2015, the Committee on
Data for Science and Technology (CODATA) published a new
recommendation for the value of G with a relative standard
uncertainty of 4.7 × 10�5. For comparison, with today’s tech-
nology, time intervals can be measured to a relative uncertainty
of a few parts in 1018. The uncertainty of G is based on the
measurement precision reported by the experimenters, but it
also includes a factor of 6.3 in order to take into account the
large spread between the values obtained by different groups.
This factor reduces the normalized residuals below two, see
Sec. VI. The published values scatter by this factor more than
they should based on the reported uncertainties. This gives
reason to suspect hidden systematic errors in some of the
experiments. An alternative explanation is that although the
values are reported correctly, some of the reported uncertain-
ties may be lacking significant contributions. The uncertainty
budgets can include only what experimenters know and not
what they do not know. This missing uncertainty is some-
times referred to as a dark uncertainty.5 We can assume that
each experimenter has provided an uncertainty budget calcu-
lation for the experiment that is as detailed as possible, and has
excluded possible systematic effects. Even if all experiments of
the same type agree, a reasonable way to check for systematic
errors is to repeat a measurement with another experimental
approach. G is in good condition concerning the way in which
it is measured. Many different experiments have been con-
ducted and different—sometimes inconsistent—results have
been published. The field is definitely far removed from the
intellectual phase locking6 that has occurred in the past in
the context of measuring other fundamental constants of
nature.7
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In this review article, different experimental setups that
have been used to determine G will be discussed. Where pos-
sible, historical background information on precision exper-
iments is provided. Due to the large scope of the topic,
details will be largely eschewed in favor of important prob-
lems and advances. The list of experiments given here is
by no means comprehensive. For a more complete index of
measurements, the reader is referred to the work of Gillies,4

which was updated in 1997.8 For earlier review articles, see
Refs. 9–16.

The measurements of G have a two-way interaction with
the state of the art in technology: (1) Advances in technology
can benefit measurements of G: for example, the beam balance
has become sensitive enough to measure local gravity varia-
tions.17 (2) The technology developed to measure G can have
a valuable impact on other areas of technology, such as the
torsion balance for geophysical prospecting.18 One purpose
of this text is to motivate more scientists to measure G and
to learn from the many interesting experimental techniques
deployed in the field. Although the experiment is difficult, it
provides an excellent training ground for future scientists and
engineers.

This article is organized into seven sections. Section II
gives additional background information on the gravitational
constant, including its applications. In Sec. III, general facts
about the measurement of G are described, and different meth-
ods are briefly introduced. Section IV describes several dif-
ferent measurement principles in greater detail. In Sec. V,
considerations regarding large masses (field masses) are exam-
ined. After an outlook in Sec. VI, the main conclusions of the
article are discussed.

II. BACKGROUND

The measurement of the gravitational constant has a long
history. It was the second fundamental physical constant ever
measured, preceded only by the speed of light. The numeri-
cal value of the speed of light was fixed with zero uncertainty
in 1983 in order to define the unit of length, the meter. Of
the fundamental constants that can still be measured, G has
the longest measurement history. The latest CODATA recom-
mendation19 assigns a value of 6.674 08 × 10�11 m3 kg�1 s�2,
with a relative measurement uncertainty of 4.7 × 10�5, to G
(Fig. 1). For comparison, shortly before the fixed value of
the speed of light was established, a relative uncertainty of
3.5× 10�9 20 was assigned to its value. At first glance, it seems
difficult to understand that—after more than 200 years and over
200 measurements—the assigned relative uncertainty of G is
as high as it is.

A. From the mean density of the Earth to G

The physical quantity discussed here appears in Newton’s
law of gravitation. This law was formulated by Newton in
1687,1 and today is often written in the form

F =G
m1 m2

r2
, (1)

where m1 and m2 denote the masses of two bodies with a
distance r between their centers of mass. G plays the role

FIG. 1. The values of G recommended by the Task Group on Fundamental
Constants of the Committee on Data for Science and Technology over the
past several decades. The lower graph shows the relative standard uncertainty
assigned to each recommendation. The values and uncertainties are obtained
from Refs. 19 and 21–26.

of a constant of proportionality (i.e., it can be considered as
conversion factor). In fact, when Newton wrote the law of
gravitation, he did not introduce this proportionality factor
because at that time, laws were formulated as ratios rather
than as equations. Hence, G was of no significance to Newton.
Scientists were more interested in how much a celestial body
weighed compared to the Earth or the Sun. Thus, originally,
Cavendish did not measure G in his famous experiment but
the mean density of the Earth, as his article was titled.27 He
calibrated the density of the field masses with respect to a ref-
erence material (water). Then, he measured the attraction of
the test masses with respect to these field masses. As a result,
he was able to give a ratio between the field masses and the
Earth’s mass. As the diameter of the Earth was already known,
he was able to derive its mean density.

Although the constant of proportionality was not present
in Newton’s original publication, today, his law is written as
an equation, in the form (1). It is believed that Siméon Denis
Poisson was the first to introduce a constant of proportionality
in 1811 (see Ref. 28) although he did not use the character G,
which is now usually used for this constant. G appeared, in
all likelihood, for the first time in a publication by König and
Richarz in the year 1885.29 Currently, G is often also called
“Big G” in order to distinguish it from the acceleration due
to gravity, which is denoted by the lower-case letter g—hence
referred to as “Little g.”

B. Applications

The current relative standard uncertainty of G is
4.7 × 10�5, according to the 2014 least squares adjustment
performed by CODATA. This is a relatively large uncertainty
when compared to the uncertainties of other fundamental con-
stants (see Fig. 2). One may ask why the large relative uncer-
tainty of G is not a problem in science or commerce. To answer
this question, the fields and applications that require G will be
briefly discussed.

1. Metrology

Metrology institutes such as Physikalisch-Technische
Bundesanstalt (PTB) in Germany and National Institute of
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FIG. 2. The relative standard uncertainties of the recommended values of
selected fundamental constants. The uncertainties are obtained from the latest
adjustment of the fundamental constants by the Task Group on Fundamental
Constants under the auspices of the Committee on Data for Science and Tech-
nology (CODATA). A list of all recommended values can be found in Ref. 19.
The uncertainty of G is the largest of the known fundamental constants of
nature. Note that the constants that are known with the smallest uncertain-
ties are all determined by means of measurements of frequencies or ratios of
frequencies.

Standards and Technology (NIST) in the United States, accord-
ing to their statutes, have a mandate to measure fundamen-
tal constants. The current measurement uncertainty attributed
to G illustrates the fact that measuring it is a very difficult
task although many scientists are drawn to the challenge of
reducing its uncertainty.

Another possible application of G in metrology can only
be realized if its uncertainty is further reduced. In 1899,
Max Planck proposed a natural system of units28,30 that was
not reliant upon artifacts. He proposed using the velocity
of light, c, Planck’s constant, h, and Newton’s constant of
gravitation, G, to define a fundamental system of units. In
this system, the unit of mass—called the Planck mass—is
defined as

mp =

√
~ c
G

, (2)

where ~ = h/(2π), with a value of 21.765 µg, when expressed
in the International System of Units (SI). This system of
units was conceived to be valid everywhere in the universe
and for all times. For this system of units to be competi-
tive with the existing SI system, the uncertainties must be
equal or better than those of the current SI system. How-
ever, in the SI, mass at the highest level can be measured to
a few parts in 109, whereas G is only known to be 5 parts
in 105. The relative uncertainties in mass metrology would
increase about 10 000-fold if the Planck units were chosen.
In addition to the Planck mass, a Planck length and a Planck
time can be established. All three Planck units require G. The
Planck time and Planck length play important roles in astro-
physics and particle physics. In the planned revision of the
International System of units, the SI, fundamental constants
will be used to define the unit system although G will not be
used.

2. Fundamental physics

One serious shortcoming of the theory of gravitation is
that it cannot be unified with the other three interactions.
Many alternative theories of gravitation have been developed,
some of which differ only in minor details. Several of these

theories predict either a value for G (string theory) or varia-
tions of G in space or time (the Brans-Dicke theory). Some
scientists believe that there is a possible slight deviation from
Newton’s inverse square law (i.e., the gravitational force is
not proportional to 1/r2). It is assumed that there is a hid-
den “fifth force,” one which, like gravitation, is proportional
to mass, but whose strength changes below a certain separa-
tion. More accurate knowledge of G can help in eliminating
some of these theories and developing entirely new concepts.
Furthermore, having an accurate number for G can be use-
ful for disproving theories that predict a different number
for G.

3. Geophysics and astronomy

Using observational methods, the geocentric constant of
gravitation, GMEarth, can be determined with a relative uncer-
tainty of only 2 × 10�9 although the value of MEarth can
be given only with the uncertainty of G. The determination
of the Earth’s mean density is also limited by the accuracy
with which G is known. Better knowledge of the mean den-
sity of the Earth is still desired in geophysics, as current
knowledge limits the calibration accuracy of gravity gradiome-
ters.31 Gravity gradiometers with better calibrations lead to
better data in geophysical prospecting. McQueen32 pointed
out that the uncertainty in the Earth’s elasticity parameters
(Love numbers) is also limited by the uncertainty in G. In
astronomy, G alone is rarely of importance, as most effects
are caused by the product of GM, where M is the mass of
a (central) star. Even the most recent measurement of the
mass of a star from the relativistic deflection of star’s light
was performed at first by means of GM.33 Furthermore, star
masses are very often given as a ratio to the solar mass, whose
measurement is again obtained from a measured product
of GM�.

III. GENERAL CONSIDERATIONS FOR
MEASUREMENTS

In SI units, the quantity G has the unit m3 s�2 kg�1. In order
to determine G, quantities with the dimensions of length, time,
and mass have to be measured. In SI units, the numerical value
{G} = 6.674 08 × 10�11 is very small (ten orders below unity).
The size of the unitless number indicates that the associated
forces between objects in a laboratory are small, in terms of the
units used in everyday life. This provides a first indication of
why it is so difficult to measure G accurately. The gravitational
force between two spherical masses of 1 kg at a distance of 1 m
is 67 pN, which equals the weight of a mass of about 6.7 ng. For
comparison, the mass of a human cell is approximately 1 ng.34

From this thought experiment, it is clear that at least two large
masses have to be brought as close together as possible in order
to maximize the signal. This requires for a high volumetric
mass density that allows large masses to be brought close to
each other.

A. Microgravity environment

Equation (1) indicates two methods of measuring G:
either by measuring the (attracting) force between two
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well-characterized masses or by measuring the acceleration
of one mass towards the other, a, which is

a=G
m1

r2
, (3)

where m1 denotes the field (generating) mass. Note that New-
ton’s law of gravitation is symmetric for the masses m1 and
m2. However, the terms field mass and test mass are used to
describe these experiments. The test mass is connected to a
sensor, while the position of the field mass is usually changed
in regular time intervals in order to modulate the gravitational
signal. Although the distinction is made here and in most arti-
cles describing the experiments, one should be aware of the
inherent symmetry of the gravitational law. A force (or more
precisely, torque) measurement was used in the first laboratory
experiment to determine G. In 1798, Henry Cavendish used
a torsion balance, shown in Fig. 3, to determine G from the
gravitational torque acting on a dumbbell suspended from a tor-
sion fiber. The apparatus was designed and built by Rev. John
Michell; however, he did not complete the apparatus or per-
form any experiments on it before his death in 1793. Michell
invented the apparatus with the purpose of determining the
mean density of the Earth. Rev. F. J. H. Wollaston later for-
warded it to Cavendish, who carried out the now-famous mea-
surement.12 Independently, Charles A. de Coulomb invented
a torsion balance in 1777. Gehler35 pointed out that Coulomb
was the first to use fibers to suspend a torsion pendulum, exper-
imenting at first with hairs and silk fibers before employing
metal fibers at a later time. Michell, on the other hand, began
by balancing the torsion bob, a thin wire, on a tip, similar to a
compass needle, in 1768. Later, he adopted a fiber to suspend a
dumbbell. One noteworthy feature of the torsion balance is that
it decouples the vertical gravitational force caused by the Earth
from the horizontal one caused by the field masses. This is
necessary because if the attractive force between two bodies is
measured vertically, the signal will be between a million (106)
and a trillion (1012) times smaller than the background caused
by the gravitational attraction due to the Earth. The exact
signal-to-background ratio depends on the size and geometry
of the mass assembly.

FIG. 4. Example of how to measure G by means of a spring balance. First,
the elongation of the spring due to the Earth’s mass, M, is measured. Then, an
additional field mass m1 is added, and the change in elongation is measured.
If an elongation of, for example, 10 cm results due to the Earth’s mass, then
the field mass results in a variation of only 0.67 pm.

The disadvantageous signal-to-background ratio is illus-
trated in Fig. 4. A 1 kg mass is suspended from a spring leading
to a 10 cm elongation (to cite one example) due to the gravita-
tional force between the Earth and the mass. A 1 kg field mass
is then placed 1 m below the suspended mass, adding an addi-
tional gravitational force to the setup. This additional force
causes an extra elongation of only 0.67 pm, which is about
1 000 000 times smaller than one wavelength of light. This
measurement is thus a very challenging one to perform, con-
sidering environmental factors that cause changes in the spring
constant and, thus, drift in the mass position. To make matters
worse, the local gravitational acceleration g is not constant, but
it is a function of time due to the apparent motion of the Sun
and the Moon, both of which exert additional forces known as
tides. The relative change of g due to the tides has a peak-to-
peak amplitude of about 3 × 10�7 (i.e., the change in force due
to the tides is 15 000 times larger than the force produced by
the field mass). The brief example of the spring balance clearly
illustrates the merit of the torsion balance. Cavendish’s setup

FIG. 3. The torsion balance used by Cavendish in
the first laboratory measurement of G. Adapted from
Ref. 12.
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maintains both attracting masses at the same vertical height,
and the attracting horizontal force is observed. Apart from the
horizontal gravity gradients of the Earth’s gravity field and the
surrounding masses in the laboratory, this force contains only
the gravitational attraction due to the field and test masses.
Since the torsion wire in Cavendish’s setup has a very small
restoring torque, small external torques can be measured. We
have created a microgravity environment for one degree of
freedom, the rotation of the torsion bob about the fiber axis.
The lack of (angular) accelerations along this direction allows
for long measurement times. Although the torsion wire is a
crucial component in this setup, it is also an important source
of error, as was shown in Ref. 36, see Sec. IV A 2 b.

A microgravity environment, with accelerations approxi-
mately 10�6 g, can also be achieved in an artificial satellite. The
field mass and test mass fall on a circular orbit around the Earth,
and the relative acceleration between the two is only given by
the small gradient of the gravitational field and the gravitational
attraction between the two masses. Unlike a torsion balance,
such a system can be realized without the disturbing properties
of a suspension—the two masses can float within the satel-
lite without a mechanical connection to the satellite. Such a
drag-free test mass was recently successful demonstrated by
the LISA (Laser Interferometer Space Antenna) Pathfinder
mission.37

Observing the mutual gravitational attraction in a micro-
gravity environment entails very long integration times since
(in principle) the bodies continue falling forever.

However, space experiments are usually prohibitively
expensive and require long preparation times, often over sev-
eral decades. To date, several ideas for space experiments
to determine G have been proposed.38 Only one such pro-
posal, called “Satellite Energy Exchange (SEE),” is still being
actively prepared.39

To avoid costly space experiments, other possibilities that
allow free-fall are appealing. Obviously, on Earth, very long
integration times cannot be achieved, as the object falls towards
the Earth and not around it (as it does in space). The drop
tower in Bremen, Germany, for example, allows a drop dura-
tion of 9.3 s.40 In some cases, this may not be long enough to
obtain a good measurement of G; unfortunately, the facility’s
tight schedule prevents many repetitions from taking place
in succession (even if this were possible, it would become
very expensive over time). Another option is sounding rock-
ets. Experiments on sounding rockets have been considered for
testing the equivalence principle, but not for measuring G.41

B. Free-fall method

In the example above, the additional field mass between
the Earth and the suspended mass alters the local accelera-
tion g at the position of the test mass. This idea can and has
been used to determine G. Free-fall absolute gravimeters are
precision instruments that can measure the local acceleration
with relative uncertainties on the order of 10�9. Gravimeters
have a broad application in geodesy and geophysics and have
recently been used in fundamental metrology as well for the
planned re-definition of the SI unit of the kilogram via the
Kibble (or watt) balance.42 In contrast to space experiments,

however, only one mass is in free-fall. A well-known field
mass can be placed close to the trajectory of the test mass.
The gravimeter measures the perturbed local gravity. By mod-
eling the perturbation produced by the field mass, G can be
determined.

C. Beam balance

Besides the torsion balance and absolute gravimeters, a
third instrument can be used to measure G: a beam balance. If
a mass of, for example, 1 kg is placed on each side of a beam
balance, the balance will stay in equilibrium as long as the local
gravity at the positions of each mass is equal. If a heavy field
mass is placed close to one of the test masses, the local gravity
at this test mass will change and the balance will get out of
equilibrium since the forces on both masses are different. By
measuring the force difference, we can determine G if the field
and test mass are well characterized. To a certain extent, this
method is similar to the torsion balance method: The gravita-
tional pull from the Earth is supported by the fulcrum and only
differential forces cause an indication of the balance. Newer
versions of precision balances use an electromagnetic force
compensation; as a result, the mechanical weight on one side
is compensated by an electromagnetic force on the other side.
In this case, however, the tidal variations of gravity have to be
taken into account.

D. Simple pendulum

Finally, a simple pendulum can also be used to determine
G. With a pendulum, there are basically two ways of measuring
G. The first is to measure the frequency change of the pendulum
swing when a field mass is placed below the pendulum bob.
This is possible because the swing time, T, depends on gravity,
g, as

T2 = 4π2 l
g

, (4)

where l is the pendulum length. A second way is to deflect the
pendulum bob by placing a field mass horizontally next to it. It
becomes obvious that both ways are similar to variants of the
torsion balance—namely, the time-of-swing method and the
simple deflection (Cavendish) method, the difference being
that the torsion balance has a higher sensitivity.43

IV. MEASUREMENT PRINCIPLES

In Sec. III, a brief overview of the different approaches
to measure G was given. In Secs. IV A–IV D, the different
techniques are described in more detail.

A. Torsion balance

A torsion pendulum is a standard example of a simple
harmonic oscillator. It consists of two components: the torsion
fiber, which provides a restoring torque, and the pendulum bob,
which contributes inertia (see Fig. 5). For a freely swinging
torsion pendulum, the energy of the pendulum is stored as
potential energy in the fiber or as kinetic energy in the rotating
bob. The energy switches between these two types of energy
every quarter period.
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FIG. 5. Schematic drawing of a simplified torsion balance. The torsion fiber
hangs vertically like a plumb line. The pendulum bob shown here is called
the dumbbell. If the torsion balance is not balanced (i.e., m1 , m2), the bob is
angled with respect to the horizontal plane such that the center of mass (COM)
is below the suspension point. The fiber is only sensitive to torques around its
axis, which is vertical.

The design of the torsion bob depends on the measurement
goal of the torsion balance. Its shape is optimized to allow it to
be coupled to external forces that are often modulated. Torsion
balances have many applications other than the determination
of G. A review of torsion balances can be found in Ref. 44.

To measure the influence of the external force on the tor-
sion pendulum, a readout is required. Very often, the readout
is performed optically with an autocollimator. In an autocolli-
mator, the divergent beams of a light source are collimated into
a parallel beam through a lens. The beam is reflected by a mir-
ror mounted on the torsion pendulum and returned to the same
lens. The returning beam is focused onto a position-sensitive
detector. By using the same lens twice (for collimation and
focusing), the system is not only simpler but also more robust
regarding optical aberrations. Further details are available in
Refs. 45–47.

1. Basic equations

The differential equation of a torsion pendulum is

I θ̈ + κ(1 + φi)θ =N(t), (5)

where I is the moment of inertia of the pendulum body, κ is the
torsional spring constant, θ is the azimuthal angle, and N(t) is
the external torque applied at the pendulum bob. The torsion
fiber is considered lossy, and φ denotes the loss angle of the tor-
sion spring, which is the inverse of the quality factor, φ = 1/Q.
The damping described by an imaginary component of the tor-
sion constant is called internal damping. Another possibility
for damping is velocity-dependent damping, often called exter-
nal damping. External damping requires an additional term of
γθ̇ on the left-hand side of Eq. (5). Gas pressure damping
is an example of external damping. Modern torsion balance
experiments are (mostly) limited by internal damping, while
the external damping term can be ignored. For experiments
at room temperature and vacuum using metal fibers, quality
factors of several thousands are typical. Hence, the loss angles
are very small and the equations can be expanded in a Taylor

series around φ = 0. In the formula below, we expand up to
second order.

Without external torques, the torsional angle with start-
ing conditions θ(0) = θo and θ̇(0)= 0 follows a damped sine
according to

θ(t)= θoe−t/τeiωo(1+ φ2

8 )t with ωo =

√
κ

I
. (6)

The decay time τ is given by

τ =
2
ωoφ
=

Q
πfo

with ωo = 2πfo. (7)

If the external torque is sinusoidal with angular frequency,
i.e., N(t) = No exp(�iωt), the motion of the pendulum at this
frequency is given by θ(t) = θa exp(�ωt) with

θa

No
=

1
κ

1 − ω2/ω2
o − iφ

(1 − ω2/ω2
o)2 + φ2

. (8)

The response to a torque that is more complicated than a
pure spectral note can be calculated from the response to each
Fourier component by synthesizing the responses.

The non-negligible loss angle of the fiber has another
important experimental consequence: A loss in a system is
connected via the fluctuation dissipation theorem to the noise
in the system. The single-sided power spectral density Sτ( f )
of the torque is given by

Sτ( f ) df = 4kBTR df , (9)

where kB is the Boltzmann constant, T is the temperature of the
system, and R is the real part of the mechanical impedance,48

in this case R = κ/(2πQf ). From the spectral density and the
known signal frequency, the time that is required to measure
a signal with given statistical uncertainty can be calculated.
In Fig. 6, the power spectral amplitude of the torque and the
angle readout of a torsion balance is shown.

2. Special fibers

According to Eq. (9), the signal-to-noise ratio can be
improved by minimizing the term κ/Q (i.e., the ratio of the

FIG. 6. Measured noise and thermal noise of a torsional oscillator with
κ = 774 pN m rad�1. The top plot shows the amplitude spectral density of
the torsional angle θ. The bottom plot shows the amplitude spectral density of
the torque. Ideally, the signal that is to be measured is placed at the minimum
value of the torque noise, here about 3 mHz.
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imaginary part of the spring constant to the real part). As
described in Sec. IV A 2 b, a large quality factor will minimize
a systematic bias in the time-of-swing method. Motivated by
these two benefits, researchers in recent years have attempted
to increase the quality factors of the torsion fibers in their
experiments.

Because tungsten has a high tensile strength (and thus, a
small restoring constant), tungsten fibers were used in many
torsion balances. The quality factor of a torsion pendulum sup-
ported by a tungsten fiber can reach values of up to several
thousand (see Table I). In order to obtain higher quality fac-
tors, different approaches are needed. To date, three different
approaches have been used: fused silica fibers, metal fibers at
cryogenic temperatures, and torsion strips.

The ultimate yield strength of fused silica fibers is
1000 N m�2 or higher.60,61 By way of comparison, the yield
strengths of tungsten fibers are typically above 2000 N m�2.
Hence, silica fibers must have a 40 % larger radius to carry
the same load as tungsten fibers. A larger radius will increase
the torsional stiffness of the fiber, which scales with the fourth
power of the radius. Despite this increase in κ, fused silica is
still a good option since κ/Q decreases due to its large quality
factor. In fused silica, the quality factor is dependent on temper-
ature and frequency. At high frequencies of several thousands
of hertz, quality factors of 108 can be achieved. At frequen-
cies typical for torsion balances (from one to several hundreds
of mHz), quality factors of 106 are still possible. Unfortu-
nately, because fused silica is an isolator, a pendulum bob
suspended by a fused silica fiber is not electrically grounded.
This causes increased noise or even systematic effects due to
spurious electrostatic forces created by charges on the bob.
This problem can be solved with three approaches: discharg-
ing the pendulum bob with ultraviolet light,62,63 coating the
silica fiber with a conductive film,64 or sufficient separation
between the pendulum body and its surrounding.

Another way in which the thermal noise can be reduced
is by lowering the temperature, as doing so involves two ben-
eficial mechanisms. First, the thermal energy kbT is lowered,
and second, the quality factor increases for most metals with
decreasing temperature. For fused silica fibers, the dependence
of the quality factor on the temperature is more complicated.
A detailed investigation65 of fibers made from Aluminum

6061 and beryllium copper contains strong evidence of a
stick-slip mechanism. A spring with a stick-slip mechanism
can be imaged as a series of blocks on a surface connected by
springs.66

Another interesting suspension for a torsion bob is the
torsion strip, a fiber with a rectangular cross section. The use of
the torsion strip was pioneered by the group that worked at the
BIPM (Bureau International des Poids et Mesures) under the
leadership of Terry Quinn. For a rectangular strip with length
L, width b, and thickness t, the spring constant is given by

κ =
bt3F
3L

+
Mgb2

12L
, (10)

where F is the material’s shear modulus and Mg is the weight
of the pendulum bob.67 Two terms contribute to the restoring
torque. The first term in Eq. (10) is analogous to the elastic term
that provides the restoring torque in a circular fiber. The second
term is a consequence of the fact that, as the ribbon is twisted,
the pendulum bob is raised in the gravitational field of the
Earth. Since the gravitational force is conservative, the second
term is lossless. The imaginary part of the spring constant is
given by the imaginary part of the elastic spring, but the real
part of the spring is given by the sum of the elastic spring and
the gravitational spring. Hence, the ratio of the imaginary part
to the real part is smaller for both components than for the
elastic part alone. This mechanism allows for an increase in
Q. For example, for the strip used in the BIPM experiment,
gravity provides about 90 % of the restoring torque. Quality
factors on the order of 100 000 were achieved with the BIPM
torsion strip.

Table I gives an overview of the properties of the fibers
used in recent torsion balance experiments to measure G. It can
be seen that the torsion strip has a torsion constant that is four
to five orders of magnitude larger than that of traditional round
fibers. However, since the quality factor of the torsion strip is
about one to two orders of magnitude larger than the quality
factors of metal fibers at room temperature, the torque sensitiv-
ity of the strip is only reduced by a factor of one hundred. This
reduced torque sensitivity is compensated by the fact that the
torsion strip can carry a greater load; thus, the gravitational
torque can be made larger by several orders of magnitude.
Finally, a precise experiment can be built using a torsion strip.

TABLE I. Parameters of torsion balances used in recent determinations of G. Unless otherwise noted, the torsion fibers have a circular cross section.

Measurement κ (N m rad�1) f o (mHz) Q Remarks References

Luther and Towler 3.9× 10�10 2.8 2× 104 Quartz torsion fiber 49 and 50
Karagioz and Izmailov 3.1× 10�10 0.5 2× 104 Tungsten fiber 51
Bagley and Luther 1.2× 10�9 4.9 9.5× 102 Tungsten fiber 52

1.2× 10�9 4.9 4.9× 102 Gold-coated tungsten fiber
Gundlach and Merkowitz 3.5× 10�9 4.0 4× 103 Tungsten fiber, values not given 53 and 54
Quinn et al. 2.1× 10�4 8.0 3× 105 Torsion strip made from Cu-1.8% Be 55
Armstrong and Fitzgerald n/a n/a n/a Rectangular tungsten fiber 56
Tu et al. 6.3× 10�9 1.9 1.7× 103 Tungsten fiber 57
Quinn 2.1× 10�4 8.0 3× 105 Same as 2001 experiment 58
Newman et al. 3.1× 10�9 7.4 8.2× 104 Fiber 1: CuBe 59

3.4× 10�9 7.7 1.2× 105 Fiber 2: CuBe annealed
3.1× 10�9 8.8 1.8× 105 Fiber 3: Al5056
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Note that this conclusion differs from that reached by Boys in
1889,68 where he argues in favor of thinnest possible fiber. In
the BIPM experiment, the gravitational torque, at 3× 10�8 N m
is several orders of magnitude larger than in other torsion bal-
ance experiments. The corresponding angular deflection of the
pendulum bob is about 30 arc sec.

a. Static deflection. The static deflection method was used
by Cavendish to measure the mean density of the Earth.
A static torque on a torsion balance causes a deflection from
the equilibrium position. The equilibrium position is usually
not known, and two measurements are required. The two
measurements are performed with two different field mass
arrangements. The field masses can be “near” or “far,” or they
can be located clockwise or counterclockwise from the torsion
fiber. The gravitational torques produced by the field masses on
the test masses are denoted Nn and N f for the two field mass
positions. The angular excursions of the pendulum bob are
given by

κ
(
θn − θo(tn)

)
=Nn (11)

and

κ
(
θf − θo(tf )

)
=Nf . (12)

Hence, if θo(tn)≈ θo(tf ),

then κ (θn − θf )≈Nn − Nf . (13)

Here, θo denotes the unknown equilibrium position of the pen-
dulum. In general, the equilibrium position is a function of
time [i.e., θo = θo(t) due to a slow unwinding of the fiber, usu-
ally referred to as drift]. The usual data analysis techniques
can be used to suppress this drift.69–71 The torque depends on
the gravitational constant and a constant that can be calculated
from the known mass distribution (i.e., Nn = Gcn, where cn has
units kg2 m�1). The unknown torsional stiffness κ is obtained
from another measurement. The field masses are usually
removed or placed in the far position. A measurement of pen-
dulum’s period To and a calculation of the moment of inertia
I yields

κ = 4π2 I

T2
o

. (14)

In summary, the value of the gravitational constant measured
by the static-deflection method is obtained by

G=
4π2I

T2
o

θn − θf

cn − cf
. (15)

The measurement procedure outlined above relies on sev-
eral assumptions that are worth considering in more detail:

1. The equilibrium position of the balance θo is usually a
function of time. As discussed above, the torsion fibers
are most realistically modeled as springs with an imag-
inary spring constant (loss). This thermal noise results
in a 1/f behavior of the equilibrium position. Hence, the
measurements of the two equilibrium positions should be
measured within a short time. However, another prob-
lem arises: When the torque on the torsional oscillator
is changed, it incurs an amplitude. For example, if the
torque on the pendulum is abruptly changed by N2 � N1,
the amplitude gain of the pendulum will be (N2 � N1)/κ.

It is difficult to measure the exact equilibrium position
of the pendulum if an oscillation with a large amplitude
is present. Several strategies are available to cope with
this problem: (a) A torsion pendulum with high damping
is used. This eliminates the excitation problem but intro-
duces thermal noise, thus making it difficult to measure
the equilibrium position in a feasible time scale. (b) The
experiment utilizes switchable damping. The damping is
turned on during and shortly after the move and turned off
for the measurement of the equilibrium position. Damping
can be achieved, for example, by means of active electro-
static feedback. (c) The motion is carefully measured, and
the equilibrium position is obtained from a fit of a decay-
ing sine function to the measurements. (d) The motion
of the field mass is not abrupt but is optimized so as not
to excite the pendulum. One possible motion changes the
torque by half and half a pendulum period later by the
remaining half. This motion is sometimes referred to as
the “crane operator trick.”

2. The torsional constant is measured at the oscillation fre-
quency of the pendulum but is applied to the calculation
at (almost) zero frequency. However, the spring constant
is due to elasticity that is generally a function of the fre-
quency and κ(0) < κ( f o). This problem will be discussed
in greater detail in the time-of-swing method. If the effect
of the anelasticity is not taken into account, the measured
value of G will be higher than the true value of G.

In modern times, the static mode is hardly used. Notable
exceptions are two experiments at the BIPM by Quinn and
co-workers.55,72 The group built a single torsion balance that
could be operated with three different methods: static deflec-
tion, time-of-swing, and electrostatic feedback. In the end, two
methods—static deflection and electrostatic feedback—were
used to determine G. The first result was published in 2001.
Subsequently, the apparatus was completely rebuilt, and the
second result was published in 2013. Both results are consis-
tent with each other. Apart from these two experiments, no
other precision experiment has used the static deflection in the
past thirty years.

b. Time of swing. In the time-of-swing method, the pendu-
lum’s period is measured with the field masses in two different
positions. Similar to the static-deflection method, the field
masses are nearby, while for the other mode, the field masses
are far away. The gravitational potential adds to the potential of
the fiber, thereby increasing the restoring torque. Equation (5)
must be modified to add the contribution of the field masses
in the “near” and “far” positions to the differential equation.
This yields

“near” FMs: I θ̈ + (κ + κn + κφi)θ =Nn (16)

and

“far” FMs: I θ̈ + (κ + κf + κφi)θ =Nf . (17)

The spring associated with the gravitational potential is loss-
less, so the imaginary spring constant in the equations above
is derived exclusively from the torsion fiber. Usually, the field
masses are placed in such a way that the gravitational torque
on the pendulum vanishes, Nn = N f = 0; hence, the equilibrium
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position of the pendulum remains unchanged between the two
states—a notable difference to the static-deflection method.
The complex solutions of the angular frequencies squared of
Eqs. (16) and (17) are

ω2
n =

κ + κn

I
+ i

κφ

I
(18)

and

ω2
f =

κ + κf

I
+ i

κφ

I
. (19)

Hence,

ω2
n − ω

2
f =

κn − κf

I
. (20)

The gravitational spring constant depends on the mass dis-
tribution and G (i.e., κn,f = kn,fG), where, again, the constants
have dimensions of kg2 m�1. Note that the constants kn,f are
the derivatives of the constants cn,f used in the static deflection
mode. In summary,

G= I
ω2

n − ω
2
f

kn − kf
. (21)

The main advantage of the time-of-swing method is that
the primary measurand is a time interval. Besides the metrol-
ogy of the mass distribution, which is common to all G deter-
minations, only periods need to be measured. The time interval
is the physical quantity that can be measured with the highest
precision, especially in the age of GPS (Global Positioning
System). In contrast to the time-of-swing method, the other
three torsion-balance methods require the measurement of
an absolute quantity, angle, angular acceleration, or feedback
voltage. It is much more difficult to measure these quantities
with a relative uncertainty of 10�5 than it is to measure a time
interval with the same relative uncertainty.

The simplicity of measuring a simple time interval has
convinced many experimenters in the past thirty years to use
the time-of-swing method to measure G. In 1982, Luther
and Towler published a result with a relative standard uncer-
tainty of 64 × 10�6.49,50 For many years, this result served
as a kind of “gold standard” among G experiments. Four-
teen years later, Karagioz and Izmailov published a new result
using the time-of-swing method. The main purpose of their
experiment was to search for violation of the inverse square
law by measuring G with field masses at several distances.
Since then, they have continued to collect data with their
apparatus. In 1997, Luther published another result with the
doctoral student Bagley.52 The catalyst for this work was the
discovery of the Kuroda effect (see below). The first mea-
surement by the gravity group at the Huazhong University
of Science and Technology (HUST) under the leadership
of Luo was published in 1998.73,74 The group published a
second result in 2010 with a relative standard uncertainty
of 26 × 10�6.57 More recently, Newman and his collabora-
tors published their results using a cryogenic torsion pendu-
lum. Riley’s team achieved a relative standard uncertainty of
19 × 10�6.59

The time-of-swing method appeared in print in an article
by Reich75 in 1852. Reich attributes the idea to Forbes (see
Ref. 11). However, Mackenzie12 mentions that this method
was first proposed by Muncke in 182776 and that the mathe-
matical analysis was given by Brandes in 1806.77 Bouguer’s

pendulum measurements during his Peru expedition, on the
other hand, can be considered the very first time-of-swing
experiment (see Sec. IV B).

Forty-four years after Reich’s publication, Braun started
experiments that were reported in a detailed publication in
1896.78 Since then, the time-of-swing method has gained pop-
ularity with other researchers because of its simplicity. It took
over one hundred years before a serious problem with the time-
of-swing method was discovered by Kuroda:36 The implicit
assumption of the time-of-swing method is that the torsional
constant of the fiber is the same for both states of the field
masses. Then, κ cancels from Eqs. (16) and (17). However, this
assumption cannot hold perfectly since the torsional oscillator
swings at different frequencies and the presence of an imagi-
nary spring constant requires a frequency-dependent real part
due to the Kramers-Kronig relations.

The theoretical frequency of the spring constant depends
on the model that is used for the spring. The simplest model
for a spring is a parallel circuit (Fig. 7) of an ideal spring and
a Maxwell unit. A Maxwell unit is the serial connection of a
spring and a dissipative element (dashpot). The ideal spring is
characterized by its spring constant κideal. The Maxwell unit
can be characterized by the spring constant δκ of its spring and
a time constant τ. If a sinusoidal force is applied to the sim-
plified model, the total spring constant depends on the angular
frequency of the force, κ(ω). Forω� τ�1, the resulting spring
constant is κres ≈ κideal; for ω � τ�1, it is κres ≈ κideal + δκ
(see Fig. 8).

Figure 8 also shows the imaginary part of the spring con-
stant, which is a measure of the loss in the system. For the
simplified model discussed here, the imaginary spring con-
stant reaches a maximum of δκ/2 at an angular frequency of
ω = τ�1. For this model, the maximum of the imaginary part
of the spring constant is exactly half the change in the real part
of the spring constant. Hence, one way to find a material that
has a small dependence of the spring constant on the oscilla-
tion frequency is to search for a material with small loss or
large Q.

Clearly, a dependence of κ on ω is undesirable, but how
does it influence a G measurement using the time-of-swing
method? For the G experiment, the higher oscillation fre-
quency is in the “near” position with the masses (i.e., in line

FIG. 7. A simple model of a real spring.
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FIG. 8. The real and imaginary parts of a simple model of a real spring
consisting of an ideal spring in parallel to a Maxwell unit (see Fig. 7).

with the pendulum at the equilibrium position). In this geom-
etry, the gravitational torque adds to the restoring torque of
the fiber, yielding an increased torsional frequency. Hence,
Eq. (20) needs to be amended to read

ω2
n − ω

2
f =

κn − κf + κ(ωn) − κ(ωf )
I

, (22)

where κ(ωn) � κ(ωf) > 0. The Newtonian constant is now
obtained from

G= I
ω2

n − ω
2
f

kn − kf
−
κ(ωn) − κ(ωf )

kn − kf
. (23)

From the measured frequency difference, a small positive cor-
rection term must be subtracted to obtain the value of G. If the
experimenter “forgets” to subtract this correction, the reported
value of G will be too high.

The model with a single Maxwell unit is very simple and
does not describe a real spring. However, the qualitative con-
clusions drawn from the simple model remain valid. More
realistic models assume a distribution of Maxwell units that
are in parallel to an ideal spring. The distribution covers a
continuum in values of the time constant and the oscillator
strength δκ.

Depending on the model used for the distribution of the
Maxwell units, several limits of the bias for the G measure-
ments can be estimated. Kuroda36 estimated that the relative
bias in the G measurement is <Q�1/π (i.e., without correction,
the result would be relatively higher by this amount). Kuroda’s
estimate rests on the assumption that the ratio of the imaginary
and the real parts of the torsion constant is fixed. Newman79

set a different limit of <Q�1/2 using a continuous distribution
of Maxwell units.

This effect is, in addition to the thermal noise arguments
discussed above, another reason to use special fibers with high
Q (see Sec. IV A). In recent years, several experiments have
been carried out using the time-of-swing method. Table II
summarizes the key parameters.

An interesting and well-documented time-of-swing mea-
surement was carried out by Newman et al.,59,65,79 who built
a cryogenic torsion pendulum to increase the quality factor
and thereby decrease the bias introduced by the Kuroda effect.
The fiber was suspended from a stage at 2.5 K. At the other
end of the fiber, a flat plate was mounted. As is described
in Sec. IV A 2 d, the exact dimensions are less crucial,

TABLE II. Parameters of time-of-swing measurements that were published
in recent years. The second column gives the period of the torsion pendulum
with the field masses in the “far” position. The numbers in the third column
show the amount by which the period shortens when the field masses are
near. These numbers provide an idea of the required time resolution. The
ratio ∆ω2/ω2 is identical to the ratio of the gravitational spring constant to
that of the torsion fiber. Karagioz and Izmailov used several different torsion
balances during the course of their experiment, which began in 1982 and is
still ongoing today. The entry shown is from what Karagioz and Izmailov refer
to as “Version 1” in Ref. 51. The change in period depends on the amplitude
of the torsion pendulum. The experiment carried out by Newman et al. used
different amplitudes and fibers. The change in period ranges from 0.2 ms to
1.7 ms.

Measurement T (s) ∆T
w2

n−w
2
f

w2
f

Luther and Towler 328 2.8 s 3.4× 10�2

Karagioz and Izmailov 2077 n/a n/a
Bagley and Luther 205 2.5 s 2.4× 10�2

Tu et al. 536 3.3 s 1.2× 10�2

Newman et al. 134 1.7 ms 2.5× 10�5

simplifying the test mass metrology. Two field masses shaped
like doughnuts were used to generate a very uniform gravita-
tional field, see Sec. V. Since the field masses were at room
temperature and the plate was at cryogenic temperatures, the
Dewar had to be between the field masses and the pendulum,
resulting in a large distance between the two. For this reason,
the gravitational signal is very small, about three orders of
magnitude smaller than in other time-of-swing methods (see
Table II). Another interesting feature of this experiment is that
the measurement is performed at various oscillation ampli-
tudes up to slightly more than one complete revolution. Three
different fibers were used (see Table I), and detailed studies of
each fiber material were carried out. The relative uncertainty
of the final result is 19 × 10�6.

c. Torque feedback. In general, one successful strategy
used to measure an unknown quantity is to compensate the
effect of the unknown on a system by means of an effect that
is known or calculable. Specifically, the gravitational torque
of a modulated mass arrangement can be compensated by an
electrostatic torque. The torsion balance acts as a null detector,
while the measured torsion angle is used as the input signal
for a control loop that adjusts the voltages on the electrodes to
zero the input. Since no torsional excursion occurs, the mea-
surement is not affected by the Kuroda effect discussed in
Sec. IV A 2 b. Nevertheless, it is beneficial to employ a fiber
with a large quality factor because the power spectral den-
sity of the torque cannot be lower than the expression given
in Eq. (9).

Evidence suggests that Dicke was the first to operate a tor-
sion balance with electrostatic feedback80 in order to test the
equivalence principle in 1964. In 1980, de Boer et al. from
PTB proposed a setup with electrostatic feedback to mea-
sure G.81 A first result was published in 1987.82 Recently,
two groups have used this method to operate a torsion bal-
ance: Armstrong and Fitzgerald at the Measurement Standard
Laboratory in New Zealand56,83–85 and a group under the lead-
ership of Quinn at the BIPM in France. The group at the BIPM
published two results with two different torsion balances. One
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result was published in 200155 and the other was published in
2013.72 A complete overview of both experiments can be found
in Ref. 86.

An argument frequently made is that the electrostatic
interaction is many orders of magnitude larger than the gravita-
tional interaction. For example, the electrostatic force between
a proton and an electron in the hydrogen atom is 1038 times
larger than the gravitational force between the two. One
could conclude that there is no way to control the electro-
static feedback well enough to measure the effect of the
gravitational force. However, this frequently made compar-
ison is flawed because of the huge charge-to-mass ratio of
the electron and the proton. Of the two, the proton has the
smaller charge-to-mass ratio, which is 108 C kg�1. By way
of comparison, the charge-to-mass ratio of an aluminum ball
with a mass of 5 g and a potential of 1 V (typical num-
bers for an object in a laboratory) is 18 orders of magnitude
smaller. With the latter number, and by increasing the dis-
tance of the charge, the electrostatic feedback seems more
realistic.

The electrostatic energy on a capacitor with capacitance
C at voltage V is

W =
1
2

CV2. (24)

If one of the electrodes is connected to the torsion balance, the
capacitance (and thus, the electrostatic energy) is a function
of the torsional angle θ of the pendulum bob. If the system is
not at the angle where the system has minimal energy, a torque
toward this direction arises,

N =−
1
2

dC
dθ

V2. (25)

The source masses are modulated between two states, produc-
ing two torques, Nn = Gcn and N f = Gcf, where cn,f denote
constants that are calculated from the mass arrangement of the
experiment. For each of the two states, the torques are balanced
using the voltages Vn and V f, which can be measured with a
precision voltmeter. From the difference, G can be obtained as
follows:

G=
1
2

dC
dθ

V2
f − V2

n

cf − cn
. (26)

The capacitance gradient, dC/dθ, is measured in a sepa-
rate measurement. One strategy used to measure the capaci-
tance gradient is to excite the pendulum to a large torsional
motion and to measure the capacitance with a (commer-
cial) capacitance bridge and the angle with an autocolli-
mator. A numerical derivative is then calculated from these
measurements.

Several considerations are important for the operation of
a torsion balance in the electrostatic feedback mode:

Electrostatic forces are unidirectional: With one set of
electrodes, only a unidirectional torque can be generated.
Hence, either two sets of electrodes must be used or the
feedback position must be offset from the equilibrium posi-
tion of the torsional oscillator in such a way that the fiber
provides the torque in the other direction.
AC versus DC: Capacitance measurements are usually car-
ried out at audio frequencies. The bridge shown in Ref. 87

is a typical example of a circuit that is used for this mea-
surement. The voltage applied to the electrode can either
be alternating current (AC) or direct current (DC). The
former is more difficult to measure precisely; precise mea-
surements of AC voltages are usually made using thermal
converters that find an equivalent DC voltage, which is
eventually traceable to the Josephson effect. For the lat-
ter, the frequency dependence of the capacitance must be
well understood.
Contact potentials: Applying a voltage to the metal does not
always result in the same potential at the electrode surface
due to surface and contact potentials, which can be as large
as several hundreds of mV. This problem can be solved by
reversing the voltage. In one case, the torque is proportional
to (Vs − Vn)2, and in the other case, it is proportional to
(Vs + Vp)2. Here Vp and Vn are both positive values. If
the torques produced are nominally the same, the surface
voltage can be obtained, V s = (Vn � Vp)/2.
Parasitic capacitances: Equation (24) is an approximation
if there are only two conducting surfaces and the potential
difference between the two surfaces is V. In reality, it is
extremely difficult to achieve an electrostatic setup, where
only two surfaces matter. If there are more than two surfaces,
Eq. (24) has to be a sum over all combinations of electrode
pairs. Each summand contains the cross capacitance and the
squared voltage differences.88,89 All cross capacitances that
depend on the angle of the torsion balance will contribute to
the electrostatic torque. Notably, one such component was
mistakenly left out by a G experiment.90,91 This led to a
large systematic bias and eventually to the withdrawal of
the result.

Electrostatic force measurements are becoming more impor-
tant due to the impending revision of the International Sys-
tem of Units (SI). In the revised SI, the unit of mass is no
longer given via an artifact but can be realized from a fixed
value of Planck’s constant, h. For small mass values, elec-
trostatic balances can be used to realize the unit of mass.92

Here, “Big G” experiments and new technical demands can
benefit from each other. Both fields require a solid under-
standing of the absolute magnitude of electrostatic torques and
forces.

The electrostatic feedback method, as well as the static
deflection method, relies on an absolute calibrated angle read-
out which is necessary to calculate the capacitance gradient.
Quinn et al. found an interesting way to take advantage of the
fact that θ appears in the denominator in Eq. (26) and in the
numerator in Eq. (15). By combining the two methods in one
apparatus and averaging the results, the uncertainties due to
the angle calibration are anti-correlated.86 This negative cor-
relation substantially reduces the effect of the calibration of
the autocollimator on the average value. For example, in the
2010 measurement performed by the BIPM group, the rela-
tive uncertainty of the angle calibration is 47 × 10�6. The total
relative standard uncertainty of the average of both the mea-
surements is only 25 × 10�6, which is achieved by combining
the two anti-correlated measurements.

d. Angular-acceleration feedback. According to avail-
able information, the angular-acceleration method was first
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discussed by Rose et al.93 in 1969 and was perfected by
Gundlach53 in 2000. For this method, the torsion balance is
mounted on a turntable. The principal idea is that the gravi-
tational torque acting on the pendulum is compensated by an
inertial torque: The gravitational torques between the source
masses and the pendulum bob produce an angular acceleration
of the pendulum bob in the direction of the position with the
lowest potential energy. A feedback-control loop accelerates
the turntable in such a way that the torsion bob does not move
with respect to the rotating reference frame. The data to obtain
G are extracted from the angular acceleration of the turntable,
which (at least for the infinite gain of the control loop) is iden-
tical to the gravitational angular acceleration acting on the
pendulum bob.

The angular-acceleration feedback method has three
advantages: (1) The fiber does not twist since the pendulum
remains stationary in the rotating reference frame; thus, the
experiment is not affected by the Kuroda effect. (2) Mea-
suring the acceleration has the advantage that the mass of
the pendulum bob (and even some of its dimensions) is can-
celed out (see below). In brief, the cancellation is analogous
to the cancellation of the mass of a dropping object in a grav-
itational field: From mg = ma, the masses are canceled out
and a = g. In other words, all objects drop with an accelera-
tion of g regardless of their mass (at least in vacuum). While
this is true in a homogeneous field, it is more complicated
in field geometries that are typical for torsion balances, see
below. (3) The measurement required is the angular acceler-
ation of the turntable. The angular acceleration is computed
from a time series of angle measurements. Taking the second
derivative with respect to time yields the angular acceleration.
Similar to the static deflection method, a precise measure-
ment of an angle is needed. Here, however, the experiment
can be constructed in such a way that a full circle (2π)
can be measured. This provides a self-calibration point and
can even be used to characterize non-linearities of the angle
encoder.

To date, this method has produced the measurement of
G with the smallest uncertainty. The experiment was car-
ried out by Gundlach and Merkowitz at the University of
Washington in 2000.53 Figure 9 contains a three-dimensional
drawing of the experiment. This experiment incorporates
several sophisticated techniques in addition to those men-
tioned above. For example, the outer masses are also mounted
on a turntable whose angular velocity is controlled such
that the difference in angular velocities between the inner
and outer turntables remains constant. The relevant sig-
nal is only at the difference frequency, while most para-
sitic couplings occur on the rotation frequency of the inner
turntable.

A dramatic decrease in uncertainty over previous exper-
iments was achieved through an innovative shape of the pen-
dulum bob. Unlike prior experiments that used dumbbells
or cylindrical rods as test masses, the duo at the University
of Washington used a thin rectangular plate. This geome-
try makes the experimental result almost independent of the
detailed mass distribution. An elegant way of performing the
mass integration for an experiment with a rotation axis is via
the multipole formalism.88,94 The torque on a pendulum is

FIG. 9. Cut-away drawing of the torsion balance used by Gundlach and
Merkowitz to determine G. This instrument has measured G with the smallest
relative standard deviation to date, 13.6 × 10�6. Reprinted with permission
from J. H. Gundlach and S. M. Merkowitz, Phys. Rev. Lett. 85, 2869–2872
(2000). Copyright 2000 American Physical Society.53

given by

N(φ)=−4πG
∞∑

l=2

1
2l + 1

l∑
m=−l

m qlmQlm, (27)

where φ is the angle between the field mass and test mass
assemblies. qlm denotes the pendulum’s multipole moments
and Qlm denotes the multipole fields of the source mass
arrangement.94 Well below the resonance frequency of the
pendulum, this torque produces an acceleration of the pen-
dulum given by φ̈=N/I . For conventional mass distributions
(field masses at a larger radius than test masses), the series in
Eq. (27) converges quickly. Thus, the largest term is given by
the product of q22 and Q22.

For a thin plate with mass m, width b, and thickness d, the
inner multipole moment is given by95,96

q22 =

√
5m

16
√

6π

(
b2 − d2

)
. (28)

The moment of inertia of this plate is given by

I =
m
12

(
b2 + d2

)
. (29)

Combining Eqs. (27)–(29) yields

lim
d→0

α22(φ)=−

√
24π

5
GQ22 sin 2φ. (30)

For a two-dimensional plate, the angular acceleration is inde-
pendent of its dimensions and mass. For a pendulum with finite
thickness, the expression in the right-hand side of Eq. (30) has
to be multiplied by the correction factor
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b2 − d2

b2 + d2
. (31)

The angular acceleration remains independent of the mass of
the pendulum bob. Gundlach and Merkowitz chose b = 76 mm
and d = 1.5 mm that minimized higher-order contributions to
the series in Eq. (27). With these dimensions, a correction fac-
tor of 1–7.8 × 10�4 is obtained. Since the correction deviates
by only a small amount from one, pendulum’s dimensions do
not have to be known precisely. The relative standard deviation
contribution to the test mass metrology was 4× 10�6, for a total
relative standard uncertainty of 14 × 10�6. By way of com-
parison, the experiment carried out by Luther and Towler50

obtained a total relative uncertainty of 64 × 10�6. The sum
of the contribution of the metrology of the small mass sys-
tem was 48 × 10�6. The knowledge of the mass distribution
of the pendulum bob was the dominating component in the
uncertainty budget of Luther and Towler. By using a flat plate,
Gundlach and Merkowitz managed to reduce this component
significantly.

B. One pendulum or two pendulums
1. From the clock to the gravimeter

Timekeeping is a very important task in science and tech-
nology, as well as in commerce. Accurate navigation, for
example, is impossible without accurate clocks. The search
for stable clocks therefore goes back almost to the dawn of
human civilization itself. In 1657, Christian Huygens patented
the pendulum, which at the time was considered a very stable
clock. He also described the motion of the pendulum. Around
1672, Jean Richer noticed on a trip to French Guiana that the
oscillation frequency of a seconds pendulum depends on the
geographical latitude. The dependence of the local accelera-
tion on the latitude is a consequence of the Earth’s rotation: The
local acceleration is a sum of the centrifugal acceleration and
the gravitational acceleration. At the equator, the local acceler-
ation is reduced by the centrifugal acceleration. This effect is
exacerbated by the fact that the figure of the Earth is in response
to the centrifugal acceleration an oblate spheroid. Hence the
polar radius is smaller than the equatorial radius, increasing
the gravitational part of the local acceleration towards the pole.
A model describing this normal gravity g0 approximately, the
so-called reference ellipsoid, is WGS84,97

go = gs
*..
,

1 + a sin2 φ√
1 − b sin2 φ

+//
-

, (32)

where

gs = 9.780 326 77 1 4 m s−2,

a= 0.001 931 851 386 39,

b= 0.006 694 379 990 13,

and φ denotes the latitude. This formula describes the theo-
retical local acceleration on an equipotential surface at mean
sea level. It includes both gravitational and centrifugal poten-
tials. In the 18th century, a debate took place as to whether
the radius of the Earth was greater at the equator or at the
poles. To resolve this debate, the King of France, Louis XV,

sent two groups of scientists to take measurements. One group
traveled to Lapland, near the North Pole, and the second group
to Ecuador (then called the Territory of Quito by Spain), close
to the equator. A prominent member of the second expedition
was Bouguer, a French scientist and geodesist who, besides
the measurements of arcs of the Earth’s curvature, conducted
two experiments to determine the mean density of the Earth.98

The first measurement was performed in Quito, which can be
thought of as being located on top of a plateau. He measured
the period of the pendulum at this location and compared it
to the period determined at sea level. The period of a simple
pendulum in local gravity g is

T0 = 2π

√
l
g

, (33)

with the pendulum length l. If there were no mass between
both heights, the swing rate difference would be that derived
from Newton’s inverse square law, the so-called free-air cor-
rection. The measured gravity, however, was higher. Bouguer
explained this difference by assuming the mass between Quito
and the sea level was a slab of Earth of equal density. The
attraction from this slab can be approximated by

∆gB = 2πGρH , (34)

where ρ is the density of the Earth and H is the height of the
slab. The correction described by Eq. (34) is still applied in geo-
physics today and is called the Bouguer correction or Bouguer
anomaly. From this measurement, Bouguer could determine
the mean density of the Earth. If the mean density of the slab
is known (for example, from measurement), then this density
can be compared to the mean density of the Earth—similar to
what Cavendish did, when he compared the mean density of
the Earth to that of the field mass. Bouguer estimated the mean
density of the Earth as being more than 4 times that of the slab.
The standard density of rock in geophysics, as used in the
Bouguer correction, is 2.67 g cm�3. The mean density of the
Earth, however, as derived from the current G value, is about
5.5 g cm�3. Bouguer’s estimation was obviously too high.11

In another experiment, he measured the horizontal attrac-
tion of Mount Chimborazo, a mountain more than 6000 m high.
The principle of the experiment is depicted in Fig. 10. Here as
well, two measurements were necessary. In the first measure-
ment, Bouguer placed the pendulum at the foot of the mountain
and measured the direction of the plumb line with respect to
the stars. In the second measurement, he placed the pendulum
farther away from the mountain, but at the same latitude
[normal gravity changes with latitude due to the shape of the

FIG. 10. Principle of the pendulum measurement performed by Bouguer.
He measured the attraction of Mount Chimborazo to the pendulum bob: first
close to the mountain (left) and then far from the mountain (right). The plumb
line is measured with respect to the fixed stars.
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Earth; see Eq. (32)], and again measured the direction of the
plumb line with respect to the stars. The angular difference was
a measure of the pull of the mountain onto the pendulum bob
by comparison with a model based on Newton’s law of gravi-
tation.11 Neither of the two experiments gave even an approx-
imate mean density of the Earth, but this is extremely difficult,
since local density inhomogeneities can lead to large errors.
Several similar experiments were later performed by other sci-
entists (e.g., Maskelyne’s experiment at Mount Schehallien, a
mountain in Perthshire, Scotland, in 177499). High accuracies
were not expected, as the “field mass” (i.e., the Earth) has a
very irregular density distribution. Well-defined field masses
are required in addition to good environmental conditions.

2. A modern experiment measuring the time
of swing of a simple pendulum

A modern version of measuring G by observing the period
of two simple pendulums in vacuum is currently being built at
the Politecnico di Torino, Italy by De Marchi.100 Two 1m long
pendulums spaced 0.1 m apart measure the change in local
acceleration introduced by a field mass arrangement. The field
masses are moved such that they slow the period of either one
pendulum or the other. The relative frequency difference is
modulated with the field mass position. This differential mea-
surement rejects several common mode effects, e.g., changes
in the gravitational environment identical to both pendulums
due to tides or moving masses in the laboratory. The field mass
induced frequency change is of order 10�7 of the resonance fre-
quency. In order to resolve this frequency change, a very high
quality factor is required. De Marchi is aiming to reach a qual-
ity factor in the order of 108. Such a high quality factor would
allow a measurement with a relative uncertainty of 10�5.

3. Modern experiments measuring the static deflection
with two simple pendulums

A laboratory version of this Mount Chimborazo experi-
ment was conducted in 2002 by Kleinevoß et al.101,102 Their
setup, which is depicted in Fig. 11, consisted of two pen-
dulums of length l ≈ 2.6 m. The bobs of these pendulums
formed a microwave resonator. Two symmetrically arranged
field masses, each of which was made of brass and had a mass
of about 576 kg, were placed alternating at two distances from
the bobs. The microwave frequency measured when the field
masses were far (≈2.1 m) from the pendulums was taken as
a reference, f ref. When the field masses were placed closer
(≈0.6 m) to the pendulums, the frequency, f meas, of the res-
onator changed due to the attraction of the field masses, which
made the two mirrors separate more, thus leading to a different
cavity length. The frequency difference ∆f = f meas � f ref was
then used to determine G with

∆f =
( df

db

)
G

M

ω2
0



(
1

r2
meas
−

1

(rmeas)2

)
Kr

−
*.
,

1

r2
ref −

1
(rref +b)2

+/
-

Kref


, (35)

where M denotes the masses of the field masses, ω0 denotes
the fundamental frequency of the pendulums oscillations, b

FIG. 11. A laboratory version of Bouguer’s pendulum experiment. Two
field masses attract the bobs of two pendulums, which form a microwave
cavity. Reprinted with permission from U. Kleinevoß, “Bestimmung der
Newtonschen Gravitationskonstanten G,” WUB-DISS 2002-2, Ph.D. thesis
(University of Wuppertal, 2002).102

denotes the cavity length, and K r and K ref are correction factors
for the field mass distributions. The relative combined standard
uncertainty they reached was 147 ppm.102

In 2010, Parks and Faller published the results of a sim-
ilar experiment,103,104 which had actually been conducted in
2004. Two main differences to the Wuppertal experiment are
noteworthy. The first difference was the use of a laser Fabry-
Pérot interferometer (cavity), rather than a microwave cavity.
Reducing the wavelength of the electromagnetic waves from
centimeters to several hundreds of nanometers improved the
resolution of the distance sensing. The second difference was
a simultaneous measurement of a second cavity, which was
attached to the support of the pendulums. This was done in
order to compensate thermal drifts in the setup. Their pendu-
lums had a length of 72 cm and four identical source masses
of 120 kg each were used. The group waited six years before
publishing the results, as the value of G they found was about
14 standard deviations higher than the CODATA-2008 value.
Before submitting the publication, every detail of the exper-
iment was carefully checked. The final result has a relative
standard uncertainty of 21 × 10�6.

C. Conventional balances
1. Historical beam balance measurements

A conventional beam balance compares the clockwise and
counterclockwise torques generated by masses on two balance
pans on either side of the fulcrum. The beam tilts until the
net torque about the central pivot is zero. Traditionally, the
center of mass of the beam is below the pivot point and, as
the beam pivots, a counteracting torque is generated. The tilt of
the beam is a measure of the initial torque difference. Assum-
ing that the arms are of equal length, the beam balance is a
device to compare forces. The assumption of equal arm lengths
is not necessary if a weighing scheme such as substitution or
transposition is implemented.

The weight of a mass is given by the product of the mass
value and the local acceleration of gravity, mg. In most cases,
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balances are used to measure m, since g is assumed to be con-
stant. In measurements of G with beam balances, m is constant
and changes in g introduced by modulating a source mass are
measured. The readings of beam balances are usually given
in grams and must be converted into the units of force by
multiplying them by the local acceleration.

The beam of a balance with two identical masses on the
balance pans is in equilibrium. Changing the local gravity at the
position of one mass causes an excursion of the beam propor-
tional to the weight change. The weight change can either be
read off at the balance’s pointer or small calibrated masses can
be added to restore equilibrium. Local gravity can be changed
by placing large field masses below or above the pans. Von
Jolly conducted such a measurement in Munich, Germany, in
1878 and 1881, almost a century after Cavendish.17,105,106 He
built a special beam balance—a so-called “double-balance”—
with four mass pans (see Fig. 12) that was able to resolve
weight differences smaller than 1 µg.107 Von Jolly was able to

FIG. 12. Double-balance of the German physicist von Jolly. From Graetz,
Die Physik. Copyright 1917 Max Planck Institute for the History of Sci-
ence. Reprinted with permission from Max Planck Institute for the History of
Science.108

measure the Earth’s gravity gradient, as the gravity decreases
by about 300 µGal m�1 (in gravimetry, the non-SI unit “Gal” is
commonly used: 1 Gal = 1 cm s�2). Raising a 1 kg mass by 1 m
decreases its weight by about 3 µN (which would correspond
to a mass of 300 µg). In von Jolly’s setup, the upper and lower
mass were separated by about 21 m, leading to a relative weight
change of 6 × 10�6. Von Jolly used this experiment to verify
Newton’s inverse square law (F ∝ r�2). To do so, four identical
glass flasks were made, two of which were filled with approxi-
mately 5 kg of mercury and two of which were air-filled. Then,
all four flasks were sealed. The purpose of the air filled flasks
was to suppress effects related to changes in the air buoyancy
due to changing air pressure. For the measurement, von Jolly
first placed both mercury-filled flasks on the upper pans and
the air-filled flasks on the lower pans. Later, he switched the
two flasks on one arm of the beam. As he expected, he was able
to measure an increase in weight when the mass was moved
from the upper to the lower pan. A difference was observed
with respect to theoretical calculations; however, this differ-
ence was attributed to mass inhomogeneities in the Earth. For
his G measurement, he placed a field mass—a lead sphere with
a diameter of approximately 1 m and a mass of 5775 kg—
below one of the lower pans (see Fig. 12). Then, he applied
the same measurement strategy as before.12 With a distance
between the centers of mass of the field mass and the test
mass of a = 0.57 m, he measured an increase in weight of
5.8 µN, which corresponds to a mass of 589 µg. This dif-
ference corresponds to 10�7 times the mass of the test mass.
Von Jolly was able to measure this difference with a relative
uncertainty of 1.2 %, a highly significant achievement for the
time. He obtained G = 6.465 × 10�11 m3 kg�1 s�2. To be his-
torically accurate, von Jolly did not directly measure G but
instead the mean density of the Earth, similar to Cavendish.
He compared the density of the lead, ρPb, with that of the
Earth, ρEarth,

ρEarth = ρPb

( m
∆m

) ( r
R

) (
r2

a2

)
, (36)

where R denotes the radius of the Earth.
Hermann von Helmholtz later encouraged König and

Richarz, who were later joined by Krigar-Menzel,29,109 to
repeat the measurement with a modified setup in Berlin, where
they used the incredible amount of approximately 9 m3 of
lead. The mass of this field mass was about 100 metric tons
of weight. The lead was made available from a nearby cannon
foundry. The field mass was a large rectangular block.17 The
British physicist Poynting measured G with a beam balance
in 1878.110 Like von Jolly, he used a spherical lead mass as
a field mass, although with a smaller mass (170 kg). None
of these experimenters reached the uncertainty that von Jolly
reached.

2. Modern beam balance measurement

The next time a beam balance was used to measure G
was almost a century later although, beam balance exper-
iments to measure other aspects of gravity took place in
the early 1900s. In 1983, Speake wrote a Ph.D. thesis on
the beam balance method to determine the Newtonian grav-
itational constant.111,112 More recently, experiments were
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conducted by a group at the University of Zurich led by Kündig
(see Refs. 113 and 114). The aim of the first measurement was
to search for a fifth force with a range of about 100 m. The
experiment, which was conducted at the Gigerwald storage
lake, found the value for G for interaction ranges of 88 m and
112 m115,116 to be consistent with the values obtained in lab-
oratory experiments (with interaction ranges typically on the
order of 10 cm). The largest uncertainty in the measurement
of G was the mass integration. The shore of the lake was com-
posed of scree and it was difficult to know where the water
ended (i.e., the source mass was ill defined).

The obvious solution was to “bring the lake to the labora-
tory.” Since water has a low density, a huge volume of water
would have been necessary to create a sizable signal. For this
reason, Kündig et al. resorted to a material that von Jolly had
used: mercury. However, this time, mercury was used as a field
mass. Mercury has a density of 13.54 g cm�3, which allows
it to be used very effectively as a field mass. Effective, in this
context, means that a small volume of the field mass can create
a large signal.

The second desirable property of mercury is that it is liq-
uid at room temperature. Liquids have a higher homogeneity
in density than solids. The density in solid metals can vary,
depending on the details of the casting process, relatively up to
10�4. The mass distribution of a liquid field mass has (almost)
perfect homogeneity. Possible deviations from perfect homo-
geneity include a linear density gradient due to the isobaric
pressure gradient and the compressibility of the liquid. The
major disadvantage of a liquid field mass is that a tank, which
must be taken into account for the mass integration, is needed
to contain the liquid. A tank is usually a very complicated struc-
ture consisting of several parts that are joined by bolts and use
O-rings in grooves to seal the joints. The mass, shape, and
location of these elements must be measured, and their effect
on the gravitational signal must be calculated, increasing the
complexity of the mass integration compared to an experiment
with a solid source mass.

In the Zurich experiment, a total of 1 m3 of mercury was
filled into two identical tanks shaped like hollow cylinders

(see Fig. 13). It is possible to move the tanks into either of two
positions, labeled “together” and “apart.” A vacuum tube
passed through the inner bore of the tanks. Inside the vacuum
tube are two test masses suspended by tungsten wires. Verti-
cally, the test masses are separated by 1.4 m, approximately
double the height of one tank. Thus, when the field masses are
together, each test mass is located at the end of a field mass
cylinder. The gravitational field generated by the cylinder has
an extremum at this position (see Sec. V). The “apart” posi-
tion is designed in such a way that each test mass is again at an
extremum of the field. In the together (T) and apart (A) states,
the force difference between the upper (mu) and lower (ml)
masses is measured as follows:

∆FT =mug(zu) + Fz(T, u)

−mlg(zl) − Fz(T, l) (37)

and

∆FA =mug(zu) + Fz(A, u)

−mlg(zl) − Fz(A, l), (38)

where Fz(A/T, u/l) denotes the vertical force on the
upper/lower test mass in the field mass state (apart/together).
g(zu/l) denotes the local acceleration of gravity at the position
of the upper/lower test mass.

Subtracting the differences from each other eliminates the
weights mug(zu) and mlg(zl) and yields the following:

∆FT − ∆FA=Fz(T, u) − Fz(A, u) − Fz(T, l) + Fz(A, l)

= kG,
(39)

where k denotes a factor containing masses and distances
between masses. This second difference, also referred to as
the signal, was approximately 8 µN.

The vertical forces on the test masses are measured by a
very sensitive mass comparator. A mass exchanger hanging
below the mass comparator can connect either mass to the
mass comparator. The reading of the mass comparator is in
units of mass (kilogram) rather than force (Newton). To obtain
the gravitational force, the reading has to be multiplied by the
measured value of g.

FIG. 13. The principle of the experiment conducted at
the University of Zurich. The two gray cylinders (field
masses) can be either together (T) or apart (A). Either one
of the two test masses is connected to the mass comparator
to measure its weight given by m(g + gz), where g is
the local acceleration of gravity at the test mass position
and gz is the additional vertical field produced by the
source masses. On either side of the drawing, gz is shown.
Reprinted with permission from S. Schlamminger et al.,
Philos. Trans. R. Soc., A 372(2026), 20140027 (2014).
Copyright 2014 The Author(s) Published by the Royal
Society.117
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In contrast to torsion balance experiments, the traceabil-
ity of the force measurements in beam balance experiments
is straightforward: A traceable calibration force can be gen-
erated by adding a mass standard with a calibrated mass to
the balance pan. The second measurement required is that
of g, which is not usually a problem at relative uncertainties
of 10�6.

The relative uncertainty obtained by the Kündig exper-
iment was 18.3 × 10�6. The uncertainty was limited by the
statistical uncertainty (i.e., the noise in the weighing and sorp-
tion effects on the test masses that are correlated to the motion
of the field masses).

The Zurich experiment was dismantled at the end of 2002,
and mercury was sent back to the mine it was leased from.

D. Free-fall absolute gravimeters and gradiometers
1. Principle of free-fall gravimeter

An absolute gravimeter is an instrument used to measure
the local acceleration due to gravity, g, also commonly called
“Little g.” A diagram explaining the principle of a classical
free-fall absolute gravimeter is shown in Fig. 14(a).

A test mass to which a retroreflector is attached is released
in a vacuum chamber. The trajectory of the mass in free
fall is traced by means of a laser interferometer. In order
to conduct repeated measurements, the test mass sits in an
elevator. This elevator is accelerated with more than g down-
wards. As a result, the test mass hovers inside the elevator
and falls freely without being in contact with the elevator

until the elevator decelerates in order to catch the test mass
again gently. The accelerated motion of the test mass pro-
duces a chirped fringe signal, which is detected with a photo
diode. From the fringe signal, the trajectory of the free fall can
be recovered, as one fringe crossing corresponds to a travel
distance of the test mass of half the laser wavelength. By tim-
ing the fringe signal values, the time/distance (ti, zi) pairs are
obtained and a least-squares fit of a linear model provides the
acceleration, g0,

zi = z0 + v0

(
ti +

1
6
γt3

i

)
+

1
2

g0

(
t2
i +

1
12
γt4

i

)
. (40)

The parameters z0 and v0 denote the initial position and veloc-
ity at the start of the trajectory (i.e., for t = 0). There are two
ways to include the Earth’s gravity gradient, γ: The first way
is to include the gradient (if it is known), as in Eq. (40) in the
fit model. Then, the calculated acceleration refers to the start
position of the trajectory. The second way is to skip the gra-
dient in the fit model (i.e., by setting γ = 0). In this case, the
calculated acceleration refers to a position between the start
and the end of the trajectory, a function which depends on the
initial velocity, 30, of the test mass, the approximated local
gravity, g0, and the total free-fall time, T (see, e.g., Ref. 119).
This position is then called the reference or reported height.120

Resolutions on the order of 1 part in 109 and better are possi-
ble. A short overview of relative and absolute gravimeters can
be found in Ref. 121.

From a didactic standpoint, free-fall experiments are ide-
ally suited to measure G. After all, Newton was allegedly

FIG. 14. (a) In a free-fall absolute gravimeter, a test mass contains a retroreflector Mobj , which is part of a Mach-Zehnder laser interferometer. The test mass
is released in vacuum and its free-fall path is traced with respect to an inertially isolated reference retroreflector (Mref ). BS denotes beam splitters; M denotes
mirrors. The interference signal registered with the detector Det contains the information about the acceleration due to gravity. For repeated measurements, the
test mass is lifted up with an elevator. The alternating positions of a field mass are sketched by the two rings. (b) The graph shows the qualitative field strength
of the ring-shaped field mass. Two extrema appear. The trajectory of the test mass is adjusted to precisely cover the range of the extrema in order to minimize
positioning errors. When the field mass is in the lower (L/Pos 2) position, the measured gravity is higher than the local gravity. When the field mass is positioned
above (U/Pos 1) the test mass, the measured gravity is lower than the local Earth’s gravity. The theoretical effective gravity from the source mass is obtained by
integrating over the field strength covered by the trajectory. Reprinted with permission from J. P. Schwarz et al., Science 282, 2230–2234 (1998). Copyright 1998
AAAS.118



111101-18 C. Rothleitner and S. Schlamminger Rev. Sci. Instrum. 88, 111101 (2017)

inspired to derive the law of gravitation after observing the
free fall of an apple from a tree. However, free-fall experi-
ments also have a practical advantage over the experiments
discussed above. Free-fall experiments do not require a sus-
pension for the test mass(es). Perturbing material properties,
which are often not well understood or whose models are
only valid to a certain degree, do not apply here. A disadvan-
tage, on the other hand, is the short measurement time of such
experiments in an Earth-bound laboratory. In a satellite encir-
cling the Earth, this situation would be different, as mentioned
above.

2. G measurement with a free-fall gravimeter

G can be measured with a gravimeter by placing a well-
defined field mass close to the gravimeter’s test mass. Because
the field mass perturbs the local acceleration due to gravity,
the gravity measured is gmeas = g0 + gFM (i.e., the local Earth’s
gravity, g0, plus a perturbing term arising from the field mass,
gFM). By applying Newton’s law of gravitation, this pertur-
bation can be modeled, and the acceleration measured can
be taken to determine the magnitude of G. This experiment
was conducted in 1998 by a group led by Faller at Boul-
der, USA, using a commercial free-fall absolute gravimeter
FG5.118 Twelve tungsten alloy cylinders (in two layers) were
placed to form a ring. The gravity field of a ring mass shows two
extrema where the integrated signal over the test mass trajec-
tory reaches its maximum, see Fig. 14(b). Another advantage
of the ring shape is that the field strength variation at these
extrema is minimal; as a result, a minimum uncertainty due to
positioning errors is given. The relative standard uncertainty
obtained was on the order of 1.4 × 10�3. This is only approxi-
mately five times better than what Cavendish obtained, but the
important point is that it represents a completely different mea-
surement approach. It does not need to compensate for Earth’s
gravity by means of (for example) a torsion wire, an error
source that was underestimated for many years.36 Although
there is no drift due to material properties, many other factors

are part of this relatively high uncertainty. First, there is a poor
signal-to-noise ratio. Although gravimeters can resolve grav-
ity to better than one part in 109, the signal, when compared to
g, is only about 1 part in 107. This requires a long integration
time. In order to compensate for systematic effects, the exper-
iment was repeated with two different field mass positions. In
the first mode, the field mass was placed below the test mass;
as a result, the gravity measured was higher than g0. In the
second mode, the field mass was placed above the test mass,
thus taking advantage of both extrema of the ring-shaped field
strength. This second position reduced the effective gravity
acting on the test mass. Figure 15 shows some measurement
data of the experiment. The time variations in the data are
mainly from the influences of the Moon and the Sun (tides),
as well as due to environmental effects (e.g., temperature, air
pressure, and hydrological effects). The pure tidal variations
are already three times the magnitude of the field mass sig-
nal. Moving the 500 kg field mass produces additional scatter
on the data.

3. Cold atom gravimeters and gradiometers

Dropping a macrosopic retroreflector is not the only
way to realize a free-fall gravimeter. In 1991, Kasevich and
Chu122,123 were able to measure g by dropping cooled atoms
(i.e., by using atom interferometry124). Here, a cloud of atoms
are cooled and all atoms are prepared to the same quantum
state, described by their phase φ. Then, the atoms are released
by briefly turning off the trap. Three laser pulses with a pulse
separation T follow. The first pulse splits the cloud into two
by increasing the momentum of some of the atoms. This laser
pulse is called a π/2 pulse. The second pulse acts on both
clouds in such a way that their momenta are interchanged
(the so-called π-pulse). Finally, the third pulse, which is a
second π/2 pulse, recombines both clouds. As both clouds
interact at different heights with the laser, where the clouds
have different velocities and the laser has a different phase, the
states of the atoms are different, depending on the acceleration.

FIG. 15. The differential signal of the G experiment with
a gravimeter. The gravity was measured for two different
field mass positions. The time variation in the gravity sig-
nal arises mainly from the Earth tides (solid middle line).
Reprinted with permission from J. P. Schwarz, Science
282, 2230–2234 (1998). Copyright 2015 AAAS.118
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The final recombined cloud is then interrogated by another
laser in order to obtain the information on the atom quan-
tum states. The probability P = (1 + cos(φ))/2 of how many
atoms are still in their initial state is then a measure of g.
Here, φ represents the total accumulated phase difference.
Although the information about the acceleration is extracted
from the quantum states of the atoms, the principle has some
points in common with the macroscopic setup. It should
be noted that atom gravimeters essentially correspond to a
measurement of three positions of the atom clouds—or to a
measurement of two velocities. During the pioneering years
of conventional free-fall gravimeters, only three points were
measured, whereas today, data have been collected on thou-
sands of positions.121 These developments took place before
lasers were available. Moreover, the measurement sequence
π/2 � π � π/2 corresponds to a Mach-Zehnder laser inter-
ferometer type, the interferometer setup that is commonly
used in conventional gravimeters. From these commonali-
ties, it follows that perturbations enter both systems in the
same way, as explained in Ref. 120. This can be easily seen
by comparing of the measurement functions, which can be
written as

gmeas =
1
k
φ1 − 2φ2 + φ3

T2
, (41)

where T denotes the total free-fall time. For a classical
gravimeter, the factor k = 4π/λ, with λ being the wave-
length of the laser (usually 633 nm). For an atom gravimeter,
k = keff (the effective Raman wavenumber). In a conventional
gravimeter, φi denotes the time-dependent phase difference
between both interferometer beams; in an atom gravimeter,
it denotes the local Raman phases at the times when the
π/2 and π pulses are applied. Also of note is the fact that
atom gravimeters can be constructed in two ways: using a
simple drop of atom clouds and using a fountain-like setup
(i.e., the launch-and-drop method), which is actually the most
common method for atom gravimeters. The same is true for
conventional gravimeters although, here, the simple free fall is
preferred.

Atom gravimeters have already been used in several
G measurements in different configurations.125 However—
possibly as a consequence of the knowledge gained from clas-
sical gravimeters—a simple atom gravimeter configuration has
never been used for G measurements but a combination of two
gravimeters, defining a gradiometer. A gradiometer measures
spatial gravity differences; for example, if the setup depicted
in Fig. 14(a) is imagined with the reference retroreflector Mref

also in free fall (as suggested in Ref. 118), both retroreflectors
fall at the same time with a spatial separation d along the plumb
line. Since the lower retroreflector is closer to Earth’s center
of gravity, its acceleration due to gravity will be larger than
the upper retroreflector. If this differential acceleration ∆g is
measured, then the Earth’s gravity gradient γ = ∆g/d can be
calculated together with the known separation d. Since both
masses fall simultaneously, environmental changes or tidal sig-
nals are common mode effects for both masses and are thus
canceled out. Such a gradiometer would give an improved
signal-to-noise ratio, as the background signal is no longer g
but only its gradient γ, which is on the order of 3 × 10�7 m�1.

At this point, G is measured by perturbing the local gravity gra-
dient by adding a well-defined field mass, as in the gravimeter
experiment. However, the Earth’s gravity gradient can only
be measured to a few parts in 10�2, which limits the achiev-
able accuracy of the experiment. In order to circumvent this
problem, an additional differential measurement can be con-
ducted. By repeatedly positioning the field mass at different
positions, the differential signal can be considered. An exper-
iment of this type was carried out by Fixler et al.,126 who
achieved a relative uncertainty of 5 × 10�3, and more recently
by Rosi et al.,127 who gave a relative uncertainty estimation
of 1.5 × 10�4.

4. Differential gravity gradiometer

The gradiometer setup still involves the problem of
an unknown gravity gradient; the differential measurement
requires a re-positioning of the field mass, which leads to
positioning uncertainties. One way of avoiding this problem
was proposed in 2014 by Rothleitner and Francis128 and com-
bines two gradiometers in one, as depicted in Fig. 16. The
second (middle) test mass (TM2) is part of both gradiome-
ters. When all three test masses fall simultaneously and the
distance between TM1 and TM2 is the same as that between
TM2 and TM3, both gradiometers measure the same (Earth’s
gravity) gradient. When taking the differential signal of both
gradiometers into consideration, this gradient is canceled to
first order and the resulting instrument can be considered a
“null instrument.” Such an instrument is highly sensitive to
local gravity variations and not influenced by environmental
changes since most influences are common mode effects on
both gradiometers. This instrument is perfectly suited for mea-
suring local gravity variations and thus for determining G. In
principle, not even the positions of the field mass have to be
varied, as only the influence of the field mass is measured,
in accordance with the nature of the instrument. Most of the

FIG. 16. Differential gradiometer principle. Test masses TM1, TM2, and TM3
are in simultaneous free fall. The ring-shaped field masses perturb the local
gravity field. Due to the differential character of the setup, only the gravity
of the field masses is measured, not the Earth’s gravity or its gradient (to first
order) (M—mirror, BS—beam splitter, d—distance between upper and lower
test mass).
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effects that have a large uncertainty contribution in gravimeter
measurements are the common mode here and are canceled
out. As a consequence, this setup requires lower stabilities in
the laser system and other components, making it less expen-
sive than an absolute gravimeter. Only a few effects are not
common mode effects such as the rotation of the test masses.129

The test mass contains a retroreflector attached to a housing. If
the test mass falls freely, there will always be a minute induced
rotational velocity. This rotation will be around the center of
mass (COM) of the test mass. If the optical center (OC) differs
from the COM, then a parasitic acceleration will be measured
(the centrifugal acceleration of the test mass). Thus, the test
masses must be well balanced in order for the COM to coincide
with the OC.130

An experiment with a conventional free-fall gradiometer,
as suggested in Ref. 128, has still not been realized. However,
a first attempt by means of an atom gravimeter configuration
has been carried out by Rosi et al. in 2015.131

V. THE MASSES

Besides length and time, the third dimension that appears
in the unit of the gravitational constant is mass. The choice
of the material and the shape of the test and field masses are
not trivial and depend on many factors. Although mass can be
measured very accurately by means of comparators, in “Big
G” measurements, the determination of the mass alone is not
sufficient. This is due to the fact that the field mass is usually
very close to the test mass for a G measurement. As a conse-
quence, we cannot treat the masses as point masses and have
to integrate over both mass density distributions from the test
and field masses. Therefore, knowledge of the density distribu-
tion within the masses is also necessary. Furthermore, highly
accurate dimensional measurements are necessary, as well as
precise positioning of the test and field masses. Table III shows
some examples of field masses that have been used for G mea-
surements. The table also shows the very wide range of weights
that have been used for laboratory measurements over the cen-
turies. From Eq. (1), we infer that in order to increase the signal,
the masses must be as large as possible. At the same time, the
distance between the masses should be as small as possible for
the signal decays with the inverse square of the distance. This

brings us to the conclusion that the density of the material
should be maximized. This is why most of the experiments
use highly dense material. Elements such as lead, tungsten,
and uranium have been used for their high densities. Some of
these materials, however, are either hard to process (tungsten)
or are relatively soft (lead) and allow the surface to be easily
damaged. Because density distribution is also of critical impor-
tance, either the mass should be homogeneous or (as a min-
imum) the density distribution should be easily measurable.
Due to the high density of the materials, X-ray imaging meth-
ods cannot be used. Therefore, one of the masses used in the
experiment is usually examined by means of destructive test-
ing. A better solution is the use of a liquid such as mercury114

or water, as they have an almost perfectly homogeneous den-
sity distribution. However, because mercury is poisonous, it is
generally avoided, while the low density of water means that
it can only be used in enormous quantities such as a lake116,134

or the sea.135

Another important consideration is the shape of the mass.
Table III lists four types of shapes: a sphere, a cylinder, a
ring, and a block. Spheres have several advantages over other
geometrical shapes of the field mass:

(1) The sphere is the shape for which the gravitational
field can be calculated most easily. The calculation of
the gravitational field of other shapes is more involved
and sometimes cannot be solved in closed mathematical
form.

(2) The sphere has the highest symmetry. It can be oriented
in many different positions in order to average out density
non-uniformity.

(3) It is easier to fabricate a large sphere with low form
deviations than, for example, a cylinder. Currently, the
best spheres in the world are those fabricated for the
Avogadro project. These spheres are made from a crys-
tal of almost pure 28Si silicon. Their form deviations
are on the order of 40 nm (and below) for diameters of
93.7 mm,136 and their surface roughnesses are less than
0.2 nm137 (i.e., the relative form deviations are about
4.3× 10�7). The tungsten-sphere field masses with nom-
inal diameters of 101.6 mm that were used by Beams138

had form deviations of less than 75 nm (relative form

TABLE III. Field masses used in determinations of G. Adapted from Ref. 133.

Field mass (total) (kg) Material Geometry Measurement principle References

1.6 Stainless steel Spheres Torsion balance 57
21 Tungsten Spheres Torsion balance 50
33 Stainless steel Spheres Torsion balance 53
45 Cu 0.7% Te Cylinders Torsion balance 72
118 Copper Rings Torsion balance 59
480 Tungsten Cylinders Double pendulum 103
516 Tungsten Cylinders Atom gravimeter 132
521 Tungsten alloy Cylinders Free-fall gravimeter 118
1 152 Brass Cylinders Double pendulum 102
5 775 Lead Sphere Beam balance 106
13 520 Mercury Cylinder tank Beam balance 114
100 000 Lead Rectangular block Beam balance 109
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FIG. 17. (a) This diagram shows the
gravitational field strength aa of the hol-
low cylinder pictured in (b). (b) The
gravitational field of the cylinder in (a):
It has a saddle point on the axis of sym-
metry and near the end of the cylinder.
From Y. T. Chen and A. Cook, Gravi-
tational Experiments in the Laboratory.
Copyright 2005 Cambridge University
Press. Reprinted with permission from
Cambridge University Press.43

deviation of 7.4 × 10�7).133 For comparison, industrial
ball bearings with nominal diameters of up to 100 mm
have tolerances in diameter of up to 1 µm (grade 40) (i.e.,
one part in 105 relative form deviation), whereas smaller
ball bearings with nominal diameters of up to 12.7 mm
have relative form tolerances of 6.3 × 10�6 (grade 3).139

In order to estimate the measurement error due to these
form deviations, we assume an ellipsoidal shape of the
field mass. The relative error can then be calculated as
(see Ref. 43)

∆aform

aform
=

3 · (2c2 − a2 − b2)

10 · R2
, (42)

where a, b, and c denote the radii of the three rotational axis of
the ellipsoid and R denotes the distance between the test mass
and the field mass. If the separation R = 100 mm, a = b = 50
mm, and c = a � 0.5 µm (grade 40), then this relative error
amounts to about 3 × 10�6 (i.e., sufficient for a measurement
on the order 1 × 10�5).

Although it is sometimes believed that a cylinder is eas-
ier to manufacture than a sphere, this does not hold if small
tolerances have to be met, as the form deviations of cylinders
are usually higher than those for spheres. As an example, Tino
et al. (Florence, Italy) used cylindrical field masses made of
95.3 % W, 3.2 % Ni, and 1.5 % Cu. The relative form deviation,
which was measured with a coordinate measuring machine,
was on the order of 1 × 10�5.127,140 While the tolerances for
a sphere can be specified with one parameter (radius), addi-
tional parameters are necessary to specify the tolerances for a
cylinder: cylindricity, parallelity (of end planes), flatness (of
end planes), and angles. Hence, it is more difficult to manu-
facture and to quantify the form deviations on a cylinder. It
is challenging to keep the aforementioned tolerances below
1 µm for cylinders.141

A considerable advantage of using a hollow cylinder ver-
sus a sphere as a field mass is a larger tolerance for the test
mass position, as Faller and Koldewyn142 pointed out in 1983.
At a certain distance above the cylinder along the symme-
try axis, the gravitational field of a hollow cylinder has a
maximum. At the maximum, the derivative of the gravita-
tional signal with respect to the axial position is zero; thus,
the signal to first order is independent of the precise position
of the test mass. Chen and Cook143 made a detailed calcula-
tion and showed that there is actually a saddle point (i.e., a

minimum and a maximum along the radial and axial direc-
tions, respectively). Hence, the signal is also independent to
first order of the radial position. Figure 17 depicts a sketch of
this saddle point. Kündig et al. also took advantage of this
property, as shown in the graphs on the left and the right
of Fig. 13.

Such a field mass can also be constructed by arranging
a number of cylinders to form a ring, as done in the free-
fall experiment by Schwarz et al.118 The graph in Fig. 14(b)
shows these extrema of gravity for this source mass arrange-
ment. The freely falling test mass was then positioned in such
a way that its trajectory covered the precise area of the sad-
dle point. Lamporesi et al.132 used a similar arrangement.
Furthermore, as Chen and Cook point out, a cylinder with a
diameter equal to its length has almost the same gravitational
field characteristics as the sphere.43 Another restriction is that
perturbing forces should be avoided. Masses should therefore
have a low magnetic and electric susceptibility and be made
of electrically conductive materials in order to avoid electric
charges.

VI. SUMMARY AND OUTLOOK

Measuring G accurately is a challenging task. To deter-
mine G, a very carefully constructed setup is necessary since
the gravitational force is about 38 orders of magnitude smaller
than the electromagnetic force and since the gravitational
interaction, unlike the electromagnetic interaction, cannot be
shielded. A good indicator of the struggle to assign a value to G
is given by the spread of the published values. Figure 18 shows
the values and uncertainties of fourteen precision determina-
tions of G published in the past 35 years. The smallest reported
relative standard uncertainty is 14 × 10�6. However, the dif-
ference of the largest reported result to the smallest reported
result exceeds 500 × 10�6, more than 30 times the smallest
uncertainty.

In 2014, CODATA used a data set to determine the aver-
age value of G that was slightly different from the data set
shown in Fig. 18. The two results from the different methods
used by Quinn et al. were averaged to one data point for the
2001 and 2014 publications. In Fig. 18, the results were shown
individually to emphasize the different modes of operation
for torsion balances. Averaging both values results in signif-
icantly smaller relative uncertainties than either method due
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FIG. 18. Recent measurements of G and their measurement uncertainties.
The names on the left denote the principal authors and the numbers on the
right denote the years when the results were published. The open symbols
represent torsion balance experiments and the closed symbols represent mea-
surements that were performed by other means. The vertical black line gives
the CODATA-2014 recommended value, GCODATA2014, with its calculated
uncertainty in gray.

to the fact that the two determinations are anti-correlated, see
Sec. IV A 2 b. The relative standard uncertainties of the aver-
aged values are 41 × 10�6 and 25 × 10�6 for the values
published in 2001 and 2014, respectively.

Faced with the large spread of the data compared to the
typical uncertainties, the Task Group on Fundamental Con-
stants decided to enlarge the reported uncertainty of all pub-
lished results to include a common multiplicative factor before
determining the uncertainty of the average value. One choice
of multiplicative factor is the Birge ratio.144,145 The Birge ratio,
RB, is named after Raymond Thayer Birge, an American physi-
cist who published the first recommended set of fundamental
constants in 1929.146 The Birge ratio is the square root of the
sum of the squares of the normalized residuals divided by the
number of degrees of freedom, i.e.,

RB =

√
χ2

N − 1
with χ2 =

N∑
i=1

(
yi − yavg

σi

)2

. (43)

The normalized residual of an experiment i is given by (yi

� yavg)/σi, where yi and σi are the published value and
uncertainty of the experiment, respectively. Here, yavg is
the average value that can be obtained as a weighted aver-
age of the published data. The Birge ratio for the G data
set is about five. This means that if every uncertainty is
multiplied by a factor of five (replace σi with 5σi in the
above equations), χ2 would be thirteen, the expectation value
of a data set with fourteen measurements. The task group
chose to use a slightly different expansion factor of 6.3
instead in order to reduce all normalized residuals below
two.

Why is the scatter of the G data so large? Experimenters
have devoted tremendous effort to investigating many pos-
sible contributions to the measurement uncertainty, but the
complete data set reported is not statistically probable. In prin-
ciple, there are three possibilities that can explain the observed
inconsistency of the data:

1. Some or all of the experiments suffer from an unknown
bias. A bias is a systematic effect that shifts the mea-
sured result from the true value by a predictable amount.
It is normal for experiments to have biases. Usually, the
experimenter determines the bias and applies a correc-
tion in such a way that the published value no longer has
a bias, i.e., the experimenter’s best estimate of the true
value. However, a bias may be present in the experiment
that the experimenter is not aware of. In this case, the
published result will differ from the true value by the size
of the bias. For example, prior to 1995, the publication
year of Kuroda’s article, the time-of-swing experiments
suffered from a relative bias on the order of 1/Q because
the experimenters were not aware that the inelastic prop-
erties of the spring affect the measurement result. After
1995, the experimenters tried to avoid the bias either
by using a suspension with a large Q (e.g., Ref. 59)
or by estimating the bias and applying a correction
(e.g., Ref. 57).

2. Some or all of the experiments underestimate the rela-
tive uncertainty of the measurement. Hypothetically, all
of the reported values of the measurements may be cor-
rect, but the uncertainties reported may be too small. If
the true uncertainty were five times larger, the data set
would be perfectly consistent (see the Birge ratio above).
What could cause the experimenters to under-report the
measurement uncertainty? We can say with certainty that
this is not the intention of the experimenters, who usually
spend a great deal of time and considerable resources in
establishing a comprehensive uncertainty budget. In most
G measurements, the time spent taking the actual mea-
surement data is often much shorter than the time spent
investigating the uncertainties.

The principal problem is that the set of the known
systematic and statistical effects is only a subset of
all systematic and statistical effects that can perturb
an experiment. Hence, regardless of how much effort
is spent, the uncertainty budget can never be com-
plete. There will always be an unknown uncertainty,
often referred to as a dark uncertainty.5 The aim of
the experimenter is to consider every conceivable effect
that may change the result of the measurement in order
to keep the dark uncertainty as small as possible (ide-
ally, limiting it to a small fraction of the total reported
uncertainty).

Fortunately, however, as more experiments are con-
ducted, more systematic effects are discovered. As our
knowledge base of systematic effects grows, the sources
of dark uncertainty will diminish and the scatter of
future measurements will decrease. Eventually, the rec-
ommended value of G will converge to the true value.

3. The most exciting, yet least probable explanation is that
new, unknown forms of physics can explain the varia-
tion in the data. This is a variant of the first point, with
the difference being that the first point focuses on tech-
nical biases, while this point focuses on a bias that is
more fundamental in nature. Over the years, several the-
ories have been published that have attempted to explain
the variation observed with the different experiments
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(e.g., Refs. 147 and 148). While attempts to formulate
new theories are encouraged, the existing G data set is
not the best data set to disprove such new theories. The
experiments were all done with the intent of measuring
G, and other variables may not have been strictly con-
trolled. In most cases, it would be much better to conduct
a dedicated experiment to disprove a certain theory. For
example, if the hypothesis is that G depends on time, the
best course of action is to build one experiment that is
optimized to be precise and stable, but not necessarily
accurate, because the true value of G would not be rel-
evant for this test. The time series produced by such an
experiment may be able to constrain a time-varying G,
especially if all other variables are kept constant. A long
data set of G measurements is available from the work
of Karagioz.51 Theories of a time-varying G will neces-
sarily predict a time variation of g, which contains G,
unless there is a subtle canceling effect. Many institutes
around the world measure g and unexplained variations
of g within a year can be limited to well below one part
in 109.149

An interesting possibility is a deviation of the inverse
square law in the range of the laboratory experiments. A
simple parameterization of a possible violation of the fifth
force is the Yukawa potential. In the context here, this can
be written as a distance-dependent constant of gravitation,

G(r)=G∞
(
1 + αe−r/λ

)
, (44)

where α denotes the strength of possible new interaction
relative to gravity and λ is the typical range for the inter-
action. For r � λ, G = G∞, and for r � λ, G = G∞
(1 + α). For a review on the test of the inverse square law
see Ref. 150. Figure 19 shows the current limits on α as
a function of λ. Surprisingly, the exclusion is remarkably
weak for the laboratory scale experiments discussed here
with typical dimensions ranging from several centime-
ters to a few meters. Only α > 10�3 are ruled out. While
a variation of G at ranges from a few centimeters to a

FIG. 19. Current limits on the deviation of the gravitational law from an
inverse square law. The deviations are parameterized as a Yukawa potential
with an interaction range λ and a strength of α relative to Newtonian gravity,
see text. Reprinted with permission from J. Murata, private communication
(2017).152

few meters are not ruled out, they seem unlikely. Again,
excluding a variation of G that has distances in the range
of interest is best addressed in a dedicated experiment
that compares the gravitational attraction on two length
scales, rather than comparing the results of different G
experiments.

Besides the technical and scientific issues discussed here
and above, two additional facts hamper progress in measure-
ments of G. First, most measurements are performed by small
groups—publications with only two authors are not uncom-
mon in this field. Very often, these groups measure G once
and then move on to other experiments. The group led by
Quinn is a notable exception. This makes it difficult to build
institutional memory. In other words, every attempt to mea-
sure G starts from scratch and the investigators can only learn
from the literature and not from their mentors. Second, exper-
iments are not repeated. A core tenet of the scientific method
is for results to be reproducible. Usually, a discovery is made
and then verified by a second laboratory. However, no two
identical G experiments have ever been repeated. For most
researchers, it is more interesting and rewarding to invent
a new method of measuring G than to repeat an existing
measurement. However, repeating and independently assess-
ing the uncertainty of the experiment is very important for this
field.

In 2014, Quinn, Speake, and Luo invited many experi-
menters to discuss the situation of the G measurements.58 Later
that year, NIST hosted another workshop to continue the dis-
cussion and proposed that a collaboration or consortium of
several institutes—preferably national metrology institutes—
be held in order to develop a common experiment.152 The
idea was to make two identical setups so that two institutions
could conduct the same experiment. Both were to give the same
value for G, if not, the experimenters would have to search for
the error until the results agreed within the single standard
uncertainties. Although this would certainly not reveal all sys-
tematic errors, it would give more confidence in the result.
Unfortunately, such a consortium has not yet been founded.

One positive outcome of both meetings was the formation
of a “Big G” working group under the auspices of the Inter-
national Union of Pure and Applied Physics (IUPAP).153 The
purpose of this working group is to assist in resolving the dis-
crepancy present in G measurements. An additional function
of the working group could be to provide institutional memory,
mentoring, and advice for new experiments.

In addition, the International Committee for Weights and
Measures (CIPM) decided in its November 2014 meeting
to establish a consortium of national metrology institutes to
facilitate new work aimed at resolving the present disagree-
ment among measurements of the Newtonian constant of
gravitation.154

Given the current situation in the measurement of G, it is
difficult to see how our knowledge of G can be improved, for
example, χ2 will not decrease by adding new experiments,
as it is a sum of squares and can increase only with new
data. The Birge ratio can decrease by increasing

√
N − 1 in

the denominator; however, this will be a slow process. If an
additional 13 experiments are performed (which could take
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another 30 years if past experiments are an indication), RB

can be reduced by a factor 1.4 if the values are close to the
current average value. It is equally difficult to see how the
multiplicative factor that CODATA used to bring all normal-
ized residuals below two can be decreased. Thus, decreasing
the current uncertainty assigned to the recommended value of
G does not seem to be possible—at least, not in the foreseeable
future.

However, re-evaluating or repeating experiments that have
already been performed may provide insights into hidden
biases or dark uncertainty. NIST has the unique opportunity to
repeat the experiment of Quinn et al.72 with an almost iden-
tical setup. By mid-2018, NIST researchers will publish their
results and assign a number as well as an uncertainty to their
value. The same researchers have also acquired the equipment
of Parks and Faller103 although there are no immediate plans
to repeat this experiment. Securing the equipment to prevent
it from being lost is an important first step. Because these
two experiments span almost the whole range of all G val-
ues, having both of them is an important asset. The relevance
of repeating previous experiments after so many years may
be called into question, as technology has changed, and an
improved setup should be possible. One might liken this sit-
uation to ascending Mount Everest using the equipment of
Sir Edmund Hillary. However, the lessons learned by real-
izing a situation from another point of view (i.e., following
in the footsteps of others) can prove to be highly instructive.
The experience that experimenters have acquired to date using
new equipment may help to identify unconsidered systematical
errors.151

VII. CONCLUSIONS

The measurement of the constant of gravitation, “Big G,”
is still one of the most challenging of all experiments. Being
the second fundamental constant ever measured, it remains the
fundamental physical constant with the highest measurement
uncertainty. We have given an overview of recent and his-
toric measurements in order to show the different experimental
approaches that have been taken over the past 200 years. Fur-
thermore, ongoing efforts are in progress to unveil the origins
of large discrepancies in recent measurements. The National
Metrology Institute of the United States, NIST, is repeating
one “Big G” measurement conducted by another group.

It is hoped that the quest for a more accurate “Big G” will
not cease, as science has yet to devise a solution to the mystery
of why “Big G” measurements do not converge.
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adjusting the centre of mass of a freely falling body in absolute gravimetry,”
Metrologia 44(3), 234 (2007).

131G. Rosi, L. Cacciapuoti, F. Sorrentino, M. Menchetti, M. Prevedelli,
and G. M. Tino, “Measurement of the gravity-field curvature by atom
interferometry,” Phys. Rev. Lett. 114, 013001 (2015).

132G. Lamporesi, A. Bertoldi, L. Cacciapuoti, M. Prevedelli, and G. M. Tino,
“Determination of the Newtonian gravitational constant using atom inter-
ferometry,” Phys. Rev. Lett. 100(5), 050801 (2008).

133G. T. Gillies and C. S. Unnikrishnan, “The attracting masses in measure-
ments of G: An overview of physical characteristics and performance,”
Philos. Trans. R. Soc., A 372(2026), 20140022 (2014).
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148J. P. Mbelek and M. Lachièze-Rey, “Possible evidence from labora-
tory measurements for a latitude and longitude dependence,” Gravitation
Cosmol. 8, 331 (2002).

149D. Crossley, J. Hinderer, and U. Riccardi, “The measurement of surface
gravity,” Rep. Prog. Phys. 76(4), 046101 (2013).

150J. Murata and S. Tanaka, “A review of short-range gravity experiments in
the LHC era,” Classical Quantum Gravity 32, 033001 (2015).

151J. Murata, private communication (2017).
152See https://www.nist.gov/programs-projects/newtonian-constant-gravita-

tion-international-consortium for “Newtonian constant of gravitation inter-
national consortium”; accessed 29 May 2017.

153See http://iupap.org/working-groups/wg13-newtonian-constant-of-gravi-
tation/ for “WG13: Newtonian constant of gravitation.”

154See https://www.bipm.org/utils/en/pdf/CIPM/CIPM2014-II-Decisions-
EN.pdf for “Decision CIPM/103-43”; accessed 29 May 2017.

https://doi.org/10.1103/physrev.40.207
https://doi.org/10.1088/0026-1394/51/5/516
https://doi.org/10.1103/revmodphys.1.1
https://doi.org/10.1103/revmodphys.1.1
https://doi.org/10.1209/0295-5075/110/10002
https://doi.org/10.1209/0295-5075/110/10002
https://doi.org/10.1088/0034-4885/76/4/046101
https://doi.org/10.1088/0264-9381/32/3/033001
https://www.nist.gov/programs-projects/newtonian-constant-gravitation-international-consortium
https://www.nist.gov/programs-projects/newtonian-constant-gravitation-international-consortium
http://iupap.org/working-groups/wg13-newtonian-constant-of-gravitation/
http://iupap.org/working-groups/wg13-newtonian-constant-of-gravitation/
https://www.bipm.org/utils/en/pdf/CIPM/CIPM2014-II-Decisions-EN.pdf
https://www.bipm.org/utils/en/pdf/CIPM/CIPM2014-II-Decisions-EN.pdf

