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We derive a bound on the ability of a linear-optical network to estimate a linear combination of
independent phase shifts by using an arbitrary nonclassical but unentangled input state, thereby elucidating
the quantum resources required to obtain the Heisenberg limit with a multiport interferometer. Our bound
reveals that while linear networks can generate highly entangled states, they cannot effectively combine
quantum resources that are well distributed across multiple modes for the purposes of metrology: In this
sense, linear networks endowed with well-distributed quantum resources behave classically. Conversely,
our bound shows that linear networks can achieve the Heisenberg limit for distributed metrology when the
input photons are concentrated in a small number of input modes, and we present an explicit scheme for
doing so.
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By taking advantage of the quantum mechanical proper-
ties of micro- and mesoscopic systems, it is possible to
increase the sensitivity of precision sensors beyond
classical limitations [1–9]. Recently there has been increas-
ing interest in understanding how such quantum metro-
logical techniques can be used to enhance measurements
that are spatially distributed [10–16], for applications such
as phase imaging [10] and global-scale clock synchroniza-
tion [17]. In this setting, the quantity of interest is often a
linear combination of the results of a number of simulta-
neous measurements at different locations [18–20].
Examples of this problem, referred to as distributed
metrology, are the inference of a field gradient or properties
of the spatial fluctuations of a field. Even in single
parameter estimation problems, a precise description of
which nonclassical features of light are necessary for
quantum enhancements is notoriously subtle [21–24]. In
the multiparameter case, such an understanding has only
very recently begun to emerge, with entanglement seem-
ingly playing a crucial role. Moreover, there exist few
examples of entangled states for achieving quantum-
enhanced distributed metrology and those that do exist
are fragile and difficult to create [18–20].
It is well known that linear-optical networks consisting

purely of beam splitters and phase shifters can transform
nonclassical but unentangled states into highly entangled
states [25–31]. Given that linear networks are also quite
easily implemented experimentally, much attention has
been paid to applications of the entanglement they can
generate, for example, towards demonstrations of quantum

supremacy via boson sampling [32–36]. However, it is also
clear that linear-optical networks cannot produce arbitrary
quantum states at the output [37,38], given as input a
particular quantum state. It is therefore natural to ask
whether—for a particular application requiring a particular
type of entanglement—linear-optical networks can or
cannot provide a quantum advantage, and if so what types
of input states they require.
Here we prove that entanglement is a necessary con-

dition in quantum-enhanced distributed metrology, and we
investigate whether or not entangled states generated by
linear networks suffice for obtaining a quantum advantage,
i.e., the Heisenberg limit [18–20]. Our results show that the
answer to this important question depends crucially on how
the initial (nonclassical but unentangled) resources are
distributed amongst the network inputs. For well-distrib-
uted inputs, we show that the entangled states created via
any linear network do not lead to the Heisenberg limit,
unifying and generalizing several recent works [39–42].
More importantly, when the input photons are concentrated
into a few modes, our bound (along with a specific example
that verifies saturability) shows that linear networks can
achieve the Heisenberg limit for distributed metrology,
therefore identifying a large set of useful states for
distributed quantum metrology in a linear network.
While our results have implications for distributed

metrology in a rather general context, it is useful to consider
the following concrete scenario depicted in Fig. 1(a).
Imagine that there are d observers at different locations
in space (which we will call “nodes”), and that each has the
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ability to generate a nonclassical state jψ ji and use this state
to measure a local phase shift θj (j ¼ 1;…; d). We quantify

the resources of each state by nLOj ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hψ jjn̂2j jψ ji

q
[43],

which we assume to be constrained locally, i.e., to be less
than some constant n that does not scale with d.
Furthermore, suppose that rather than ascertaining all of
the individual phases, we wish to estimate a particular
linear combination q ¼ P

jwjθj for some set of weights
w ¼ ðw1;…; wdÞ (this linear combination could be, e.g., an
average or the overlap of the phases θj with some spatial
mode). To make a comparison with the metrology of a
single quantity straightforward, we normalize the weights
such that maxjjwjj ¼ 1=d. With this normalization, choos-
ing the wj all equal to each other recovers the spatial
average of the fields q ¼ ð1=dÞPd

j¼1 θj. If the observers
do not have a network for sharing their quantum states, the
best strategy for estimating q is for each of them to make
the best possible estimate of θj and then compute q by
sharing their results via classical communication. We
assume that each individual node has access to a reference
mode with no phase shift and that the measurement of θj
can be made at the Heisenberg limit Δθj ∼ 1=nLOj . If all of
the phases θj (or at least a number of them that scales with
d) contribute meaningfully to q, a notion captured formally
by the requirement jwj2 ∼ 1=d, then we will say that the
weights are well distributed. Standard error analysis shows
that in the case of well-distributed weights, the estimation
strategy just described produces an error in the estimate
of q scaling at best as Δq ∼ 1=ðn ffiffiffi

d
p Þ. This scaling can be

shown to persist for any unentangled input state with
locally constrained resources, even if the observers share

classical correlations [44]. On the other hand, a fully
quantum protocol using an optimal entangled state of all
the modes, and subject to the same resource constraints, can
achieve a scaling of Δq ¼ 1=ðndÞ [18–20], thus providing
a collective quantum enhancement proportional to 1=

ffiffiffi
d

p
.

In the context of the above scenario, our central question is
as follows: If the observers are allowed to share their
initially unentangled states through a central linear net-
work, can they beat the aforementioned classical limit in
measuring q for well-distributed weights, in the sense of
enhanced scaling with respect to d? If so, we wish to
know what kinds of unentangled input states we must send
into a linear network to obtain output states that can be
used to obtain a measurement precision scaling at the
Heisenberg limit.
Our conclusion is that the ability of a linear network to

generate entangled states that are useful for quantum
metrology is strongly bounded by specific properties of
the input states. Our results are most simply stated by first
considering the case in which the jth node possesses a state
with exactly nj photons, which is just the amount of local
resources in that node. In this case, and denoting by n the
vector of input photon numbers nj, we show that the
metrological precision that can be achieved by utilizing a
linear network satisfies

Δq ≥ djwj2=ð2jnjÞ: ð1Þ

Two important conclusions can be drawn from Eq. (1).
First, for locally constrained resources, for example, if each
node has exactly n photons, then we have Δq ≳ 1=ðn ffiffiffi

d
p Þ.

Considering this scaling (i.e., ignoring any prefactors) and
comparing to the classical scheme above, we conclude that
linear networks cannot generate useful entangled states for
the purposes of combining metrological resources across
modes, thereby establishing a strong operational sense in
which linear networks are classical. Second, for globally
constrained resources such that the same total number of
photons is distributed across a finite number of input ports,
for example, just two, the bound reduces to Δq≳ 1=ðndÞ.
Thus, if the bound is tight (at least in the sense of scaling),
then Heisenberg scaling for Δq can be achieved so long as
the total number of photons employed is placed in a small
number of modes (“small” meaning not scaling with d). By
constructing an explicit measurement scheme, we confirm
that the bound, and thus the Heisenberg scaling, can be
saturated when the total number of photons is divided
evenly between just two input modes.
Multiparameter quantum Cramér-Rao bound.—A for-

mal analysis of the scenario depicted in Fig. 1(a) is
summarized in Fig. 1(b). Note that we have now explicitly
introduced one reference mode per phase θj, with index
dþ j. We assume that the input state is a product state
jΨi ¼ jψ1i…jψdi and that each jψ ji is itself a product state
between the two input modes associated with phase θj,

(a) (b)

FIG. 1. (a) Spatial layout of a network of sensors designed to
measure a linear combination of d spatially distributed phase
shifts. Each node is equipped with a measurement device and a
locally prepared nonclassical state, which can be sent to a central
linear network prior to probing the local phase shifts and once
again before making local measurements. (b) Formal represen-
tation of the situation described in (a): To make a fair comparison
to the independent metrology of each phase, for which each node
would require an additional reference mode in order to form an
interferometer, each node is endowed with two input modes.
These 2d modes are fed into a unitary U, and the phases are then
probed, after which we allow further linear-optical processing (V)
followed by local measurements.
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jψ ji ¼ jφjijφdþji, so that jΨi ¼⊗2d
j¼1 jφji. The state that

the linear network produces is then denoted by jΨUi ¼
UjΨi. Defining Ĥ ¼ P

jθjn̂j, interrogation of the phases

θj then maps jΨUi → expð−iĤÞjΨUi≡ jΨUðθÞi. We aim
to infer the quantity q ¼ P

jwjθj by making local mea-
surements on jΨUðθÞi, preceded (if desired) by an addi-
tional linear-optical unitary V. The primary tool in our
analysis is the multiparameter quantum Cramér-Rao bound,
which states that a set of unbiased estimators Θj for the
parameters θj satisfy [47]

covðΘÞ ≥ F−1: ð2Þ

Here the covariance matrix is defined by its matrix elements
as covðΘÞjk ≡ E½ðΘj − θjÞðΘk − θkÞ�, where E½X� is the
expected value of the quantity X, and in this context the
quantum Fisher information matrix F is defined by its
matrix elements as

F jk ≡ 4ðhΨUjn̂jn̂kjΨUi − hΨUjn̂jjΨUihΨUjn̂kjΨUiÞ: ð3Þ

Using Q ¼ P
jwjΘj as an unbiased estimator of q, the

uncertainty Δ2q≡ E½ðQ − qÞ2� ¼ P
j;kwjcovðΘÞjkwk is

bounded by Eq. (2) as [18–20,49]

Δ2q ≥
X
j;k

wjðF−1Þjkwk: ð4Þ

Note that F is a real, symmetric, positive semidefinite
matrix, and it need not be invertible in general. However, in
the case that F is not invertible, the estimation procedure
will only succeed if w has vanishing projection onto the
kernel of F . In that case, F−1 should be interpreted as the
inverse of F after projection onto the subspace spanned
by eigenvectors with nonzero eigenvalues [20]. Thus we
hereafter assume that F has been projected in this manner
and therefore is positive definite (as opposed to positive
semidefinite) and invertible. The bound in Eq. (4) is tight in
the sense that it is guaranteed to be saturable for some
choice of a measurement protocol, because the generators
n̂j commute with each other [16]. However, to obtain our
result, it will be useful to further bound the rhs of Eq. (4) by
something more easily computable for a general unitary U.
To this end, we use the Cauchy-Schwarz inequality to write

X
j;k

wjðF−1Þjkwk

X
l;m

wlF lmwm ≥ jwj4: ð5Þ

Defining Fw ≡P
j;kwjF jkwk, we then obtain the bound

Δ2q ≥
jwj4
Fw

: ð6Þ

Note that if we have at most n photons per mode after
applying the unitaryU, we canwriteFw ≤ n2

P
j;kjwjjjwkj ≤

n2, which for well-distributed weights (jwj2 ∼ 1=d) gives
Δ2q≳ 1=ðndÞ2. Since nd is the maximum total number of
photons, this coincides with the usual Heisenberg limit for
measuring a single phase shift. However, whether or not
Fw ∝ n2 can actually be achieved depends on the details
of the states jΨUi that a linear network can produce. As we
demonstrate below, this in turn depends on the types of
nonclassical states jψ ji that we have access to at the inputs.
Fisher information in linear-optical networks.—The

next step in bounding Δq is to obtain a bound on Fw in
terms of the 2d input states. If we denote the annihilation
operators for the 2d input (output) modes by aj (bj), then
the action of the network is described by the relation
b†j ¼

P
kUjka

†
k, where Ujk are the elements of a 2d × 2d

unitary matrix. Since the phase shift θj is applied to the
output mode bj, the quantum Fisher information matrix can
be computed by inserting the operators n̂j ¼ b̂†j b̂j into
Eq. (3). Rewriting all operators in terms of the input mode
operators and taking the expectation value in the initial
product state jΨi ¼⊗2d

j¼1 jφji, we obtain

F jk ¼ 4
X
l;m;r;s

UjlU�
jmUkrU�

ksðhâ†l âmâ†r âsi − hâ†l âmihâ†r âsiÞ:

ð7Þ

Later we will derive a bound on Fw that holds for arbitrary
separable input states, but it is useful to first consider the
simpler situation in which all modes are initialized in Fock
states, with the jth mode having photon number nj. In this
case Fw reduces to

Fw ¼ 4
X
j;k

X
r≠s

nsðnr þ 1ÞðUjswjU�
jrÞðUkrwkU�

ksÞ: ð8Þ

The restriction r ≠ s can be removed if we replace the
equality with “≤,” because the additional term given by
r ¼ s is non-negative. Defining Hermitian matrices S and
N such that Srs ¼

P
jUjswjU�

jr and N rs ¼ δrsnr, Eq. (8)
then takes the following compact form:

Fw ≤ 4Tr½NSðN þ 1ÞS�: ð9Þ

Standard trace inequalities [50,51] can now be used to write
Fw≤4

P
jeigsðN Þj½eigsðN Þjþ1�eigsðSÞ2j , where eigsðMÞ

is a list of the eigenvalues of the matrix M, sorted by
absolute value. The eigenvalues of N are clearly nj, and
because S is a unitary transformation of the matrix diagðwÞ,
it has eigenvalues wj. Therefore, remembering that
maxjjwjj ¼ 1=d, we have

Fw ≤ 4jnj2=d2: ð10Þ
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Plugging this bound on the quantum Fisher information
into Eq. (6) and taking the square root of both sides, we
obtain Eq. (1). As mentioned earlier, the most important
consequences of this bound are the following: (i) For
locally constrained resources—that is, when nj ≤ n such

that n that does not scale with d—we have Δq≳ 1=ðn ffiffiffi
d

p Þ;
thus, the bound proves that a linear-optical network
endowed with locally constrained resources cannot
improve upon the scaling of a classical scheme in which
the estimates of all d phases are made independently.
(ii) For globally constrained resources such that the total
number (N ¼ nd) of photons are all placed in a finite
number of input ports, and assuming the bound can still be
saturated, then Heisenberg scaling Δq ∼ 1=ðndÞ can be
achieved. With considerably more effort, the bound in
Eq. (1) can be generalized to the case of arbitrary separable
input states. However, before presenting this generaliza-
tion, we first give an explicit protocol that saturates the
above bound in case (ii), thereby obtaining Heisenberg
scaling for distributed metrology in a linear-optical network
by concentrating the resources in a few modes [52].
Explicit protocol for concentrated-resource states.—

We now show that Heisenberg scaling Δq ∼ 1=ðndÞ can
be achieved if the total number of photons N ¼ nd is split
evenly between just two input modes; i.e., jΨi ¼ jN=2i ⊗
jN=2i ⊗ j0i ⊗ � � � ⊗ j0i. The scheme can be viewed as a
generalization of the “twin-Fock-state” proposal in Ref. [2]
for the task of distributed quantum metrology. The basic
idea is to find a unitary transformationU that distributes the
input twin Fock state between the various modes in a way
that explicitly encodes the weights wj. Upon evolution
through the network in Fig. 1(b) and subsequent measure-
ment of an operator Ô, the sensitivity of estimating q can be
obtained through the standard error propagation,

Δq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hÔ2i − hÔi2

q

j∂hÔi=∂qj : ð11Þ

Here, the expectation values are taken with respect to the
state V̂ expð−iĤÞÛjΨi at the output of the network.
Choosing V ¼ U† [53] and measuring the observable
Ô ¼ jΨihΨj, which can be accomplished with photon-
number-resolving detectors at the 2d output ports, we
have hOi ¼ hO2i ¼ jhΨUje−iĤjΨUij2, which for small q
becomes

hÔi ≈ 1 − ðhΨUjĤ2jΨUi − hΨUjĤjΨUi2Þ: ð12Þ

By choosing Ui;1 ¼ Uiþd;1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffijwij=2

p
, and Ui;2 ¼

−Uiþd;2 ¼ wi=
ffiffiffiffiffiffiffiffiffiffi
2jwij

p
for i ¼ 1; 2;…; d, we can encode

each phase with its corresponding weight, obtaining

hÔi ≈ 1 −
NðN þ 2Þ

8
q2: ð13Þ

Plugging this result into Eq. (11), we obtain an uncertainty
in estimating q of

Δq ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NðN þ 2Þp ; ð14Þ

which exhibits Heisenberg scaling. Though we have used a
2d unitary matrix for estimating d phase shifts with d
reference ports, it is in fact possible to simplify the scheme
to include only one reference port while maintaining
Heisenberg scaling (compare Fig. 2 for an example
involving two phases). In implementing the scheme, we
require Fock-state inputs [54], a linear-optical network
[55,56], and photon-number-resolving detectors [57].
A general bound for arbitrary separable states.—

Equation (1) was derived assuming Fock-state inputs; here
we show that a similar bound can be derived for arbitrary
separable input states [Eq. (17) below]. Though this more
general bound depends on different specific properties
of the input states, it shares with Eq. (1) the important
characteristic that for fixed local resources, the minimal
value of Δq obeys the classical scaling ∼1=

ffiffiffi
d

p
.

For an arbitrary separable input state ρ, the correct way
to calculate the Fisher information depends on whether
external phase references are assumed to be available in the
measurement protocol [58]. Here we make no such
assumption, and therefore the Fisher information should
be computed with respect to a phase averaged state,

ϱ ¼ 1

2π

Z
2π

0

dθ expðiθN̂Þρ expð−iθN̂Þ; ð15Þ

where N̂ ¼ P
jn̂j and θ is a global phase. However,

because the Fisher information is convex and we need
only obtain an upper bound, it is sufficient to calculate an

FIG. 2. Illustration of a simple linear network (consisting of
only beam splitters) that implements the unitary U described for
the twin-Fock-state approach to measuring q with Heisenberg
scaling. Here we can measure q ¼ w1θ1 þ w2θ2 for w1 > 0 and
w2 > 0 with precision 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nðnþ 1Þp

, using only a single
reference port. The input state is jn; n; 0i, and the ratio above
each beam splitter is the transmission/reflection rate. The
“classical” estimation strategy for measuring q yields the pre-
cision 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 2

p Þ, a factor of ffiffiffi
2

p
larger for large n, using the

same total number of photons.
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upper bound on F for an arbitrary pure product state jΨi,
from which we can infer an upper bound on F for the
separable density matrix ϱ. Deriving a bound for an
arbitrary pure state is still rather complex, and we defer
a detailed analysis to the Supplemental Material [44]. Here,
we simply quote the final result,

Fw ≤
A
d
þ Bjwj2: ð16Þ

We note that this bound is not tight (that is, it cannot
necessarily be achieved). In Eq. (16), A and B depend only
on moments of the input states (specifically, hâji, hâ†j âji,
hâjâji, hâ†j â†j âji, and hâ†j â†j âjâji). Their exact form can be
found in the Supplemental Material [44], but for our
purposes it suffices only to know that they obey the bound
Aþ B < C2maxjmj, with mj ≡ hða†jajÞ2i and C ¼ 20.
Recalling that for well-distributed weights we have
jwj2 ∼ 1=d, plugging Eq. (16) into Eq. (6), and defining
hn2imax ≡maxjmj, we obtain

Δq ≥
1

C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dhn2imax

p : ð17Þ

If the resources are constrained locally rather than globally,
such that hn2imax is independent of d, it follows that
quantum metrology using linear-optical networks and
separable input states cannot improve upon the classical
scaling ∼1=

ffiffiffi
d

p
.

In addition to elucidating the resource requirements for
quantum metrology with linear networks, the above results
are also interesting from the point of view of quantifying
nonclassicality [59]. Linear networks have the ability to
reversibly transform nonclassical but unentangled states
into entangled ones, thus providing a route to quantifying
nonclassicality using measures of entanglement [28–30].
Our results suggest that it may be useful to refine this
approach by using more stringent operational measures of
entanglement such as the ability of the entangled state to
realize quantum-enhanced metrology. These considerations
suggest that it may be interesting to investigate how a
quantitative measure of nonclassicality might be obtained
via quantum metrology and more generally to explore the
classes of states that are preserved under linear networks.
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