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Highlights 

• A platform for automated image processing to determine atomic column positions from high-

resolution TEM (BFTEM and STEM) images is presented. 

• Interatomic distances are measured to within 7 pm to 15 pm precision from large data sets 

constituted of frames from in situ BFTEM videos. 

• Application of the image processing scheme is demonstrated by quantifying atomic-scale 

changes in catalyst particles during CNT growth and in 2D iron oxide nanomaterials during 

reduction. 

mailto:renu.sharma@nist.gov


• Software is available for public use at https://github.com/usnistgov/tem_analysis. 

Abstract 

For many reaction processes, such as catalysis, phase transformations, nanomaterial synthesis etc., 

nanoscale observations at high spatial (sub-nanometer) and temporal (millisecond) resolution are 

required to characterize and comprehend the underlying factors that favor one reaction over 

another. The combination of such spatial and temporal resolution (up to 600 µs), while rich in 

information, produces a large number of snapshots, each of which must be analyzed to obtain the 

structural (and thereby chemical) information. Here we present a methodology for automated 

quantitative measurement of real-time atomic position fluctuations in a nanoparticle. We leverage 

a combination of several image processing algorithms to precisely identify the positions of the 

atomic columns in each image. A geometric model is then used to measure the time-evolution of 

distances and angles between neighboring atomic columns to identify different phases and quantify 

local structural fluctuations. We apply this technique to determine the atomic-level fluctuations in 

the relative fractions of metal and metal-carbide phases in a cobalt catalyst nanoparticle during 

single-walled carbon nanotube (SWCNT) growth. These measurements provided a means to 

obtain the number of carbon atoms incorporated into and released from the catalyst particle, 

thereby helping resolve carbon reaction pathways during SWCNT growth. Further we demonstrate 

the use of this technique to measure the reaction kinetics of iron oxide reduction. Apart from 

reducing the data analysis time, the statistical approach allows us to measure atomic distances with 

sub-pixel resolution. We show that this method can be applied universally to measure atomic 

positions with a precision of 0.01 nm from any set of atomic-resolution video images. With the 

advent of high time-resolution direct detection cameras, we anticipate such methods will be 



essential in addressing the metrology problem of quantifying large datasets of time-resolved 

images in future.  

 

1. Introduction 

During last couple of decades, transmission electron microscopy has transformed from ‘a means 

to take pretty pictures’ to a ‘nano-laboratory’ where direct observations of atomic-scale changes 

occurring during the synthesis or operation of nano materials are revealed. Such observations have 

opened the door to allow direct measurements of nucleation and growth rates as well as reaction 

rates and activation energies. [1, 2] However, the atomic-scale mechanisms of some of the reaction 

steps, such as nucleation and phase transformation have been difficult to capture due to insufficient 

temporal resolution. Recent developments in image acquisition systems for transmission electron 

microscopes have made it possible to record atomic-resolution images of structural 

transformations caused by external stimuli, such as temperature and gas environment, at temporal 

resolutions ranging from 0.16 s to 600 µs.[3, 4] The combination of high temporal and high spatial 

resolution, required to reveal each reaction step, produces terabytes of image data. Fast Fourier 

transforms (FFTs) of a selected area of these atomic-resolution images have been successfully 

used for structure identification.[5] However, this method is applicable only if the structure of the 

entire nanoparticle changes uniformly with time and is limited to nanoparticles with diameters of 

more than 5 nm.[5] In order to extract the full range of information available from such atomic-

scale image data, while still maintaining the time resolution, it is necessary to measure atomic 

positions and inter-atomic distances in each image precisely.  

 
The concept of locating atomic positions from high-resolution images, acquired in either 

transmission or scanning transmission electron microscopy (TEM or STEM) mode has been 



understood for a long time. Most of the methods developed for finding and measuring accurate 

atomic positions so far have been for STEM images where intensity broadening due to serial 

acquisition or longer exposure time is a big problem.[6] Recently, precision on the order of 

picometers has been demonstrated by averaging drift-corrected STEM images.[7] However, the 

image-averaging approach improves the measurement precision at the cost of time resolution, and 

is therefore of limited value when a sequence of images instead of a single image is required to 

decipher the entire reaction sequence. Identifying atomic positions from individual frames 

extracted from videos recorded in bright-field TEM mode, with low signal to noise (SNR) ratio, is 

more challenging than for high-contrast STEM images obtained by averaging. To meet this 

challenge, we have developed an automated image processing system (AIPS) comprising a set of 

algorithms to identify the atomic positions and measure the distances between nearest neighbors, 

with sub-pixel precision, in any number of time-resolved images. This data can then be used to 

quantify structural fluctuations in nanoparticles as a function of time. Here we present the 

abovementioned methodology and its application to measure atomic-scale structural fluctuations 

in a Co catalyst particle during single-walled carbon nanotube growth. The measurements show 

that the fluctuations in the catalyst nanoparticle and the trends in nanotube growth rates to be 

temporally complementary. Further, we demonstrate the breadth of applicability of this technique 

by using it to measure the reduction rate of iron oxide observed under an ETEM. 

 

2. In Situ Time Series Acquisition and Structure Determination 

An environmental transmission electron microscope, equipped with a differential pumping 

system,[8] monochromated field-emission electron source (FEG), image corrector and charge-

coupled device (CCD camera) was used to acquire high-resolution videos. Atomic-resolution 



videos of SWCNT growth were recorded using acetylene (C2H2) and CoxMo1-x/MgO (prepared by 

wet chemical methods) as carbon precursors and a catalyst-support system, respectively. Time-

resolved images (frame rate of 0.1 s) of a Co catalyst particle of approximately 2.5 nm diameter 

were used for the measurements reported here (Movie S1). Visual analysis of the video revealed 

that the atomic positions within the nanoparticle were fluctuating during the period of observation. 

Figure 1a shows a typical frame extracted from an in situ video (Movie S1) recorded at 650 oC 

and under 0.01 Pa of flowing C2H2. Fast Fourier transformations (FFT) from different parts of 

selected images of the same particle show the co-existence of Co and cobalt carbide phases.[9, 10] 

However, the area occupied by each phase fluctuated with time (Movie S1), requiring each 

individual frame to be measured to get a reaction rate. From an FFT of the entire frame, the two 

known carbide phases, Co3C and Co2C could not be distinguished using the measured d-spacing, 

as Co3C d(211) = 0.214 nm and Co2C d(111) = 0.203 nm are too close to be unambiguously resolved 

(Figure 1b).  However, from our prior experimental results, supported by DFT calculation, we 

know that the carbide phase, that is active for SWCNT, is Co2C, [11] therefore we assigned the 

metal and carbide regions to have Co and Co2C structures, respectively.  

 

 

 



 

Figure 1. (a) Part of the high-resolution image extracted from the Supplementary video containing 
a nanoparticle active for SWCNT growth and the corresponding FFT. Red, blue and green circles 
enclose unique reflection from MgO, Co2C and Co, respectively. Symmetry related reflections to 
the circled spots are not circled for clarity. Other spots are too broad and diffuse to distinguish 
between the three structures. Scale bar is 1 nm. 

 

To confirm our image interpretation (core-shell structure of Co and Co2C), a structure model of a 

2.2 nm thick nanoparticle (Figure 2a), with a Co region mostly surrounded by a Co2C shell, was 

generated for HRTEM image simulation using a multi-slice algorithm described elsewhere.[12] 

The simulated image with a sample thickness of 2.2 nm and defocus value of 9 nm (Figure 2b) 

was binned so that the pixel size (0.0457 nm) was comparable to the pixel size of the 

experimental images (0.0454 nm). White Gaussian noise was added to the binned image to 

further enhance this similarity (Figure 3c). The comparison between the image-analyzed 

simulation image and model structure was used to estimate the precision with which the 

algorithm can distinguish the Co from the Co2C regions and correctly identify the boundary 

between them. 



 

Figure 2. (a) Model nanoparticle with Co and Co2C regions shown in green and magenta 
respectively. (b) Simulated image of model particle shown in (a). (c) Simulated image with added 
Gaussian noise. (d) Noisy simulated image after application of Weiner deconvolution. (e) 
Correlation image obtained by template matching using inset shown in (d). (f) Image with atomic 
positions identified. (g) Weighting scheme for local structural parameters (next neighbor 
distances): For the central triangle shown in bold, the local structural parameter is a weighted 
average of all distances shown. The distances shown in bold have twice the weight of the other 
distances. (h) The spatial distribution of triangles. Green triangles have local structural parameters 
below 0.24 nm and magenta triangles are above 0.24 nm. (i) Histogram of measured local structural 
parameters in simulated image.  

 

 
Weiner deconvolution has been found to be effective in reducing peak attenuation and has been 

previously shown to be useful in improving SNR in noisy HRTEM images of periodic structures, 

such as the catalyst particle observed here.[13] This approach effectively deweights frequencies 



based on the their signal-to-noise ratio. The mathematical workings of Weiner deconvolution are 

as follows. Given an input signal 𝑋𝑋(𝑖𝑖, 𝑗𝑗), the observed signal can be expressed in Fourier space as 

 
𝑌𝑌(𝑖𝑖, 𝑗𝑗)  =  𝐻𝐻(𝑖𝑖, 𝑗𝑗)𝑋𝑋(𝑖𝑖, 𝑗𝑗) +  𝜂𝜂(𝑖𝑖, 𝑗𝑗) (1) 

 
where 𝐻𝐻(𝑖𝑖, 𝑗𝑗) and 𝜂𝜂(𝑖𝑖, 𝑗𝑗) are the Fourier transforms of the known response of the sensor and the 

additive noise, respectively. The goal of deconvolution is to find a 𝐺𝐺(𝑖𝑖, 𝑗𝑗) such that an estimate of 

the true signal may be obtained from the observed signal as follows 

 
𝑋𝑋�(𝑖𝑖, 𝑗𝑗)  =  𝐺𝐺(𝑖𝑖, 𝑗𝑗)𝑌𝑌(𝑖𝑖, 𝑗𝑗) (2) 

 
where 𝑋𝑋�(𝑖𝑖, 𝑗𝑗) is the estimate of the input signal 𝑋𝑋(𝑖𝑖, 𝑗𝑗) that minimizes the mean square errors 

between the true signal and the estimated signal. The solution to Equation 2 is typically given by: 

 

𝐺𝐺(𝑖𝑖, 𝑗𝑗) =
𝐻𝐻∗(𝑖𝑖, 𝑗𝑗)

|𝐻𝐻(𝑖𝑖, 𝑗𝑗)|2 +  
𝑆𝑆𝜂𝜂(𝑖𝑖, 𝑗𝑗)
𝑆𝑆𝑋𝑋(𝑖𝑖, 𝑗𝑗) 

 
(3) 

 
where 𝐻𝐻∗(𝑖𝑖, 𝑗𝑗) is the complex conjugate of 𝐻𝐻(𝑖𝑖, 𝑗𝑗), and 𝑆𝑆𝜂𝜂(𝑖𝑖, 𝑗𝑗) and 𝑆𝑆𝜂𝜂(𝑖𝑖, 𝑗𝑗) are the mean spectral 

densities of the noise and input signal, respectively, and their ratio is thus SNR. Equation 3 

therefore reduces to 

 

𝐺𝐺(𝑖𝑖, 𝑗𝑗) =
𝐻𝐻∗(𝑖𝑖, 𝑗𝑗)

|𝐻𝐻(𝑖𝑖, 𝑗𝑗)|2 +  1
𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖, 𝑗𝑗) 

 

 

(4) 

From Equation 4 it is evident that 𝐺𝐺(𝑖𝑖, 𝑗𝑗) may be easily calculated for a known signal to noise 

ratio and PSF (system response). In our case, the noise was approximated to be the ratio of the 

mean signal to its standard deviation. The point spread function (PSF) of the imaging system, 

derived from the measured modulation transfer function (MTF),[14] was obtained from the 

vendor. The Wiener deconvolution was performed numerically. The Wiener deconvolution may 



produce artificial “ringing” artifacts in the images. In the case of atomic-resolution images, ringing 

artifacts may appear as extra atomic columns beyond the surfaces of the nanoparticle. To reduce 

the influence of ringing on the analysis, a boundary was manually defined on the nanoparticle 

surface and only the region inside the boundary was used in further analysis. This minimizes 

systematic errors introduced by the deconvolution. The noise-reduced image is shown in Figure 

2d. 

 
2.1 Template matching 
 
Template matching was used to highlight the positions of the atomic columns in denoised images. 

Template matching is a feature detection algorithm for finding small parts of an image which 

match a template image. The template used to find atomic columns (5 pixel × 5 pixel; 0.23 nm × 

0.23 nm), was obtained by measuring the black circle approximately encapsulating an atomic 

column on a white background, the typical appearance of an atomic column in a HRTEM image 

(inset in Figure 2d). The template is rastered over the entire image, and at each position the 

correlation is calculated between the template and the part of the image that it overlaps. These 

correlation values create a new image, where bright spots correspond to positions which are the 

most likely to be atomic columns (Figure 2e).  

 

2.2 Position Finding 

A list of atomic column coordinates was then obtained from the correlation image by identifying 

individual clusters of bright pixels (i.e. atomic columns) and then calculating the centroid of each 

cluster. The range of the image intensities was calculated from the difference between maximum 

and minimum pixel intensities. A threshold intensity, Th, was manually set, and pixels values 

below Th were set to zero. A pixel was considered part of a cluster only if it was above the 



threshold. A connected component analysis separated the image into clusters by looking for groups 

of pixels that were nonzero and contiguous. The position of each cluster was calculated by a 

weighted average of the positions of the pixels in the cluster, where the weights were the 

correlation values from the correlation image. 

Due to the presence of false positives, an additional interactive position editor was created, which 

allows users to make minor adjustments to the positions of the atomic columns. The positions were 

compared to the original images and minor adjustments (< 5 % of atomic columns) were made to 

correct wrongly identified atomic column positions. The manual adjustments were repeated by 

multiple people in order to reduce human bias. The image with the atomic column positions 

identified is shown in Figure 2f. 

 

2.3 Image Registration 
 
Once the atom positions were identified it was essential to align (register) the time-stack of image 

files with a sub-pixel accuracy for faithful characterization of the change in atom positions with 

time. This was achieved by implementing a sub-pixel registration algorithm reported by Thevenaz 

et al. using ImageJ's ‘stackreg’ plugin.[15] The goal of this algorithm is to identify a transformation 

matrix 𝑇𝑇 which when applied to the image 𝑋𝑋𝚥𝚥�  agrees with the reference image 𝑋𝑋�𝑗𝑗−1. This 

“agreement” was reached by minimizing the integrated square difference in the unaltered pixel 

intensity values between 𝑋𝑋�𝑗𝑗−1 and 𝑇𝑇𝑋𝑋�𝑗𝑗 using a modified Marquart-Levenberg algorithm. The 

alignment was improved iteratively using a coarse-to-fine multilevel strategy (pyramid approach), 

thereby helping achieve sub-pixel accuracy. The alignment process was then propagated through 

the entire stack from 𝑋𝑋�0 to 𝑋𝑋�𝑁𝑁 using each 𝑋𝑋�𝑗𝑗−1 as the reference to which the next slice 𝑋𝑋𝚥𝚥�  is aligned. 

The transformation may be rigid or non-rigid based on the imaging method and application. Non-



rigid registration is more computationally intensive and primarily required when image distortions 

due to probe instabilities and sample drift are prevalent. These artifacts are mainly observed when 

imaging in STEM mode.[7] Since we image our samples using parallel beam HRTEM, we employ 

rigid-body registration which only accounts for in-plane rotational and translational 

transformations. The registration was performed on the correlation images, such as in Figure 3f, 

as this was found to be more stable than registering the in situ TEM images directly. The 

transformation matrix used to register each frame of the correlation image series was saved, so that 

the same registration could be applied to the original image series and also to the point sets 

obtained in the position finding step. 

 

2.5 Geometric Modeling 

In order to quantify the local geometry around each atomic column, the widely-employed 

Delaunay triangulation method [16] was used to connect each atomic column to its nearest 

neighbors. The Delaunay method maximizes the minimum angle of all the angles of the triangles 

in the triangulation and avoids skinny or obtuse angled triangles. In practice, this produces 

triangulations where each feature of interest is connected to its first coordination shell. However, 

at the edges of the nanoparticle, where some atomic columns do not have complete coordination 

shells, skinny triangles do form, as seen in Figure 2h. These spurious triangle edges could be 

removed by deleting all edges longer than twice the expected interatomic distances in the 

nanoparticle. For each triangle, a local structural parameter i.e. the local inter-atomic column 

distance, was calculated and used to assign the structure of that particular triangular region of the 

nanoparticle. The local structural parameter is a weighted average of interatomic distances 

(triangle edges) over a small area, shown in Figure 2g.  

 



From the model nanoparticle (Figure 2a), the inter-atomic column distances of the ideal Co and 

Co2C structures were measured to be (0.23±0.07) nm and (0.25±0.15) nm, respectively. A 

histogram of the calculated inter-atomic distances from the simulated image shows two peaks 

centered very close to 0.23 nm and 0.25 nm, corresponding to the Co region and carbide region of 

the nanoparticle, respectively (Figure 2i). There is therefore, a good agreement between the known 

atomic positions of the model particle and AIPS determined distances derived from simulated 

measurements. Figure 2h shows the spatial distribution of the triangles associated with each phase. 

Here too, we find good agreement between the model nanoparticle (Figure 2a) and the two 

structures, identified by the image processing scheme (Figure 2h), thereby suggesting that the 

algorithm is successful in its task.  

   

3. Application to Experimental Data 
 
3.1 Cobalt Catalysis 

Having successfully tested the AIPS on simulated data, it was applied to the ETEM image 

sequence of SWCNT growth (Movie S1).[9] Figure 3a shows a histogram of all the local structural 

parameters for all the triangles in the image sequence. The histogram shows two peaks, centered 

at 0.23 nm and 0.25 nm. The peak at 0.25 nm is broader, and likely contains both Co3C and Co2C 

components. Individual Co3C and Co2C peaks could not be isolated as the measured nearest-

neighbor atomic distances, 0.25 nm (Co2C) and 0.26 nm (Co3C), were within the measurement 

error. This implied that these two cobalt carbides could not be distinguished unambiguously in the 

image sequence as well. Consequently, the overall bimodal distribution (red) was fit by a linear 

combination of two Gaussian distributions centered at 0.22 nm and 0.25 nm shown as the green 

and magenta curves. As per the formalism defined by Bals et al.,[17] we calculate the precision of 

our measurements of the individual structural parameters to be the standard deviations of the two 



Gaussian fits. The Co Gaussian fit was found to have a standard deviation of 0.007 nm (7 pm). 

The Co2C Gaussian fit was found to have a standard deviation of 0. 015 nm (15 pm). It is important 

to note that the measurement precision is partly dependent on the point spread function (PSF) of 

the camera and is expected to improve as the PSF of cameras improve.  

 

With that in mind, the histogram was used to divide the nanoparticle into cobalt metal and cobalt 

carbide regions. Figure 3b shows a typical frame from this analysis. The area of the cobalt metal 

and cobalt carbide regions of the nanoparticle were approximated as the area of the triangles from 

the triangulation. The area of cobalt metal as a fraction of the total nanoparticle area as a function 

of time was calculated. If the nanoparticle is spherical and that the metal region in its center is also 

spherical, the metal volume fraction of the nanoparticle is the area fraction raised to the 3/2 power. 

The volume of the Co2C region can therefore be obtained as the volume of particle minus volume 

of Co region. Given that the volume of the Co2C unit cell is 0.056 nm3, the total number of unit 

cells can be calculated as the volume of the Co2C region divided by 0.056 nm3. Assuming that 

only the Co2C shell contains the carbon atoms, and given that there are 2 carbon atoms per Co2C 

unit cell, the number of carbon atoms in the particle in every frame can be calculated as 2 times 

the number of Co2C unit cells in the particle.  

Having determined the evolution of the carbon content in the nanoparticle, we can correlate it with 

the carbon nanotube growth. Since the SWCNT has a fixed diameter (d = 1.78 nm) and a regular 

shape, knowing the areal density of carbon on a graphene sheet (38 carbon nm2), the number of 

carbon atoms in SWCNT in each frame (𝑆𝑆𝐶𝐶𝑁𝑁𝐶𝐶) can be calculated from the arc length of the 

SWCNT profile (a) in the TEM image as    

𝑆𝑆𝐶𝐶𝑁𝑁𝐶𝐶 =  𝑛𝑛𝜋𝜋𝑑𝑑 �
𝑑𝑑
2

+
𝑎𝑎
2
−
𝜋𝜋𝑑𝑑
4
� 

(5) 



Where the area density of carbon in nanotube is = 38 nm-2. 
 
 

 

Figure 3: (a) Histogram of local structural parameters for all triangles in all frames of the video 
showing a bimodal distribution of interatomic spacings. The fit to the bimodal distribution is 
calculated to be a sum of two Gaussian distributions centered at 0.22 nm and 0.25 nm 
corresponding to Co (green) and Co3C (magenta) respectively. (b) A typical size-thresholded 
image. The image was thresholded at 0.23 nm (shoulder in histogram in Figure 4a). Green triangles 
are below the threshold and magenta triangles are above the threshold. (c) Number of carbon atoms 
in the catalyst particle and (d) the number of carbon atoms added to growing nanotube plotted as 
a function of time. The red lines through the plots show a moving average of 10 frames. The 
periods of higher and lower carbon content are color coded as blue and yellow, respectively, simply 
to emphasize the anti-synchronous nature of the two reactions as confirmed by simulations 
reported in ref. 9. 

 



Using the calculated values, the fluctuation in the number of carbon atoms in the particle is 

compared with the number of carbon atoms added to the particle. Both the carbide and the SWCNT 

growth fluctuations are shown in Figure 3c-d. The minima and maxima of the two plots are 

anticorrelated in time. When the amount of carbon in the nanoparticle is at a maximum the 

SWCNT growth is low. When these carbon atoms are let go of, the SWCNT growth is high. This 

suggests that the carbide in the nanoparticle decomposes and moves into the nanotube [9]. 

However, from our experiments we do not measure perfect anti-synchrony. We note that the 

correlation coefficient between the experimental values of two reaction rates is -0.18, while the 

simulated value was determined to be -0.92.[9] We attribute this moderate correlation coefficient 

to the inherently noisy nature of this data, due to various other stochastic processes, such as 

precursor decomposition, also occurring that effect both the carbide formation and nanotube 

growth.  

 

3.2 Reduction Pathways in Iron Oxide. 

The AIPS developed here was also employed to probe the dynamics of H2-induced reduction of 

2D Fe3O4 nanostructures observed using an environmental TEM. Figure 4a shows an image 

extracted from an in situ HRTEM video. The diffractograms of the two regions in Figure 4b show 

the Fe3O4 region converting to FeO, with the crystallographic orientation of Fe3O4 <111> ǁ FeO 

<111>. The AIPS was used to obtain structural information from each frame extracted from 

reduction videos recorded at 500 °C in 0.5 Pa hydrogen pressure.[18] The data was thresholded to 

highlight only the Fe3O4 phase. The triangulated atomic positions in the Fe3O4 areas, identified by 

the AIPS in Figures 4a-b, are shown in Figures 4c-d. The FeO regions are not shown. Summing 

the area under all acute angled triangles (the skinny triangles are spurious), the area of Fe3O4 in 



each frame was calculated and plotted with time. (Figure 4e). The time dependence of Fe3O4 area 

was then used to obtain the reaction rate (the slope of the fitting of the curve: (0.48±0.03) nm2 s-

1.[18]  The linear time dependence of the reduction of Fe3O4 to FeO observed in the ETEM 

experiment 

suggested that the reduction was a surface reaction limited process, due to the surface adsorption 

of H2 molecules or the removal of H2O. 

 

4. Conclusions 
 
We have developed an automated image processing system (AIPS) for determining the precise 

atomic positions in HRTEM images by combining publicly available and custom codes. It has 

been successfully applied to large experimental data sets recorded using a CCD camera at a frame 

rate up to 10 s-1. With the AIPS we have determined atomic positions with a sub-pixel precision 

of 7 pm. Since the confidence and significance accuracy of the measurements will depend on the 

quality of the images, we believe that the precision may be improved by addressing instrumental 

constraints like sample drift, SNR, DQE, and PSF, which are minimized in new direct-detection 

high-speed cameras. From the analysis of the data generated by the AIPS we have resolved novel 

carbon reaction pathways in Cobalt catalyzed CNT growth and the reduction mechanisms in 2D 

iron oxide nanomaterials. The program is available for public use at 

https://github.com/usnistgov/tem_analysis. With the advent of high time-resolution direct 

detection cameras and associated terabyte sized imaging data, we believe our AIPS will be key to 

quantifying atomic-scale fluctuations and resolving novel reaction pathways.   

 

https://github.com/usnistgov/tem_analysis


 

Figure 4. Reduction of Fe3O4 to FeO at 500 °C in 0.5 Pa of flowing H2. (a) Frame extracted from 
a video after reduction has started; (b) frame extracted after 50 s (c) and (d) corresponding images 
extracted from AIPS where the center and the length of triangles represent Fe atomic positions and 
atomic distances in Fe3O4, the skinny triangles with large next neighbor distances show the regions 
of metallic Fe and were not used for measuring the reduction rate. (e) the change in number of 
atoms in Fe3O4 area measured from each frame was used to get reduction rate. [17] 
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Supplementary videos: 

Movie S1: High resolution video of SWCNT growth from Co catalyst supported on MgO, recorded 

at a frame rate of 10 s-1 at 650 C in 0.01 Pa of C2H2.   

Movie S2: Magnified video images after AIPS. Colors represent the nearest neighbor distances 

(represented by the triangles in the images). Blue and magenta colors represent atomic distances 

corresponding to Co and cobalt carbide phase, respectively. 
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