
Improving MC/DC and Fault Detection Strength
Using Combinatorial Testing

Dong Li1, Linghuan Hu2, Ruizhi Gao2, W. Eric Wong2,*, D. Richard Kuhn3, Raghu N. Kacker3
1China Electronic Product Reliability and Environmental Testing Research Institute, Guangzhou, China

2Department of Computer Science, University of Texas at Dallas, USA
3National Institute of Standards and Technology, Gaithersburg, MD 20899, USA

lidong@ceprei.com
{lxh131930, gxr116020, ewong}@utdallas.edu

{kuhn, raghu.kacker}@nist.gov

Abstract— Software, in many different fields and tasks, has
played a critical role and even replaced humans to improve
efficiency and safety. However, catastrophic consequences can be
caused by implementation bugs and design defects. Modified
condition/decision coverage (MC/DC), required by the Federal
Aviation Administration on Level A (the most safety critical
system), has been shown to be effective in detecting software
bugs. However, generating tests to achieve high MC/DC can be
very expensive and time consuming. Recently, many studies
showed that combinatorial testing (CT) could generate high-
quality test cases in a cost-effective way. Can CT generate test
cases to achieve high MC/DC? In this paper, we conduct an
empirical study on two real-life programs to evaluate the
efficiency and effectiveness of using combinatorial testing to
improve MC/DC coverage achievement, as well as the fault
detection strength.

Keywords—Combinatorial Testing, MC/DC Coverage, Fault
Detection

I. INTRODUCTION

In the past few years, testing for safety-critical systems,
such as traffic control and aircraft navigation systems, became
one of the most challenging tasks in the software quality
assurance field. Catastrophic accidents that result in
tremendous economic damage or even human casualties can be
caused by the implementation bugs and design defects of
safety-critical systems. On December 20, 1995, American
Airlines Flight 965 from Miami, Florida, to Cali, Colombia,
crashed into a 9,800 foot mountain. This was due to a
navigation software error, and resulted in 159 deaths [1].

To prevent such tragedies from occurring again, the Federal
Aviation Administration requires that Level A systems are
tested using test cases that can achieve modified
condition/decision coverage (MC/DC) defined in DO-178B/C
[2][3]. MC/DC criterion requires each condition of decision in
the program to be tested by showing its independent effect on
the whole decision. Although many studies have showed that
MC/DC is effective and efficient in detecting software bugs
[4][5], the generation of test cases to achieve high MC/DC can
be very difficult and expensive. To address this issue, different
techniques have been proposed for generating test cases to
achieve high MC/DC. For example, one of the proposed
solutions is symbolic execution-based test generation (white-

* Corresponding author: W. Eric Wong (Email: ewong@utdallas.edu)

box) [6][7][8], which generates test cases by conducting
comprehensive symbolic execution and constraint solving. The
advantages of symbolic execution-based test generation is that
it can be fully automated, and in the ideal scenario, it requires
practitioners almost no domain knowledge to perform the test
generation. However, there are also several well-known
drawbacks of current symbolic execution-based test generation
techniques. First, due to the path explosion problem, symbolic
execution requires large amounts of resources (computation
and memory) to perform the execution analysis and constraint
solving [9]. Therefore, it might not be able to generate test
cases for large and complex programs, especially the ones with
too many loop control flows. Second, the symbolic execution-
based test generation techniques are platform and language
dependent; each technique can work only for certain languages
and platforms. Moreover, most of the tools for symbolic
execution-based test generation are not ready for commercial
application because they are not available to the public, and the
quality of the tools cannot be guaranteed.

In addition to the costly white-box test generation
techniques, the black-box combinatorial testing (CT) has been
shown to be effective and efficient in generating test cases with
high fault detection strength, and it is very easy to apply
industry settings [10][11][12][13]. CT treats a system under
test (SUT) as a black-box, and it focuses on the interactions
among various input parameters. It uses well-developed CT
algorithms [14][15] to generate a test set that covers a large
amount of combinations among input parameters while
keeping the test set to a small size. Therefore, it is worth
conducting an empirical study to evaluate the effectiveness and
efficiency of using CT to generate tests to achieve high
MC/DC, as well as high fault detection strength. In this paper,
we want to investigate the following three research questions:

• Can CT generate test cases to achieve high MC/DC?
• How to use CT to improve coverage achievements

(statement, branch, and MC/DC) in an efficient way?
• Can tests generated using CT achieve high fault detection

strength?

The remainder of paper is organized as follows: in Section
II, we introduce the basic concepts of CT. We will then present
our experiment setup in Section III. In section VI, experiment
results and detailed discussions are included, followed by our
conclusions and future work in Section V.

2017 IEEE International Conference on Software Quality, Reliability and Security (Companion Volume)

978-1-5386-2072-4/17 $31.00 © 2017 IEEE

DOI 10.1109/QRS-C.2017.131

297

2017 IEEE International Conference on Software Quality, Reliability and Security (Companion Volume)

978-1-5386-2072-4/17 $31.00 © 2017 IEEE

DOI 10.1109/QRS-C.2017.131

297

Authorized licensed use limited to: Boulder Labs Library. Downloaded on September 21,2020 at 16:37:54 UTC from IEEE Xplore. Restrictions apply.

II. COMBINATORIAL TESTING

In both industry and academia, regardless of gender,
culture, and experience, a consensus among almost all
developers is that there are always some sophisticated bugs in a
software system. Even when the software system has been
tested or deployed for a long time, bugs be triggered by one or
some special combinations of input values [11][12][16]. These
combinations of input values are usually either too rare in the
real world or counterintuitive for software developers and
testers to generate the responding test cases.

A simple solution to cover these special input combinations
is to perform exhaustive testing. Unfortunately, it is almost
impossible to apply exhaustive testing to complex programs
with a large input domain. Consider the following sample
program:

Table 1. Sample Program
Functionalities Number of Possible Values

A T, F
B T, F
C T, F
D T, F

This program has four functionalities which can be enabled
during the execution. We use “T” to denote that a functionality
is enabled, and “F” to indicate the opposite. To perform the
exhaustive testing for this program, a test set with size of 16
(=2×2×2×2) is needed. For illustration purposes, the sample
program presented in Table 1 is simple, and therefore, the
number of generated exhaustive tests is small. However, for a
real-world complex system, the number of exhaustive
combinations can easily be larger than one thousand or even
one million, which makes it almost impossible for practitioners
to finish the test.

Since testing all combinations among all parameters is not
practical, a practitioner can generate a test set that includes all
combinations between certain parameters to reduce the size of
the test set. To do that, we can use CT to generate a test set
with a small size to cover all combinations between any t
parameters (t ≤ total no. of parameters), where t is the
interaction strength. We also use t-way test set to denote that it
contains all combinations among t parameters [10][17]. For
example, Table 3 shows the twenty-six 2-way combinations of
the sample program. Intuitively, we need a relatively large test
set to cover all of the twenty-six combinations. Using the IPOG
algorithm, we only need six test cases, as shown in Table 2.

Table 2. A 2-way Test Set Generated Using IPOG

 A B C D
t1 T T F F
t2 T F T T
t3 F T T F
t4 F F F T
t5 F T F T
t6 T F F F

Notice that different CT algorithms might generate
different test sets for the same interaction strength. To achieve
good performance, with respect to improving coverage
achievements and fault detection strength when using CT in

real-world scenarios, choosing an appropriate interaction
strength is very important. We will give a detailed discussion
in Section V.

Table 3. All Combinations Between Two Parameters

A = T, B = T A = T, B = F A = F, B = T A = F, B = F
A = T, C = T A = T, C = F A = F, C = T A = F, C = F
A = T, D = T A = T, D = F A = F, D = T A = F, D = F
B = T, C = T B = T, C = F B = F, C = T B = F, C = F
B = T, D = T B = T, D = F B = F, D = T B = F, D = F
C = T, D = T C = T, D = F C = F, D = T C = F, D = F

III. EXPERIMENT SETUP

To answer the three research questions in Section I, we
conduct our empirical study on two real-world C programs
with complex control flows. The first subject program is
TCAS, a widely-used module of a traffic collision avoidance
system [17][18]. The second subject program, PEL [19], is a
constraint verification module of a customization program for a
photo editing software. To generate the CT test set, we use
ACTS (v2.9) [20], a GUI-based CT tool developed by National
Institute of Standards and Technology (NIST). ACTS is very
easy to use; the tool has the ability to generate tests with
interaction strength from 2-way to 6-way, with a user-friendly
GUI and a command line version suitable for use in scripts or
system calls from another tool. It only takes few minutes for a
practitioner to learn how to set up and generate the test sets. A
screenshot of ACTS is shown in Figure 1.

Figure 1. A screenshot of ACTS

In the experiment, we use the IPOG algorithm implemented
by ACTS to generate the test sets with interaction strength
from 2-way to 5-way.

A. Input Modeling and Test Generation for TCAS

We download the original implementation, and 41 mutants
of TCAS from Software-artifact Infrastructure Repository [21].
The detailed description of TCAS is shown as follows:

• Size: 174 LOC
• Number of decisions: 15
• Number of input parameters: 12
• Number of output parameter: 1

298298

Authorized licensed use limited to: Boulder Labs Library. Downloaded on September 21,2020 at 16:37:54 UTC from IEEE Xplore. Restrictions apply.

In the 41 mutants (each with one seeded fault), v5 and v25
have the same faults as v27 and v39 respectively. Therefore,
we arbitrarily exclude v27, and v39 from our experiment.

We reuse the input model from Kuhn’s study [17]. The
details of both input parameters and their corresponding values
are shown in Table 4.

Table 4. Input Model for TCAS

Input Parameters Values
Cur_Vertical_Sep 299, 300, 601

High_Confidence 0, 1

Two_of_Three_reports_Valid 0, 1

Own_Tracked_Alt 1, 2

Other_Tracked_Alt 1, 2

Own_Tracked_Alt_Rate 600, 601

Alt_Layer_Value 0, 1, 2, 3

Up_Separation 0, 399, 400, 499, 500, 639,
640, 739, 740, 840

Down_Separation 0, 399, 400, 499, 500, 639,
640, 739, 740, 840

Other_RAC 0, 1, 2

Other_Capability 1, 2

Climb_Inhibit 0, 1

Using this input model, the total number of all possible
combinations of input parameters is 230,400. We generate five
test sets with interaction strength from 2-way to 6-way using
ACTS and IPOG algorithm, as shown in Table 5.

Table 5. Generated Test Sets for TCAS
2-way 3-way 4-way 5-way 6-way
100 400 1,359 4,233 11,021

In comparing the number of exhaustive combinations, it is
very clear that the sizes of these test sets are significantly
reduced, yet they still retain a certain interaction strength. In
the five generated test sets, we exclude the 6-way test set as the
11,021 test cases may be too many for a real-world case.

B. Input Modeling and Test Generation for PEL

PEL is a software product line for a photo editing software
that performs various photo editing tasks, such as photo batch
processing, skin smoothing, advanced color adjustment, etc.
We conduct our study on the constraint verification module of
PEL, and the following show the detailed descriptions:

• Size: 957 LOC
• Number of decisions: 132
• Number of input parameters: 16
• Number of output parameter: 1

There are 10 distinct faulty versions, with each containing
one of the real faults retrieved from the development phase.
After carefully analyzing the requirements of PEL, we build
our input model, shown in Table 6.

Table 6. Input Model for PEL
Input Parameters Values

Version Regular, silver, gold, platinum,
diamond

Photo Format Standard, extended

OS Support Windows, MacOS, linux

Technical Support yes, no

Batch Processing yes, no

Max Photo Size 100MB, 300MB, 600MB, 1GB

Auto Optimization yes, no

Basic Filter yes, no

Landscape Filter yes, no

Facial Filter yes, no

Micro-processing Filter yes, no

Skin Smoothing Plugin yes, no

Lighting Control Plugin yes, no

Advanced Color Plugin yes, no

Social Network Plugin yes, no

Accumulative Purchase Amount
100, 999, 1000, 1001, 2000,
4999, 5000, 5001, 8000, 9999,
10000, 10001, 15000

Using exhaustive testing to cover all the combinations
among all input parameters, a user would need to have a test
set with a size of 3,194,880. We use ACTS and IPOG
algorithm to generate the following CT test sets, shown in
Table 7. Notice that we also exclude the 6-way test set from
our experiment.

Table 7. Generated Test Sets for PEL
2-way 3-way 4-way 5-way 6-way
65 264 851 2,659 7,667

Regenerating test sets using IPOG does not produce
different results as IPOG is deterministic. An interesting
observation is that, although the size of input domain of PEL is
larger than that of TCAS, the number of test cases in each
generated test set for PEL is smaller.

C. Coverage Collection and Fault Detection

We compile both subject programs using GCC 4.84 under
Ubuntu 14.04. We use GCOV to measure both statement and
branch coverage. For the MC/DC, we implement and use our
own instrumentation and coverage measurement tool, MCDC-
Star, for both programs. The MCDC-Star measures the MC/DC
using the definition of DO-178C [3][22] (masking MC/DC)
under short-circuit evaluation.

For the fault detection, we compare the outputs between
correct versions and faulty versions. As every faulty version
(for both subject programs) contains only one fault, the bug is
considered to be detected if a faulty version produces a
different output.

299299

Authorized licensed use limited to: Boulder Labs Library. Downloaded on September 21,2020 at 16:37:54 UTC from IEEE Xplore. Restrictions apply.

IV. EXPERIMENT RESULTS

In this section, we examine the experiment results from two
aspects: 1) the coverage achievements (statement, branch, and
MC/DC) and 2) the fault detection strength.

A. Coverage Achievement

The coverage achievements of the test sets (2-way to 5-
way) for TCAS are presented in Figure 2. In general, for each
test set, the statement coverage at each data point is higher than
the other two corresponding criteria, and the MC/DC is the
lowest among the three coverage criteria. The three coverage
achievements of each test set, from 2-way to 5-way have a
significant increase (from 0% to 71.6%) within the first 15 test
cases. Overall, the achievements of all three coverage criteria
are improved simultaneously but with different scales, and the
cumulative coverage achievements of 2-way, 3-way, and 4-
way test sets increase with their corresponding interaction
strength. Although the 5-way test set has 2,874 more test cases
than the 4-way test set, the cumulative coverage achievement
of the 5-way is the same as the 4-way test set.

In addition, to investigate the coverage achievement of each
test set, we make three observation points: A, B, and C. Each
point represents the moment of finishing the execution of the
first 100, 400, and 1359 test cases. We choose these four points
based on the sizes of generated 2-way, 3-way, and 4-way test
sets. The coverage achievements of each test set at points A, B,
and C are shown in Table 8.

Table 8. Coverage Achievement at Points A, B, and C for TCAS

 2-way 3-way 4-way 5-way
A 79.01%

54.55%
51.56%

71.60%
45.45%
39.06%

71.60%
45.45%
39.06%

75.31%
54.55%
45.31%

Statement
Branch
MC/DC

B N/A 87.65%
83.33%
75.00%

88.89%
86.36%
79.69%

85.19%
80.30%
67.19%

Statement
Branch
MC/DC

C N/A N/A 91.36%
89.39%
87.50%

87.65%
83.33%
75.00%

Statement
Branch
MC/DC

At point A, the 2-way test set achieves the highest in all
three coverage criteria when compared to 3-way, 4-way, and 5-
way. Note its branch coverage is the same as 5-way. The 4-way
test set achieves the best results at points B and C. In general,
the 5-way test set performs the worst at points A, B, and C as
compared to the other three test sets.

For the PEL, the coverage achievements are shown in
Figure 3. Similar to the results of TCAS, the statement
coverage achieved by each test case is higher than the other
two coverage criteria in most of the data points, and MC/DC
achievement is still the lowest among the three coverage
criteria. The coverage achievements of the three coverage
criteria increase simultaneously most of the time. However, the
difference between branch and MC/DC coverage achievements
is not significant when compared with the result in TCAS. We
carefully investigate the cause by examining both the coverage

reports and the program implementations. The reason for this is
that PEL has a large amount of decisions with a single
condition. For such a decision, its MC/DC is very easily
achievable, and the MC/DC measurement is very similar to the
measurement of branch coverage in GCOV.

The coverage achievements of the three criteria of all the

test sets are improved significantly (from 0% to 60%, except 2-
way) within the first 20% of test cases. The coverage
achievement of the 2-way test set significantly increases until
the first 30% of the test cases. The cumulative coverage
achievement of each test set increases with their corresponding
interaction strength. The cumulative coverage achievement of
the 2-way test set is the lowest (65.83%, 58.10%, 56.39%),
while the 5-way test set achieves the highest (76.25%, 77.37%,
72.22%) coverage. Applying similar analysis for TCAS to
PEL, three observation points, A, B, and C, are made at 65,
264, and 851. The details are shown in Table 9.

Table 9. Coverage Achievement at Point A, B, and C for PEL

 2-way 3-way 4-way 5-way
A 65.83%

58.10%
56.39%

63.54%
58.10%
53.89%

63.54%
59.50%
55.56%

46.25%
42.74%
40.28%

Statement
Branch
MC/DC

B N/A 70.00%
66.20%
63.33%

65.21%
63.97%
59.17%

64.58%
62.85%
58.33%

Statement
Branch
MC/DC

C N/A N/A 71.67%
72.91%
69.72%

66.88%
67.32%
61.39%

Statement
Branch
MC/DC

The differences of all three coverage achievements of 2-
way, 3-way, and 4-way are not significant at point A, except
the 5-way test set is much lower than the other three. At point
B, the coverage achievements of the 3-way test set are higher
than 4-way and 5-way test sets. Surprisingly, the 5-way test set
performs the worst at all observation points.

B. Fault Detection Stregnth

In this section, we examine the ratio (number of detected
faults divided by the number of all faults) to evaluate the fault
detection strength of test sets generated using CT. The ratio is
denoted by fault detection rate (FDR). Table 10 and Table 11
show the results for TCAS and PEL, respectively.

Table 10. FDR of Tests of TCAS

TCAS 2-way 3-way 4-way 5-way
Total number of
faults detected

7 15 34 35

FDR 17.95% 38.46% 87.18% 89.74%

Table 11. FDR of Tests of PEL
PEL 2-way 3-way 4-way 5-way
Total number of
faults detected

2 5 6 9

FDR 20% 50% 60% 90%

300300

Authorized licensed use limited to: Boulder Labs Library. Downloaded on September 21,2020 at 16:37:54 UTC from IEEE Xplore. Restrictions apply.

(a) 2-way Test Set (b) 3-way Test Set

(c) 4-way Test Set (d) 5-way Test Set

Figure 2. Coverage Achievements of Test Sets for TCAS

(a) 2-way Test Set (b) 3-way Test Set

(c) 4-way Test Set (d) 5-way Test Set

Figure 3. Coverage Achievements of Test Sets for PEL

301301

Authorized licensed use limited to: Boulder Labs Library. Downloaded on September 21,2020 at 16:37:54 UTC from IEEE Xplore. Restrictions apply.

In general, increasing interaction strength significantly
improves the FDR of a test set generated by CT. However, the
improvement from the 4-way to 5-way is not significant for
TCAS.

In addition, we also investigate the number of test cases in
each test set that detects each fault for TCAS and PEL, shown
in Table 12 and Table 13, respectively.

Table 12. Number of Failed Test Cases for TCAS

 2-way 3-way 4-way 5-way
v1 0 0 1 5
v2 0 0 6 2
v3 0 1 2 12
v4 0 0 4 7
v5 0 3 25 62
v6 0 3 12 39
v7 0 0 1 6
v8 0 0 0 0
v9 0 0 0 3
v10 0 5 15 60
v11 0 5 16 74
v12 2 10 47 149
v13 0 2 8 29
v14 0 1 12 20
v15 0 3 25 62
v16 0 0 1 0
v17 0 0 1 6
v18 0 0 1 0
v19 0 0 0 1
v20 0 0 2 2
v21 0 0 1 3
v22 0 0 0 0
v23 0 0 0 2
v24 1 0 1 2
v25 0 0 2 2
v26 0 2 8 29
v28 1 0 2 7
v29 1 0 1 2
v30 0 0 1 5
v31 0 5 15 60
v32 1 6 12 53
v33 0 1 4 11
v34 3 11 73 236
v35 1 0 2 7
v36 0 0 4 6
v37 0 1 8 13
v38 0 0 3 3
v40 0 0 4 6
v41 0 0 4 7

Similar to the result of FDR, in most cases, the higher the

interaction strength a test set has, the more the test cases can
detect the fault. However, for v2 of TCAS, from 4-way to 5-
way, the number of test cases that can detect the fault drops
from six to two. The same observation can be also found in v5
of PEL from 3-way to 4-way. For v16, v18, v24, v28, v29, and
v35 of TCAS, we observe that test sets with higher interaction
strength cannot detect the faults, while test sets with lower
interaction strength can detect the faults. By examining the test
cases and their execution trace, we find out that the faults of
these versions can only be detected by some special
combinations of more than six input parameters. Since a test

set with a lower interaction strength generated by IPOG (e.g.,
A) might not be a subset of a generated test set with higher
interaction strength (e.g., B). Therefore, some input
combinations in A, which detect the bugs, might not be
included in B.

Table 13. Number of Failed Test Cases for PEL

 2-way 3-way 4-way 5-way
v1 0 1 5 64
v2 0 4 14 59
v3 0 0 0 0
v4 0 0 0 1
v5 0 10 7 46
v6 0 0 1 1
v7 1 1 18 44
v8 32 129 426 1335
v9 0 0 0 1

v10 0 0 0 1

V. CONCLUSION AND FEATURE WORK

In this paper, we conduct the experiment on two real-life
programs with complex control flows to investigate the
effectiveness and efficiency of applying combinatorial testing
in order to generate tests to achieve high MC/DC. By analyzing
the experiment results, the three research questions in Section I
can be answered as follows:

• Can CT generate test cases to achieve high MC/DC?

Our experiment results show that test sets generated using
CT can achieve high MC/DC. In general, the higher
interaction strength a CT test set has, the higher MC/DC it
can achieve.

• How to use CT to improve coverage achievements
(statement, branch, and MC/DC) in an efficient way?

According to the experiment results, choosing the
appropriate interaction strength is very critical to achieving
high efficiency. The intuitive assumption that, “the higher
interaction strength a test set has, the higher coverage it can
achieve,” holds in most cases. However, our experiment
results also show that the cumulative coverage
achievements of the three criteria of the 5-way test set are
not significantly improved comparing with the 4-way test
set. In general, the coverage achievements of the 5-way test
set increase more slowly than the 2-way, 3-way, and 4-way
test sets. Because the 2-way test set is not effective in
achieving cumulative coverage achievements, we
recommend using the 3-way or 4-way test sets in practice.

• Can tests generated using CT achieve high fault detection
strength?

In most cases, a test set (e.g., A) with a higher interaction
strength detects more faults than a test set (e.g., B) with a
lower interaction strength. In some cases, we also notice
that there are some faults that cannot be detected by A but
can be detected by B. Therefore, we suggest that the
practitioners carefully examine the coverage report after
testing using CT to determine whether the SUT is tested
adequately to avoid such cases.

302302

Authorized licensed use limited to: Boulder Labs Library. Downloaded on September 21,2020 at 16:37:54 UTC from IEEE Xplore. Restrictions apply.

In the future, we are planning to apply CT to more
programs, and also to investigate the impact of the input model
on coverage achievements, as well as the fault detection
strength.

ACKNOWLEDGMENT
Disclaimer: Any mention of commercial products in this

paper is for information only; it does not imply
recommendation or endorsement by NIST.

REFERENCES
[1] American Airlines Flight 965: Crash on the Mountain

(http://aviationknowledge.wikidot.com/asi:american-airlines-flight-
965:crash-on-the-mountain; accessed Nov 8, 2016)

[2] RTCA, DO-178B: Software considerations in airborne systems and
equipment certification. Washington, RTCA, Inc., December 1992

[3] RTCA, DO-178C: Software considerations in airborne systems and
equipment certification. Washington, RTCA, Inc., December 2011

[4] A. Dupuy, and L. Nancy , “An empirical evaluation of the MC/DC
coverage criterion on the HETE-2 satellite software” in Proceedings of
the IEEE 19th Digital Avionics Systems Conference, vol. 1, pp. 1B6-1,
Philadelphia, PA, USA, October, 2000

[5] A. L. White. "Comments on modified condition/decision coverage for
software testing [of flight control software]." In Proceedings of the IEEE
Aerospace Conference, vol. 6, pp. 2821-2827. Big Sky, USA, March,
2001

[6] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and Automatic
Generation of High-Coverage tests for Complex Systems Programs,” in
Proceedings of the USENIX Conference on Operating Systems Design
and Implementation, pp. 209-224, San Diego, USA, January 2008

[7] S.R. Ganov, C. Killmar, S. Khurshid, and D.E., Perry, “Test generation
for graphical user interfaces based on symbolic execution”, in
Proceedings of the 3rd IEEE/ACM International Workshop on
Automation of Software Test, pp. 33-40, Leipzig, Germany, May 2008.

[8] M. Papadakis and N. Malevris, “Automatic Mutation Test Case
Generation Via Dynamic Symbolic Execution”, in Proceedings of the
21st International Symposium on Software Reliability Engineering, pp.
121-130, San Jose, CA, USA, November 2010

[9] S. Anand, E. Burke, T. Chen, J. Clark, and M. Cohen, “An orchestrated
survey of methodologies for automated software test case generation”,
Journal of Systems and Software 86(8):1978-2001, 2013

[10] J. Bozic, B. Garn, I. Kapsalis, D. E. Simos, Severin Winkler and F.
Wotawa, “Attack Pattern-Based Combinatorial Testing with Constraints
for Web Security Testing,” in Proceedings of the 2015 IEEE
International Conference on Software Quality, Reliability and Security
(QRS), pp. 207-212, Vancouver, Canada, August 2015

[11] J. D. Hagar, D. R. Kuhn, and R. N. Kacker, and T. L. Wissink,
“Introducing Combinatorial Testing in a Large Organization: Pilot
Project Experience Report,” in Proceedings of the Seventh IEEE
International Conference on Software, Testing, Verification and
Validation Workshops (ICST Workshops), pp. 153, 2014

[12] D. R. Kuhn and R. N. Kacker, “Practical Combinatorial (t-way)
Methods for Detecting Complex Faults in Regression Testing,” in
Proceedings of the IEEE 27th International Conference on Software
Maintenance (ICSM), pp. 599, September, 2011

[13] M. Palacios, J. Garcia-Fanjul, J. Tuya, and G. Spanoudakis, “Automatic
Test Case Generation for WS-Agreements using Combinatorial
Testing,” Computer Standards & Interfaces, vol. 38, pp. 84-100, 2015.

[14] M. Forbes, J. Lawrence, Y. Lei, R.N. Kacker, and D.R. Kuhn
Refining the In-Parameter-Order Strategy for Constructing Covering
Arrays, NIST Journal of Research, 113(5):287-297, Sept./Oct., 2008

[15] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence,
“IPOG/IPOG-D: Efficient Test Generation for Multi-way Combinatorial
Testing,” Software Testing, Verification and Reliability, vol. 18, pp.
125-148, 2008

[16] D. R. Kuhn, I. D. Mendoza, R. N. Kacker, and Y. Lei, “Combinatorial
Coverage Measurement Concepts and Applications,” in Proceedings of
the Sixth IEEE International Conference on Software, Testing,
Verification and Validation Workshops (ICST Workshops), pp. 352-361,
2013

[17] D. R. Kuhn and V. Okun, “Pseudo-exhausive Testing for Software,” in
Proceedings of IEEE/NASA Software Engineering Workshop, pp.153-
158, Columbia, USA, April 2006

[18] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “An evaluation of

similarity coefficients for software fault localization.” in Proceedings of
12th Pacific Rim International Symposium on Dependable Computing,
pp. 39-46, Riverside, CA, USA, December, 2006

[19] X. Li, W. E. Wong, R. Gao, L. Hu, and S. Hosono, “Genetic Algorithm-
based Test Generation for Software Product Line with the Integration of
Fault Localization Techniques.” Empirical Software Engineering: pp. 1-
51. 2017

[20] ACTS, a combinatorial test genertion tool, http://csrc.nist.gov/groups/
SNS/acts/

[21] The Software Infrastructure Repository (retrieved October 2008)
(http://sir.unl.edu/portal/index.html)

[22] John J. Chilenski, “An investigation of three forms of the modified
condition decision coverage (MCDC) criterion,” Tech. Rep.
DOT/FAA/AR-01/18, Federal Aviation Administration, US-Department
of Transportation, Washington, DC, April 2001

[23] M. Palacios, J. Garcia-Fanjul, J. Tuya, and G. Spanoudakis, “Automatic
Test Case Generation for WS-Agreements using Combinatorial
Testing,” Computer Standards & Interfaces, vol. 38, pp. 84-100, 2015.

[24] X. Li, R. Gao, W. E. Wong, C. Yang, and D. Li, “Applying
Combinatorial Testing in Industrial Settings”, in Proceedings of the
2016 IEEE International Conference on Software Quality, Reliability
and Security (QRS), pp. 53-60, Vienna, Austria, October, 2016

[25] NIST Report, “Software Errors Cost U.S. Economy $59.5 Billion
Annually”, NIST Planning Report 02-3, May 2002J. Clerk Maxwell, A
Treatise on Electricity and Magnetism, 3rd ed., vol. 2. Oxford:
Clarendon, pp.68-73, 2002

303303

Authorized licensed use limited to: Boulder Labs Library. Downloaded on September 21,2020 at 16:37:54 UTC from IEEE Xplore. Restrictions apply.

