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Abstract— Software, in many different fields and tasks, has 
played a critical role and even replaced humans to improve 
efficiency and safety. However, catastrophic consequences can be 
caused by implementation bugs and design defects. Modified 
condition/decision coverage (MC/DC), required by the Federal 
Aviation Administration on Level A (the most safety critical 
system), has been shown to be effective in detecting software 
bugs. However, generating tests to achieve high MC/DC can be 
very expensive and time consuming. Recently, many studies 
showed that combinatorial testing (CT) could generate high-
quality test cases in a cost-effective way. Can CT generate test 
cases to achieve high MC/DC? In this paper, we conduct an 
empirical study on two real-life programs to evaluate the 
efficiency and effectiveness of using combinatorial testing to 
improve MC/DC coverage achievement, as well as the fault 
detection strength.  

Keywords—Combinatorial Testing, MC/DC Coverage, Fault 
Detection 

 
I. INTRODUCTION 

 

In the past few years, testing for safety-critical systems, 
such as traffic control and aircraft navigation systems, became 
one of the most challenging tasks in the software quality 
assurance field. Catastrophic accidents that result in 
tremendous economic damage or even human casualties can be 
caused by the implementation bugs and design defects of 
safety-critical systems. On December 20, 1995, American 
Airlines Flight 965 from Miami, Florida, to Cali, Colombia, 
crashed into a 9,800 foot mountain. This was due to a 
navigation software error, and resulted in 159 deaths [1].  

 

To prevent such tragedies from occurring again, the Federal 
Aviation Administration requires that Level A systems are 
tested using test cases that can achieve modified 
condition/decision coverage  (MC/DC) defined in DO-178B/C 
[2][3]. MC/DC criterion requires each condition of decision in 
the program to be tested by showing its independent effect on 
the whole decision. Although many studies have showed that 
MC/DC is effective and efficient in detecting software bugs 
[4][5], the generation of test cases to achieve high MC/DC can 
be very difficult and expensive. To address this issue, different 
techniques have been proposed for generating test cases to 
achieve high MC/DC. For example, one of the proposed 
solutions is symbolic execution-based test generation (white-
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box) [6][7][8], which generates test cases by conducting 
comprehensive symbolic execution and constraint solving. The 
advantages of symbolic execution-based test generation is that 
it can be fully automated, and in the ideal scenario, it requires 
practitioners almost no domain knowledge to perform the test 
generation. However, there are also several well-known 
drawbacks of current symbolic execution-based test generation 
techniques. First, due to the path explosion problem, symbolic 
execution requires large amounts of resources (computation 
and memory) to perform the execution analysis and constraint 
solving [9]. Therefore, it might not be able to generate test 
cases for large and complex programs, especially the ones with 
too many loop control flows. Second, the symbolic execution-
based test generation techniques are platform and language 
dependent; each technique can work only for certain languages 
and platforms. Moreover, most of the tools for symbolic 
execution-based test generation are not ready for commercial 
application because they are not available to the public, and the 
quality of the tools cannot be guaranteed. 

 

In addition to the costly white-box test generation 
techniques, the black-box combinatorial testing (CT) has been 
shown to be effective and efficient in generating test cases with 
high fault detection strength, and it is very easy to apply 
industry settings [10][11][12][13]. CT treats a system under 
test (SUT) as a black-box, and it focuses on the interactions 
among various input parameters. It uses well-developed CT 
algorithms [14][15] to generate a test set that covers a large 
amount of combinations among input parameters while 
keeping the test set to a small size. Therefore, it is worth 
conducting an empirical study to evaluate the effectiveness and 
efficiency of using CT to generate tests to achieve high 
MC/DC, as well as high fault detection strength. In this paper, 
we want to investigate the following three research questions: 

 

• Can CT generate test cases to achieve high MC/DC? 
• How to use CT to improve coverage achievements 

(statement, branch, and MC/DC) in an efficient way? 
• Can tests generated using CT achieve high fault detection 

strength? 
 

The remainder of paper is organized as follows: in Section 
II, we introduce the basic concepts of CT. We will then present 
our experiment setup in Section III.  In section VI, experiment 
results and detailed discussions are included, followed by our 
conclusions and future work in Section V. 
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II. COMBINATORIAL TESTING 
 

In both industry and academia, regardless of gender, 
culture, and experience, a consensus among almost all 
developers is that there are always some sophisticated bugs in a 
software system. Even when the software system has been 
tested or deployed for a long time, bugs be triggered by one or 
some special combinations of input values [11][12][16]. These 
combinations of input values are usually either too rare in the 
real world or counterintuitive for software developers and 
testers to generate the responding test cases.  

 

A simple solution to cover these special input combinations 
is to perform exhaustive testing. Unfortunately, it is almost 
impossible to apply exhaustive testing to complex programs 
with a large input domain. Consider the following sample 
program: 
 

Table 1. Sample Program 
Functionalities Number of Possible Values 

A T, F 
B T, F 
C T, F 
D T, F 

 

This program has four functionalities which can be enabled 
during the execution. We use “T” to denote that a functionality 
is enabled, and “F” to indicate the opposite. To perform the 
exhaustive testing for this program, a test set with size of 16 
(=2×2×2×2) is needed. For illustration purposes, the sample 
program presented in Table 1 is simple, and therefore, the 
number of generated exhaustive tests is small. However, for a 
real-world complex system, the number of exhaustive 
combinations can easily be larger than one thousand or even 
one million, which makes it almost impossible for practitioners 
to finish the test. 

 

Since testing all combinations among all parameters is not 
practical, a practitioner can generate a test set that includes all 
combinations between certain parameters to reduce the size of 
the test set. To do that, we can use CT to generate a test set 
with a small size to cover all combinations between any t 
parameters (t ≤ total no. of parameters), where t is the 
interaction strength. We also use t-way test set to denote that it 
contains all combinations among t parameters [10][17]. For 
example, Table 3 shows the twenty-six 2-way combinations of 
the sample program. Intuitively, we need a relatively large test 
set to cover all of the twenty-six combinations. Using the IPOG 
algorithm, we only need six test cases, as shown in Table 2. 

 
Table 2. A 2-way Test Set Generated Using IPOG 

 A B C D 
t1 T T F F 
t2 T F T T 
t3 F T T F 
t4 F F F T 
t5 F T F T 
t6 T F F F 

 

Notice that different CT algorithms might generate 
different test sets for the same interaction strength. To achieve 
good performance, with respect to improving coverage 
achievements and fault detection strength when using CT in 

real-world scenarios, choosing an appropriate interaction 
strength is very important. We will give a detailed discussion 
in Section V. 

 
Table 3. All Combinations Between Two Parameters 

A = T, B = T A = T, B = F A = F, B = T A = F, B = F 
A = T, C = T A = T, C = F A = F, C = T A = F, C = F 
A = T, D = T A = T, D = F A = F, D = T A = F, D = F 
B = T, C = T B = T, C = F B = F, C = T B = F, C = F 
B = T, D = T B = T, D = F B = F, D = T B = F, D = F 
C = T, D = T C = T, D = F C = F, D = T C = F, D = F 

 
III. EXPERIMENT SETUP 

 

To answer the three research questions in Section I, we 
conduct our empirical study on two real-world C programs 
with complex control flows. The first subject program is 
TCAS, a widely-used module of a traffic collision avoidance 
system [17][18]. The second subject program, PEL [19], is a 
constraint verification module of a customization program for a 
photo editing software. To generate the CT test set, we use 
ACTS (v2.9) [20], a GUI-based CT tool developed by National 
Institute of Standards and Technology (NIST). ACTS is very 
easy to use; the tool has the ability to generate tests with 
interaction strength from 2-way to 6-way, with a user-friendly 
GUI and a command line version suitable for use in scripts or 
system calls from another tool. It only takes few minutes for a 
practitioner to learn how to set up and generate the test sets. A 
screenshot of ACTS is shown in Figure 1. 

 

 
Figure 1. A screenshot of ACTS 

 

In the experiment, we use the IPOG algorithm implemented 
by ACTS to generate the test sets with interaction strength 
from 2-way to 5-way. 

  
A. Input Modeling and Test Generation for TCAS 

 

We download the original implementation, and 41 mutants 
of TCAS from Software-artifact Infrastructure Repository [21]. 
The detailed description of TCAS is shown as follows: 

 

• Size: 174 LOC 
• Number of decisions: 15 
• Number of input parameters: 12 
• Number of output parameter: 1 
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In the 41 mutants (each with one seeded fault), v5 and v25 
have the same faults as v27 and v39 respectively. Therefore, 
we arbitrarily exclude v27, and v39 from our experiment. 

 

We reuse the input model from Kuhn’s study [17]. The 
details of both input parameters and their corresponding values 
are shown in Table 4. 

 
Table 4. Input Model for TCAS 

Input Parameters Values 
Cur_Vertical_Sep 299, 300, 601 

High_Confidence 0, 1 

Two_of_Three_reports_Valid 0, 1 

Own_Tracked_Alt 1, 2 

Other_Tracked_Alt 1, 2 

Own_Tracked_Alt_Rate 600, 601 

Alt_Layer_Value 0, 1, 2, 3 

Up_Separation 0, 399, 400, 499, 500, 639, 
640, 739, 740, 840 

Down_Separation 0, 399, 400, 499, 500, 639, 
640, 739, 740, 840 

Other_RAC 0, 1, 2 

Other_Capability 1, 2 

Climb_Inhibit 0, 1 
 

Using this input model, the total number of all possible 
combinations of input parameters is 230,400. We generate five 
test sets with interaction strength from 2-way to 6-way using 
ACTS and IPOG algorithm, as shown in Table 5. 
 

Table 5. Generated Test Sets for TCAS 
2-way 3-way 4-way 5-way 6-way 
100 400 1,359 4,233 11,021 

 

In comparing the number of exhaustive combinations, it is 
very clear that the sizes of these test sets are significantly 
reduced, yet they still retain a certain interaction strength. In 
the five generated test sets, we exclude the 6-way test set as the 
11,021 test cases may be too many for a real-world case. 

 

B. Input Modeling and Test Generation for PEL 
 

PEL is a software product line for a photo editing software 
that performs various photo editing tasks, such as photo batch 
processing, skin smoothing, advanced color adjustment, etc. 
We conduct our study on the constraint verification module of 
PEL, and the following show the detailed descriptions: 
 

• Size: 957 LOC 
• Number of decisions: 132 
• Number of input parameters: 16 
• Number of output parameter: 1 
 

There are 10 distinct faulty versions, with each containing 
one of the real faults retrieved from the development phase. 
After carefully analyzing the requirements of PEL, we build 
our input model, shown in Table 6. 

 
 

Table 6. Input Model for PEL 
Input Parameters Values 

Version Regular, silver, gold, platinum, 
diamond 

Photo Format Standard, extended 

OS Support Windows, MacOS, linux 

Technical Support yes, no 

Batch Processing yes, no 

Max Photo Size 100MB, 300MB, 600MB, 1GB 

Auto Optimization yes, no 

Basic Filter yes, no 

Landscape Filter yes, no 

Facial Filter yes, no 

Micro-processing Filter yes, no 

Skin Smoothing Plugin yes, no 

Lighting Control Plugin yes, no 

Advanced Color Plugin yes, no 

Social Network Plugin yes, no 

Accumulative Purchase Amount 
100, 999, 1000, 1001, 2000, 
4999, 5000, 5001, 8000, 9999, 
10000, 10001, 15000 

 

Using exhaustive testing to cover all the combinations 
among all input parameters, a user would need to have a test 
set with a size of 3,194,880. We use ACTS and IPOG 
algorithm to generate the following CT test sets, shown in 
Table 7. Notice that we also exclude the 6-way test set from 
our experiment. 
 

Table 7.  Generated Test Sets for PEL 
2-way 3-way 4-way 5-way 6-way 
65 264 851 2,659 7,667 

 

Regenerating test sets using IPOG does not produce 
different results as IPOG is deterministic. An interesting 
observation is that, although the size of input domain of PEL is 
larger than that of TCAS, the number of test cases in each 
generated test set for PEL is smaller.  

 

C. Coverage Collection and Fault Detection 
 

We compile both subject programs using GCC 4.84 under 
Ubuntu 14.04. We use GCOV to measure both statement and 
branch coverage. For the MC/DC, we implement and use our 
own instrumentation and coverage measurement tool, MCDC-
Star, for both programs. The MCDC-Star measures the MC/DC 
using the definition of DO-178C [3][22] (masking MC/DC) 
under short-circuit evaluation. 

 

For the fault detection, we compare the outputs between 
correct versions and faulty versions. As every faulty version 
(for both subject programs) contains only one fault, the bug is 
considered to be detected if a faulty version produces a 
different output. 
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IV. EXPERIMENT RESULTS 
 

In this section, we examine the experiment results from two 
aspects: 1) the coverage achievements (statement, branch, and 
MC/DC) and 2) the fault detection strength. 

 

A. Coverage Achievement 
 

The coverage achievements of the test sets (2-way to 5-
way) for TCAS are presented in Figure 2. In general, for each 
test set, the statement coverage at each data point is higher than 
the other two corresponding criteria, and the MC/DC is the 
lowest among the three coverage criteria. The three coverage 
achievements of each test set, from 2-way to 5-way have a 
significant increase (from 0% to 71.6%) within the first 15 test 
cases.  Overall, the achievements of all three coverage criteria 
are improved simultaneously but with different scales, and the 
cumulative coverage achievements of 2-way, 3-way, and 4-
way test sets increase with their corresponding interaction 
strength. Although the 5-way test set has 2,874 more test cases 
than the 4-way test set, the cumulative coverage achievement 
of the 5-way is the same as the 4-way test set. 

 

In addition, to investigate the coverage achievement of each 
test set, we make three observation points: A, B, and C. Each 
point represents the moment of finishing the execution of the 
first 100, 400, and 1359 test cases. We choose these four points 
based on the sizes of generated 2-way, 3-way, and 4-way test 
sets. The coverage achievements of each test set at points A, B, 
and C are shown in Table 8. 

 
Table 8. Coverage Achievement at Points A, B, and C for TCAS 

 2-way 3-way 4-way 5-way  
A 79.01% 

54.55% 
51.56% 

71.60% 
45.45% 
39.06% 

71.60% 
45.45% 
39.06% 

75.31% 
54.55% 
45.31% 

Statement 
Branch 
MC/DC 

B N/A 87.65% 
83.33% 
75.00% 

88.89% 
86.36% 
79.69% 

85.19% 
80.30% 
67.19% 

Statement 
Branch 
MC/DC 

C N/A N/A 91.36% 
89.39% 
87.50% 

87.65% 
83.33% 
75.00% 

Statement 
Branch 
MC/DC 

 

At point A, the 2-way test set achieves the highest in all 
three coverage criteria when compared to 3-way, 4-way, and 5-
way. Note its branch coverage is the same as 5-way. The 4-way 
test set achieves the best results at points B and C. In general, 
the 5-way test set performs the worst at points A, B, and C as 
compared to the other three test sets. 

 

For the PEL, the coverage achievements are shown in 
Figure 3. Similar to the results of TCAS, the statement 
coverage achieved by each test case is higher than the other 
two coverage criteria in most of the data points, and MC/DC 
achievement is still the lowest among the three coverage 
criteria. The coverage achievements of the three coverage 
criteria increase simultaneously most of the time. However, the 
difference between branch and MC/DC coverage achievements 
is not significant when compared with the result in TCAS. We 
carefully investigate the cause by examining both the coverage 

reports and the program implementations. The reason for this is 
that PEL has a large amount of decisions with a single 
condition. For such a decision, its MC/DC is very easily 
achievable, and the MC/DC measurement is very similar to the 
measurement of branch coverage in GCOV. 

  
The coverage achievements of the three criteria of all the 

test sets are improved significantly (from 0% to 60%, except 2-
way) within the first 20% of test cases. The coverage 
achievement of the 2-way test set significantly increases until 
the first 30% of the test cases. The cumulative coverage 
achievement of each test set increases with their corresponding 
interaction strength. The cumulative coverage achievement of 
the 2-way test set is the lowest (65.83%, 58.10%, 56.39%), 
while the 5-way test set achieves the highest (76.25%, 77.37%, 
72.22%) coverage. Applying similar analysis for TCAS to 
PEL, three observation points, A, B, and C, are made at 65, 
264, and 851. The details are shown in Table 9. 

 
Table 9. Coverage Achievement at Point A, B, and C for PEL 

 2-way 3-way 4-way 5-way  
A 65.83% 

58.10% 
56.39% 

63.54% 
58.10% 
53.89% 

63.54% 
59.50% 
55.56% 

46.25% 
42.74% 
40.28% 

Statement 
Branch 
MC/DC 

B N/A 70.00% 
66.20% 
63.33% 

65.21% 
63.97% 
59.17% 

64.58% 
62.85% 
58.33% 

Statement 
Branch 
MC/DC 

C N/A N/A 71.67% 
72.91% 
69.72% 

66.88% 
67.32% 
61.39% 

Statement 
Branch 
MC/DC 

 

The differences of all three coverage achievements of 2-
way, 3-way, and 4-way are not significant at point A, except 
the 5-way test set is much lower than the other three. At point 
B, the coverage achievements of the 3-way test set are higher 
than 4-way and 5-way test sets. Surprisingly, the 5-way test set 
performs the worst at all observation points. 

 

B. Fault Detection Stregnth 
 

In this section, we examine the ratio (number of detected 
faults divided by the number of all faults) to evaluate the fault 
detection strength of test sets generated using CT. The ratio is 
denoted by fault detection rate (FDR). Table 10 and Table 11 
show the results for TCAS and PEL, respectively. 

 
Table 10. FDR of Tests of TCAS 

TCAS 2-way 3-way 4-way 5-way 
Total number of 
faults detected 

7 15 34 35 

FDR 17.95% 38.46% 87.18% 89.74% 
 

Table 11. FDR of Tests of PEL 
PEL 2-way 3-way 4-way 5-way 
Total number of 
faults detected 

2 5 6 9 

FDR 20% 50% 60% 90% 
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(a) 2-way Test Set (b) 3-way Test Set 

  
(c) 4-way Test Set (d) 5-way Test Set 

Figure 2. Coverage Achievements of Test Sets for TCAS 
 

  
(a) 2-way Test Set (b) 3-way Test Set 

  
(c) 4-way Test Set (d) 5-way Test Set 

Figure 3. Coverage Achievements of Test Sets for PEL 
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In general, increasing interaction strength significantly 
improves the FDR of a test set generated by CT. However, the 
improvement from the 4-way to 5-way is not significant for 
TCAS.  

 

In addition, we also investigate the number of test cases in 
each test set that detects each fault for TCAS and PEL, shown 
in Table 12 and Table 13, respectively. 

 
Table 12. Number of Failed Test Cases for TCAS 

  2-way 3-way 4-way 5-way 
v1 0 0 1 5 
v2 0 0 6 2 
v3 0 1 2 12 
v4 0 0 4 7 
v5 0 3 25 62 
v6 0 3 12 39 
v7 0 0 1 6 
v8 0 0 0 0 
v9 0 0 0 3 
v10 0 5 15 60 
v11 0 5 16 74 
v12 2 10 47 149 
v13 0 2 8 29 
v14 0 1 12 20 
v15 0 3 25 62 
v16 0 0 1 0 
v17 0 0 1 6 
v18 0 0 1 0 
v19 0 0 0 1 
v20 0 0 2 2 
v21 0 0 1 3 
v22 0 0 0 0 
v23 0 0 0 2 
v24 1 0 1 2 
v25 0 0 2 2 
v26 0 2 8 29 
v28 1 0 2 7 
v29 1 0 1 2 
v30 0 0 1 5 
v31 0 5 15 60 
v32 1 6 12 53 
v33 0 1 4 11 
v34 3 11 73 236 
v35 1 0 2 7 
v36 0 0 4 6 
v37 0 1 8 13 
v38 0 0 3 3 
v40 0 0 4 6 
v41 0 0 4 7 

 
Similar to the result of FDR, in most cases, the higher the 

interaction strength a test set has, the more the test cases can 
detect the fault. However, for v2 of TCAS, from 4-way to 5-
way, the number of test cases that can detect the fault drops 
from six to two. The same observation can be also found in v5 
of PEL from 3-way to 4-way. For v16, v18, v24, v28, v29, and 
v35 of TCAS, we observe that test sets with higher interaction 
strength cannot detect the faults, while test sets with lower 
interaction strength can detect the faults. By examining the test 
cases and their execution trace, we find out that the faults of 
these versions can only be detected by some special 
combinations of more than six input parameters. Since a test 

set with a lower interaction strength generated by IPOG (e.g., 
A) might not be a subset of a generated test set with higher 
interaction strength (e.g., B). Therefore, some input 
combinations in A, which detect the bugs, might not be 
included in B. 
 

Table 13. Number of Failed Test Cases for PEL 

 2-way 3-way 4-way 5-way 
v1 0 1 5 64 
v2 0 4 14 59 
v3 0 0 0 0 
v4 0 0 0 1 
v5 0 10 7 46 
v6 0 0 1 1 
v7 1 1 18 44 
v8 32 129 426 1335 
v9 0 0 0 1 

v10 0 0 0 1 
 

V. CONCLUSION AND FEATURE WORK 
 

In this paper, we conduct the experiment on two real-life 
programs with complex control flows to investigate the 
effectiveness and efficiency of applying combinatorial testing 
in order to generate tests to achieve high MC/DC. By analyzing 
the experiment results, the three research questions in Section I 
can be answered as follows: 
 

• Can CT generate test cases to achieve high MC/DC? 
 

Our experiment results show that test sets generated using 
CT can achieve high MC/DC. In general, the higher 
interaction strength a CT test set has, the higher MC/DC it 
can achieve. 

 

• How to use CT to improve coverage achievements 
(statement, branch, and MC/DC) in an efficient way? 
 

According to the experiment results, choosing the 
appropriate interaction strength is very critical to achieving 
high efficiency. The intuitive assumption that, “the higher 
interaction strength a test set has, the higher coverage it can 
achieve,” holds in most cases. However, our experiment 
results also show that the cumulative coverage 
achievements of the three criteria of the 5-way test set are 
not significantly improved comparing with the 4-way test 
set. In general, the coverage achievements of the 5-way test 
set increase more slowly than the 2-way, 3-way, and 4-way 
test sets. Because the 2-way test set is not effective in 
achieving cumulative coverage achievements, we 
recommend using the 3-way or 4-way test sets in practice. 
 

• Can tests generated using CT achieve high fault detection 
strength? 
 

In most cases, a test set (e.g., A) with a higher interaction 
strength detects more faults than a test set (e.g., B) with a 
lower interaction strength. In some cases, we also notice 
that there are some faults that cannot be detected by A but 
can be detected by B. Therefore, we suggest that the 
practitioners carefully examine the coverage report after 
testing using CT to determine whether the SUT is tested 
adequately to avoid such cases.  
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In the future, we are planning to apply CT to more 
programs, and also to investigate the impact of the input model 
on coverage achievements, as well as the fault detection 
strength.  
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