

MCDC-Star: A White-Box Based Automated
Test Generation for High MC/DC Coverage

Linghuan Hu and W. Eric Wong*
Department of Computer Science

University of Texas at Dallas, USA
{linghuan.hu, ewong}@utdallas.edu

D. R. Kuhn and R. N. Kacker
National Institute of Standards and Technology, USA

{kuhn, raghu.kacker}@nist.gov

Abstract—The US Federal Aviation Administration requires

complete modified condition/decision coverage (MC/DC) for the
most critical (level A) software. Complete MC/DC is a gold
standard for thoroughness of testing. However, it is challenging to
generate test cases to achieve high MC/DC as it requires testers to
manually conduct complex control flow analysis. In this paper, we
propose MCDC-Star, a white-box based automated test case
generation technique for achieving high MC/DC coverage
criterion using greedy-based symbolic execution. By analyzing the
control-flow of the subject program, MCDC-Star generates test
cases that can improve the MC/DC efficiently and effectively. An
experiment using three industrial programs was conducted, and
the results show its high effectiveness and efficiency.

Keywords—test generation, MC/DC, symbolic execution,
software testing

I. INTRODUCTION
To effectively and efficiently detect bugs in software, the

Federal Aviation Administration requires software venders to
use modified condition/decision coverage (MC/DC), which was
first defined in DO-178B [1] and updated in DO-178C [2], to
ensure level A (most critical) software is adequately tested. Such
software has stringent requirements regarding safety because its
anomalous behavior could result in catastrophic consequences,
including property damage and human casualties. Study [3] has
shown that MC/DC can help testers detect more bugs, but it also
significantly increases the cost of testing, up to seven times the
cost of other developmental tasks. This is because to achieve
high MC/DC, testers are required to manually conduct complex
control flow analysis to generate the test input values, which can
be extremely difficult.

Recently, both black-box based techniques, such as search-
based test generation, combinatorial testing, and test generation
using genetic algorithms, and white-box based techniques, such
as test generation using symbolic execution (also referring to
concolic execution and dynamic symbolic execution), have been
proposed. In general, black-box based techniques are easy to use
and can generate test cases at a low cost. However, it is very
unlikely that black-box techniques will deliver outstanding
performance, as some specific execution paths required by
MC/DC can be only executed using one or several specific input
values. In addition, the effectiveness of black-box techniques
relies on the testers’ knowledge to reduce the search domain,
which can negatively impact their effectiveness in real-world
settings.

To address this challenge, we propose MCDC-Star, which
automatically generates test cases to achieve high MC/DC

coverage using greedy-based symbolic execution. An
experiment using three industrial programs is conducted to
evaluate the efficiency of the proposed approach and the
effectiveness of the test cases generated by MCDC-Star against
the test cases generated by the random method. The experiment
results show that MCDC-Star outperforms the random method.
Currently, MCDC-Star only works for C programs.

The rest of the paper is organized as follows: Section II
introduces the necessary background. In Section III, the details
of MCDC-Star and several running examples are presented to
help understand the approach. Experiment setup and the results
of the case studies are presented in Section IV. Section V
addresses threats to the validity of our approach. Section VI
describes the related work. The conclusions and future work are
presented in Section VII.

II. BACKGROUND
In this section, we give a brief introduction to the four major

topics that are necessary for understanding MCDC-Star: 1)
MC/DC definition and practical interpretation; 2) MC/DC
measurement; 3) program instrumentation; and 4) test
generation using Symbolic Execution. Hereafter, MC/DC
coverage and MC/DC will be used interchangeably. In addition,
test case and test input values will also be used interchangeably
in the remainder of the paper.

A. MC/DC Definition and Practical Interpretation
MC/DC is defined in DO-178C as shown below:

1) Every point of entry and exit in the program has been
invoked at least once;

2) Every condition in a decision in the program has taken
on all possible outcomes at least once;

3) Each condition has been shown to affect that decision
outcome independently;

4) A condition is shown to affect a decision's outcome
independently by (1) varying just that condition while
holding fixed all other possible conditions or (2)
varying just that condition while holding fixed all other
possible conditions that could affect the outcome.

 if (A && B && C && D) (1)

Consider the above decision (1) with four conditions A, B,
C, and D. A condition combination c is a set of evaluation results
of the conditions of that decision. For example, (T, T, T, T) can
be a condition combination for decision (1). An independence
pair [4] (ip) is a pair of condition combinations that shows the

* Corresponding author: Prof. W. Eric Wong

102

2018 5th International Conference on Dependable Systems and Their Applications (DSA)

978-1-5386-9266-0/18/$31.00 ©2018 IEEE
DOI 10.1109/DSA.2018.00027

Authorized licensed use limited to: Boulder Labs Library. Downloaded on September 21,2020 at 15:50:59 UTC from IEEE Xplore. Restrictions apply.

independent effect of a condition. For example, ip1:(c1, c2),
ip2:(c1, c3), ip3:(c1, c4), and ip4:(c1, c5) as shown in TABLE 1 are
the independence pairs for conditions A, B, C, and D,
respectively. If a set of independence pairs can show the
independence effects of all the conditions, this set is called an
adequate set (AS). Therefore, TABLE 1 shows an adequate set
AS1 for decision (1).

To cover decision (1) with respect to (w.r.t.) MC/DC, we can
execute the program using any test input values that can exercise
an AS of decision (1). Notice that a decision might have multiple
different adequate sets. For example, the c2 of the ip1 can be
replaced by c6. This is allowed by the definition of MC/DC, as
the false value of condition D does not affect the decision
outcome, which is also called masking MC/DC interpretation
[5].

TABLE 1. AN ADEQUATE SET AS1 FOR DECISION (1)

 A B C D Decision
Outcome

c1 T T T T T
c2 F T T T F
c3 T F T T F
c4 T T F T F
c5 T T T F F
c6 F T T F F

We also include the short-circuit evaluation [6] in the
MC/DC measurement, since most of today’s programming
languages evaluate decisions with short-circuit evaluation.
Short-circuit evaluation is an evaluation strategy where not
every condition in a decision needs to be evaluated to determine
the decision outcome.

For example, consider the decision (1) and c6:(F, T, T, F).
Without the short-circuit evaluation, each condition needs to be
evaluated to determine the outcome of the decision. With short-
circuit evaluation, however, only condition A needs to be
evaluated as it is sufficient to determine the outcome of the
decision to be false without evaluating the rest of the conditions.
As a result, TABLE 2 shows a simplified AS2 of decision (1),
where N/A means that the condition is not evaluated due to the
short-circuit evaluation, and it can be either true or false. The
independence pairs of AS2 are, ip4:(c1, c5), ip5:(c1, c7), ip6:(c1, c8),
and ip7:(c1, c9).

TABLE 2. A SIMPLIFIED AS2 OF DECISION (1)

 A B C D Decision
Outcome

c1 T T T T T
c5 T T T F F
c7 F N/A N/A N/A F
c8 T F N/A N/A F
c9 T T F N/A F

B. MC/DC Measurements
To apply MC/DC in real-world settings, it is important to

measure the percentage of MC/DC since not every decision can
be adequality tested w.r.t MC/DC. The adequate set (AS)-based
MC/DC measurement is adopted in some tools [7],[8] that are
widely used in the industry. For a decision with an adequate set
AS, this approach measures its MC/DC using the following
equation:

no. of exercised condition combinations in
MC/DC

no. of all condition combinations in

AS

AS
=

The problem of the AS-based approach is that it might
overestimate or underestimate the contributions of some
condition combinations. For example, the condition
combination c1 included in ip4, ip5, ip6, and ip7 shows the
independent effects of four conditions A, B, C, and D of decision
(1), where c7, c8, c9, and c5 only show the independent effect of
A, B, C, and D, respectively. Therefore, c1 contributes more than
each of c7, c8, c9, and c5. However, the AS-based approach will
measure the MC/DC of c1 as 20%, which significantly
underestimates its contribution. Similarly, the AS-based
approach will measure the MC/DC of c7, c8, c9, or c5 each as
20%, which overestimates their contributions.

To address this issue, we propose the branch independent
effect (BIE)-based MC/DC approach. The BIE-based approach
measures MC/DC by directly checking whether the independent
effects of the branches of each condition are covered. More
specifically, it treats a condition as two individual branches (a
true branch and a false branch), where each branch has its own
independent effect on the whole decision.

Under the short-circuit evaluation, for each branch, if it is
executed and its result is not masked by other conditions, it must
show the independent effect of the decision outcome.
Identifying the branches that show the independent effects can
be done using the abstract syntax tree (AST) of that decision with
the following steps: 1) from the condition node (the node that
represents a complete condition) to the root node, each node will
be labeled with true or false according to its evaluation result; 2)
starting from the root of AST, use recursive Algorithm 1 to
identify the conditions that do not show the independent effects;
and 3) the conditions that are executed and not masked show the
independent effects.

Algorithm 1
FindMaskedAndNotExecuted(AST)
1 if AST.operator is && then
2 if AST.leftChild.value is false then
3 NotExecuted(AST.rightChild)
4 FindMaskedAndNotExecuted (AST.leftChild)
5 else
6 if AST.rightChild.value is false then
7 Mask(AST.leftChild)
8 FindMaskedAndNotExecuted (AST.rightChild)
9 else
10 FindMaskedAndNotExecuted (AST.leftChild)
11 FindMaskedAndNotExecuted (AST.rightChild)
12 if AST.operator is || then
13 if AST.leftChild.value is true then
14 NotExecuted (AST.rightChild)
15 FindMaskedAndNotExecuted(AST.leftChild)
16 else
17 if rightChild.value is true then
18 Mask (AST.leftChild)
19 FindMaskedAndNotExecuted(AST.rightChild)
20 else
21 FindMaskedAndNotExecuted (AST.leftChild)
22 FindMaskedAndNotExecuted (AST.rightChild)

Figure 1. Algorithm to identify masked and not-executed condition(s)

103

Authorized licensed use limited to: Boulder Labs Library. Downloaded on September 21,2020 at 15:50:59 UTC from IEEE Xplore. Restrictions apply.

 if ((A || B) && (C || D)) (2)

For example, Figure 2 is the syntax tree of decision (2) as
shown above, which is exercised by condition combination: (T,
T, F, T).

Figure 2. The syntax tree of decision (2)

By running Algorithm 1, condition B is not executed because
of condition A, and condition C is masked by condition D. As a
result, the true branch of condition A and the true branch of
condition D independently affect the decision outcome. In this
case, we say the true branch of condition A and the true branch
of condition D are covered.

Using the BIE-based approach, the MC/DC of a decision is
measured using the following equation:

no. of covered branches
MC/DC

total no. of branches
=

The following decision (3) is another example that
demonstrates why the BIE-based approach is more accurate.
Consider the decision (3) and the AS3 shown in TABLE 3,

 if (A && B && C) (3)

TABLE 3. AN ADEQUATE SET AS3 OF DECISION (3)

 A B C Decision
Outcome

c10 T T T T
c11 F N/A N/A F
c12 T F N/A F
c13 T T F F

The AS-based approach measures the MC/DC of c10 as 25%,
which underestimates its contribution. The BIE-based approach,
however, measures the MC/DC of c10 as 50% because it shows
the independent effects of the true branches of conditions A, B,
and C. Similarly, the AS-based approach overestimates the
MC/DC contributions of c11, c12, and c13 by reporting 25% for
each of them, while the BIE-based approach reports 16.67% for
each of them. Therefore, the BIE-based approach measures
MC/DC more accurately than the AS-based approach.

C. Program Instrumentation

Automated MC/DC measurement is very important for
MCDC-Star. To measure MC/DC for a program, we need the
boolean value of each condition when its decision is executed.
Unfortunately, we are not aware of any existing tools that satisfy
our needs. Therefore, we designed our MCDC-Star to
automatically perform program instrumentation w.r.t. MC/DC.
MCDC-Star uses instrumentation variables to save the value of

each condition when it is evaluated. Consider the following
decision (4) with three conditions and two boolean operators.

 if ((a == 3 || foo(b)) && c > 200) (4)

MCDC-Star constructs the syntax tree of decision (4), adds
instrumentation variables iv, and converts it to decision (5) as
shown below.

 if ((iv1 = (a==3) || iv2 = (foo(b))) && iv3 = (c>200)) (5)

In addition to the instrumentation variables, we also need to
save these values of the instrumentation variables to trace files
by adding two saving functions for each decision. For an if
statement, MCDC-Star adds one saving function before the first
statement of the true branch and another before the first
statement of the false branch. A similar process is also applied
to for, while, and do-while decisions. Figure 3 shows the code
segment before and after the instrumentation.

1. if (a > b && c < a)
2. max = a;
3. else
4. max = b;
5.
6. for (a; a > y; a++)
7. foo(x)
8.
9. while (b < z)
10. foo(x)
11.
12. do
13. {
14. foo(x)
15. } while (c < z);

(a) Before instrumentation

1. if (iv1 = (a > b) && iv2 = (c < a))
2. {
3. save (iv1, iv2)
4. max = a;
5. }
6. else
7. {
8. save (iv1, iv2)
9. max = b;
10. }
11.
12. for (a; iv1 = (a > y); a++)
13. {
14. save(iv1)
15. foo(x)
16. }
17. save(iv1)
18.
19. while (b < z)
20. {
21. save(iv1)
22. foo(x)
23. }
24. save(iv1)
25.
26. int first = 1;
27. do
28. {
29. if (first != 1)
30. {
31. save(iv1);
32. first = 0;
33. }

104

Authorized licensed use limited to: Boulder Labs Library. Downloaded on September 21,2020 at 15:50:59 UTC from IEEE Xplore. Restrictions apply.

34. foo(x)
35. } while (iv1 = (c < z));
36. save(iv1)

(b) After instrumentation
Figure 3. MC/DC Instrumentation

D. Test Generation Using Symbolic Execution
The symbolic execution was first introduced in the study by

J. C. King [9], which proposes a new method of program
analysis and test generation. In general, when a program is
executed, the symbolic executor can substitute some variables
of the program with symbolic variables. The symbolic variable
not only stores the value but also maintains the symbolic
expression of that variable, which is updated along with the
program execution. During the program execution, the symbolic
executor will construct a path constraint (pc), which is a boolean
expression, at each decision point, e.g., a condition in a decision
(if, for, while, etc.). The pc is constructed using the symbolic
expressions of the symbolic variables that are related to this
decision point. When the program execution finishes, a boolean
formula PC of the execution path is constructed by connecting
all pci using and operator (e.g., PC = pc1 pc2 … pcn). Next,
a constraint solver tries to solve this PC to generate the
corresponding input values. If the generation is successful, we
then obtain a set of input values for this specific execution path.
If it is not successful, then this path is considered an infeasible
path. Notice that the unsuccessful generation for a certain path
does not guarantee the infeasibility of this path, as some pci of
PC are neither too difficult to be solved nor supported by the
solver.

Figure 4 shows a C function that determines whether a given
character is in the alphabet or not.

1. int check_alphabet (char c)
2. {
3. if ((c >= ‘a’ && c <= ‘z’) || (c >= ‘A’ && c <= ‘Z’))
4. return 1;
5. else
6. return 0;
7. }

Figure 4. A function that checks whether a given character is in the alphabet

Figure 5 shows the code structure of the function
check_alphabet in assembly code view. The if decision shown
in line 3 of Figure 4 is represented by the code blocks 2, 3, 4,
and 5. TABLE 4 shows the seven possible execution paths of
check_alphabet, their corresponding PC, and a possible
generated input for each PC. A traditional symbolic executor

usually explorers all the paths of the program by negating every
pc using a DFS or BFS-based algorithm, e.g, SAGE [10].
However, exploring every path using symbolic execution in
real-world settings might not be feasible, as it suffers from the
path explosion problem [11].

Figure 5. check_alphabet function in assembly code view

TABLE 4. SEVEN POSSIBLE PATHS,
THEIR CORRESPONDING PC, AND A POSSIBLE INPUT

Execution Path PC Input

p1 1, 2, 3, 6 c >= ‘a’ c <= ‘z’ ‘b’

p2 1, 2, 4, 5, 6 ¬ (c >= ‘a’) c >= ‘A’
 c <= ‘Z’ ‘B’

p3 1, 2, 3, 4, 5, 6 c >= ‘a’ ¬ (c <= ‘z’)
 c >= ‘A’ c <= ‘Z’ N/A

p4 1, 2, 4, 7 ¬ (c >= ‘a’) ¬ (c >= ‘A’) ‘#’

p5 1, 2, 3, 4, 7 c >= ‘a’ ¬ (c <= ‘z’)
 ¬ (c >= ‘A’) N/A

p6 1, 2, 4, 5, 7 ¬ (c >= ‘a’) c >= ‘A’
 ¬ (c <= ‘Z’) ‘]’

p7 1, 2, 3, 4, 5, 7 c >= ‘a’ ¬ (c <= ‘z’)
 c >= ‘A’ ¬ (c <= ‘Z’) ‘}’

105

Authorized licensed use limited to: Boulder Labs Library. Downloaded on September 21,2020 at 15:50:59 UTC from IEEE Xplore. Restrictions apply.

Figure 6. An overview of MCDC-Star

III. OUR TECHNIQUE
In this section, we will explain the details of the proposed

MCDC-Star technique and give several running examples along
with descriptions to help understand how it works. Figure 6
shows an overview of how MCDC-Star generates test cases for
a C program in six steps.

The overall test generation process can be described as
follows. Step 1 is to instrument the subject program and compile
it to get the instrumented executable. The instrumented
executable will be used in Step 5 for the test execution later. We
also compile the subject program without instrumentation to
obtain its executable in Step 2. In Step 3, the executable and the
coverage information are then used to generate a desired path
direction, which will be used to guide the symbolic execution in
Step 4. A greedy-based symbolic execution will be performed in
Step 4 to try to generate the test input values. Once the test input
values are successfully generated, we execute against the
instrumented executable generated in Step 1 and update the
MC/DC coverage information. Steps 3, 4, 5, and 6 are conducted
repeatedly until no more test input values can be successfully
generated. We now explain the details of each step using a
sample C program running_example as shown in Figure 7.
Notice that, although for demonstration purposes the
running_example does not contain any loops, all the analysis
presented in the following sections can be applied to for, while,
and do-while in a similar manner.

Figure 7. The source code of running_example

A. Step 1: Program Instrumentation and Compilation
MCDC-Star needs to keep track of the MC/DC coverage

information of each decision of the program to generate the test
input values that can improve the MC/DC effectively. To do
this, we instrument the subject program and compile it using
GCC, the gnu compiler [12], to generate the instrumented
executable, which will be used in Step 5. Figure 8 shows the
source code of the running_example after the instrumentation.

Figure 8. Source code of running_example after the instrumentation

106

Authorized licensed use limited to: Boulder Labs Library. Downloaded on September 21,2020 at 15:50:59 UTC from IEEE Xplore. Restrictions apply.

B. Step 2: Compilation
In addition to the instrumented executable generated in Step

1, we also compile the subject program using GCC with its
debug option “-g” enabled. The debug option is required as it
will generate additional debug information, which will be
analyzed to generate the path direction in Step 3. The generated
executable will also be used for symbolic execution later on in
Step 4.

C. Step 3: Path Direction Generation
The key of generating test cases that can effectively improve

the MC/DC of the subject program using symbolic execution is
to identify the specific path that can improve the MC/DC
effectively. Suppose a subject program has in total n execution
paths, P = {p1, p2, …, pn}. Theoretically, we can generate and
execute test input values using symbolic execution to improve
MC/DC of a subject program in the following optimal way: a)
prioritize these execution paths w.r.t. their MC/DC
improvements in a descending order; b) run the symbolic
executor to generate the input values of execution path with the
highest rank (suppose that the symbolic executor can generate
input values for all execution paths); c) execute the generated
input values; and then repeat a), b), and c) until the MC/DC
cannot be further improved. However, due to memory and
computation limitations, this is not feasible, as there might be an
overwhelmingly large number of execution paths, which can
make identifying all execution paths of a program and the path
prioritization impossible. Furthermore, in real-world settings,
this approach might be useless if its computation cost (w.r.t. time
or computation power) is unacceptable.

To overcome this challenge, MCDC-Star conducts the
control-flow analysis to identify the path directions of each
decision and lets the symbolic executor only generate input
values for those directions that can improve MC/DC effectively.
We will elaborate on the path direction generation process using
running_example, as shown in Figure 7.

For a program, we need to construct the path direction PD =
{i = 1…n, k = 1…m | pdi,k}, where i represents the ith decision
in the program and k represents the ith decision’s kth condition
combination. Each pdi,k = (ci,k, mcdci,k, aesi,k) is a three tuple,
where ci,k, mcdci,k, and aesi,k represent the ith decision’s kth
condition combination, the corresponding MC/DC
improvement, and the assembly code execution sequence,
respectively. We will now present the details on how pdi,k is
constructed.

First, ci,k and mcdci,k can be generated using the BIE-based
MC/DC measurement approach. running_example has the
following two if decisions (6) and (7) at lines 7 and 8.

 if (a < 10 && b > 100) (6)

 if (c == 8 || a > 15) (7)

Initially, running_example is not executed by any input
values; therefore, the MC/DC of each decision in
running_example is 0.0%. MCDC-Star computes each
condition combination’s MC/DC improvement for each
decision to obtain mcdci,k,, as shown in TABLE 5.

TABLE 5. CONDITION COMBINATIONS AND THEIR MC/DC IMPROVEMENTS

Decision 1: if (a < 10 && b > 100)

Condition Combination MC/DC
Improvement Will Cover Covered

Branches

c1,1 T T 50.0% 1st: True
2nd: True N/A

c1,2 T F 25.0% 2nd: False N/A

c1,3 F N/A 25.0% 1rd: False N/A

Decision 2: if (c == 8 || a > 15)

Condition Combination MC/DC
Improvement Will Cover N/A

c2,1 T N/A 25.0% 1st: True N/A

c2,2 F T 25.0% 2nd: True N/A

c2,3 F F 50.0% 1st: False
2nd: False N/A

Next, aesi,k can be generated by analyzing the assembly
code, as shown in Figure 9. The assembly code is generated by
objdump [13] from the executable that we obtained from Step 2.

Figure 9. Assembly code of running_example

The generated assembly code contains the detailed assembly
execution information, where each condition of a decision can
be mapped to a jump instruction. For each decision, we only
need the jump instructions and the address of the first instruction
of the true and false branch of the decision. By parsing this
assembly code, we can obtain the mapping shown in TABLE 6.

TABLE 6. EACH CONDITION AND ITS
CORRESPONDING JUMP INSTRUCTIONS

Branch Address Assembly Code

Decision 1: if (a < 10 && b > 100)

a < 10 400542 jg 400560

b > 100 400548 jle 400560

107

Authorized licensed use limited to: Boulder Labs Library. Downloaded on September 21,2020 at 15:50:59 UTC from IEEE Xplore. Restrictions apply.

First Instruction
of True Branch 40054a Not Interested

First Instruction
of False Branch 400560 Not Interested

Decision 2: if (c == 8 || a > 15)

c == 8 40054e: je 400556

c > 15 400554: jle 400560

First Instruction
of True Branch 400556 Not Interested

First Instruction
of False Branch 400560 Not Interested

A jump instruction, such as jg or jle, has a destination
address, which represents the next instruction’s address if the
jump instruction’s condition is satisfied. If the jump
instruction’s condition is not satisfied, the execution will simply
move to its next instruction. Although whether a jump
instruction’s condition can be satisfied or not depends on the
actual execution result, a jump instruction’s condition will be
satisfied if the result of its corresponding condition can short-
circuit other conditions (except for the final jump instruction).
Hence, the execution sequence that is represented by the
instruction address can be constructed using this rule. For the
final jump instruction, if the decision outcome is true, we append
the address of the true branch’s first instruction to the execution
sequence, and vice versa.

For example, if both conditions of the Decision 1 shown in
TABLE 6 are true, the conditions of both jump instructions will
not be satisfied because no condition can short-circuit other
conditions. Therefore, the execution sequence will be (40053e

 400542 400544 400548), where NI represents the
instructions in which we are not interested. Since the decision
outcome is true, the address of the first instruction of the true
branch 40054a is appended to the execution sequence. As a
result, the execution sequence will be (40053e 400542
400544 400548 40054a).

If the first condition is false, it will short-circuit the second
condition. Therefore, the condition of the jump instruction of the
first condition at 400542 will be satisfied. Hence, the execution
sequence will be (40053e 400542 400560). Because the
decision outcome is false and 400560 is already the address of
the first instruction of the decision’s false branch, there is no
need to append 400560 at the end of the execution sequence.

By conducting this analysis, MCDC-Star maps ci,k to the
corresponding execution sequence asei,k. At this point, we now
obtain the path directions, PD = {i = 1…n, k = 1…m | pdi,k =
(ci,k, mcdci,k, aesi,k)} of each decision. TABLE 7 shows the PD of
running_example.

TABLE 7. CONSTRUCTED PD OF RUNNING_EXAMPLE

Condition
Combination

MC/DC
Improvement

Assembly Code
Execution Sequence

Decision 1: if (a < 10 && b > 100)

c1,1 T T mcdc1,1 50.0% aes1,1

40053e 400542
400544 400548

40054a

c1,2 F N/A mcdc1,2 25.0% aes1,2
40053e 400542

400560

c1,3 T F mcdc1,3 25.0% aes1,3
40053e 400542
400544 400548

400560

Decision 2: if (c == 8 || a > 15)

c2,1 T N/A mcdc2,1 25.0% aes2,1
40054a 40054e

400556

c2,2 F T mcdc2,2 25.0% aes2,2
40054a 40054e
400550 400554

400556

c2,3 F F mcdc2,3 50.0% aes2,3
40054a 40054e
400550 400554

400560

D. Steps 4, 5, and 6
Once we obtain the PD of the subject program from Step 3,

we now can generate the test input values for the subject
program. Before we start the symbolic execution, MCDC-Star
uses greedy strategy to create an assembly execution sequence
set AESj, where j represents the jth symbolic execution. AESj
consists of aesi,k from each pdi,k that has the highest mcdci,k. For
example, the AES1 of running_example = {aes1,1, aes2,3} =
{(40053e 400542 400544 400548 40054a), (40054a

 40054e 400550 400554 400560)}. In the actual
symbolic execution, the AESj will be used to guide the symbolic
executor to explore the path directions that have the highest
MC/DC improvement of each direction.

For the symbolic execution, MCDC-Star uses Triton [14], a
highly customizable dynamic symbolic executor to generate
input values. Notice that different symbolic executors can be
easily integrated with MCDC-Star.

Figure 10. Overview of Step 4

Figure 10 shows the overview of Step 4. First, Triton starts
the symbolic execution using the program executable and initial
input values (initial input values can be either fixed or randomly

108

Authorized licensed use limited to: Boulder Labs Library. Downloaded on September 21,2020 at 15:50:59 UTC from IEEE Xplore. Restrictions apply.

generated). When the symbolic execution is completed, Triton
analyzes the execution path to generate its corresponding path
constraint PCi = {i = 1…n, k = 1…m | pci,k = (dai,k, bei,k, bnei,k)},
where i represents the ith iteration of the current symbolic
execution and dai,k, bei,k, and bnei,k represent the address of the
kth decision point, the address of the corresponding branch that
was executed after the dai,k, and the branch that was not
executed, respectively. For a pci,k, if the bei,k is not the desired
execution direction, we can swap the bei,k with bnei,k so that we
can use solver to generate test input values that will execute
bnei,k.

For example, in the first symbolic execution of
running_example, if test input values (a = 0, b = 0, c = 8) are
used, the collected PC1 will be {pc1,1(400542, 400544, 400560),
pc1,2(400548, 400560, 40054a)}. As we mentioned previously,
we want to generate the input values that can execute the
execution sequences with the highest MC/DC improvements,
which is indicated by the AES1 = {aes1,1(40053e 400542
400544 400548 40054a), aes2,3(40054a 40054e
400550 400554 400560)}. Therefore, we check PC1 with
AES1 to see whether each be is our desired execution direction
or not. In this example, pc1,1 indicates that the actual execution
after 400548 went to the instruction at 400560, which does not
match the execution sequence aes1,1 of AES1. Hence, we modify
the pc1,2 to pc1,2’ (400548, 40054a, 400560), and then we obtain
our new PC1’ = {pc1,1(400542, 400544, 400560), pc1,2’(400548,
40054a, 400560)}.

Next, Triton uses constraint solver to solve the PC1’ and gets
generated input values (a = 5, b = 150, c = 8). We then use the
input values (a = 5, b = 150, c = 8) to continue the next iteration
of the symbolic execution, which will return a PC2 =
{pc2,1(400542, 400544, 400560), pc2,2(400548, 40054a,
400560), pc2,3 (40054e, 400556, 400550)}. By checking the PC2
with AES1 again, we can construct a new PC2’ = {pc2,1(400542,
400544, 400560), pc2,2(400548, 40054a, 400560),
pc2,3’(40054e, 400550, 400556)}. A new input (a = 5, b = 150,
c = 0) can be solved and generated by the constraint solver.

At this point, if we execute the input values (a = 5, b = 150,
c = 0) and check the obtained PC3, we will observe that no more
execution sequences can be solved. Hence, we can stop Step 4
and move on to Step 5 to conduct the actual test execution.

In Step 5, we execute the generated input values (a = 5, b =
150, c = 0) and then update the MC/DC of running_example.
We achieve 50% MC/DC in Step 6 (four covered independent
effects divided by eight independent effects in total), as c1,1 and
c2,3 are covered. Once Step 6 is complete, we then return to Step
3 to obtain a new PD, followed by Steps 4, 5, 6, and so on. Steps
3, 4, 5, and 6 will be conducted repeatedly until the MC/DC
cannot be further improved.

Although the major steps of MCDC-Star have been
presented, there are two issues we need to overcome to ensure
the test input values can be generated successfully. The first
issue is that the symbolic execution using the presented greedy
strategy might not be able to reach some decisions. For example,
consider that we have finished the first three symbolic execution
of running_example, and we are about to start the fourth
symbolic execution. After the first three executions, we already

covered all the condition combinations of decision 1 and the c2,3
of decision 2. The AES4 will be {aes2,1(40054a 40054e
400556)}, which contains no information for decision 1.
Because decision 2 is in the true branch of decision 1, the initial
input values cannot take the execution path to the true branch of
decision 1. Therefore, decision 2 will not be reached.

To address this issue, MCDC-Star will check the current PC
to determine whether we have reached any decision points that
are in the AES. If the result is false and AES is not null, we will
combine the current AES with every previous AES and start the
symbolic execution again until we can reach some decision
points in the AES. For example, if the initial input values of the
fourth symbolic execution are (a = 0, b = 0, c = 8), the PC4 will
be {pc4,1(400542, 400544, 400560), pc4,2(400548, 400560,
40054a)}. MCDC-Star detects that no decision points in AES4
are in PC4; therefore, it then combines the AES1 with AES4 to
generate AES4’ = (aes1,1(40053e 400542 400544
400548 40054a), aes2,1(40054a 40054e 400556)). As a
result, the symbolic execution will reach decision 2 and
generate the corresponding input values.

Another issue is that if a condition combination has the highest
MC/DC improvements but cannot be solved due to constraint
conflicts, the symbolic execution might end up with an infinite
loop. For example, consider that we have finished the first four
symbolic executions of running_example and are about to start
the fifth symbolic execution. MCDC-Star will pick c2,2 to
construct AES5. The AES5 is obviously not solvable as it
requires decision 1 and the second condition of decision 2, as
shown below, to be true at the same time.

a < 10 && b > 100 && a > 15

In this simple example, we know that the constraint conflict
is due to a < 10 and a > 15. However, in real-world settings, it
is very difficult to analyze these constraint conflicts, as they
require tremendous data-flow analysis. However, if we do not
address the constraint conflict issue, the MC/DC might not be
improved effectively, or we can even end up in a dead loop, as
MCDC-Star will select this c2,2 again. To address this, MCDC-
Star will try to solve and generate the input values using the
intermediate constructed PC whenever a swap of be and bne is
conducted. If an intermediate PC cannot be solved, we compare
this intermediate PC with its previous version to identify the last
changed pci,k. Then, we trace back to its corresponding condition
combination that cannot be solved and add it to a blacklist, so it
will be ignored in future symbolic executions.

IV. CASE STUDIES

A. Subject Programs
We conducted our case studies using three industrial

programs. The first program is utf8toutf16 [15], which converts
a utf8 encoding to a utf16 encoding. The second program is tcas
[16], a well-known traffic collision avoidance system. The third
program, Photo Editing Line (PEL) [17], is a constraint
verification module of a customization program for a photo
editing software. TABLE 8 shows the line of code and number of
decisions of each subject program.

109

Authorized licensed use limited to: Boulder Labs Library. Downloaded on September 21,2020 at 15:50:59 UTC from IEEE Xplore. Restrictions apply.

TABLE 8. INFORMATION OF THE THREE SUBJECT PROGRAMS

Subject Programs

utf8toutf16 tcas PEL

LOC 70 197 188

No. of
Decisions 7 15 14

B. Experiment Setup
We first evaluate the effectiveness of MCDC-Star by

measuring the cumulative MC/DC achievement after executing
the ith test case generated by MCDC-Star versus a random
method. For each subject program, if MCDC-Star generates n
test cases (the generated test cases by MCDC-Star are
deterministic), we also stop the random method after executing
nth test cases to conduct a fair comparison. In addition, to
remove any potential bias, we independently run the random
method 50 times and compare their average results with MCDC-
Star.

(a) utf8toutf16

(b) tcas

(c) PEL

Figure 11. Comparison between the random method (average score) and MCDC-Star w.r.t. MC/DC achievement

TABLE 9. THE CUMULATIVE MC/DC COVERAGE ACHIEVEMENTS OF
RANDOM METHOD AND MCDC-STAR AFTER EXECUTING EACH GENERATED TEST CASE

 utf8toutf16 tcas PEL
Random MCDC-Star Random MCDC-Star Random MCDC-Star

t1 23.27% 13.64% 11.50% 29.69% 3.16% 37.00%
t2 39.00% 27.27% 17.97% 35.94% 6.18% 45.00%
t3 44.45% 40.91% 21.72% 40.62% 7.74% 48.00%
t4 49.63% 54.55% 26.88% 42.19% 9.30% 52.00%
t5 53.18% 68.18% 30.56% 62.50% 10.80% 57.00%
t6 55.91% 77.27% 32.84% 76.56% 12.22% 58.00%
t7 - - 34.28% 79.69% 13.12% 62.00%
t8 - - 36.56% 84.38% 13.88% 66.00%
t9 - - - - 14.86% 68.00%
t10 - - - - 16.10% 69.00%
t11 - - - - 17.16% 70.00%
t12 - - - - 17.88% 71.00%
t13 - - - - 18.62% 72.00%
t14 - - - - 19.34% 73.00%
t15 - - - - 20.52% 74.00%
t16 - - - - 21.18% 75.00%

TABLE 10. THE COMPARISON BETWEEN THE HIGHEST MC/DC ACHIEVEMENTS OF MCDC-STAR

AND THE MC/DC ACHIEVEMENTS OF RANDOM METHOD AFTER EXECUTING 100 TEST CASES
utf8toutf16 tcas PEL

Random MCDC-Star Random MCDC-Star Random MCDC-Star
t100 76.00% t6 77.27% t100 71.78% t8 84.38% t100 46.86% t16 75.00%

110

Authorized licensed use limited to: Boulder Labs Library. Downloaded on September 21,2020 at 15:50:59 UTC from IEEE Xplore. Restrictions apply.

C. Experiment Results
Figure 11 shows the comparison between the random

method and MCDC-Star, and TABLE 9 shows the detailed
cumulative MC/DC coverage achievements of the random
method and MCDC-Star after executing each test case. For tcas
and PEL, MCDC-Star achieved higher cumulative MC/DC than
the random method after executing every generated test case. In
utf8toutf16, the random method achieved higher cumulative
MC/DC in the first three test cases and was then outperformed
by MCDC-Star after executing the fourth test case. We
investigated the reason why the random method outperformed
MCDC-Star until the fourth execution. The reason is that
utf8toutf16 has several condition combinations that have the
highest MC/DC improvement for that decision, but it will end
the test execution after that, so other decisions cannot be
executed. This is a typical local optimization versus global
optimization problem. On average, MCDC-Star outperforms the
random method by 34.35%.

In addition, since MCDC-Star achieves higher cumulative
coverage than the random method in each subject program after
executing the last test case generated by MCDC-Star, we
continue the test generation of the random method to examine
whether it can outperform MCDC-Star after executing up to 100
test cases. The results presented in TABLE 10 show that MCDC-
Star still outperforms the random method even after executing
100 test cases.

Due to tool limitations, we did not conduct a comprehensive
evaluation on the efficiency of w.r.t., the time required for
generating each test case. One reason for this is that one of our
required tools (pintool) will cause compatibility issues when
using an Intel Core Processor that is newer than the fourth
generation, and we have not yet found a solution to address this.
As a result, the desktop we used for the experiment has an Intel
i7-4790 processor, which is outdated and cannot reflect the real
efficiency of using a state-of-the-art processor. Another reason
is that MCDC-Star is a technique that automatically generates
test cases by guiding symbolic execution using the greedy
strategy. Different symbolic executors can be easily integrated
with MCDC-Star. Therefore, the efficiency of MCDC-Star
should not be simply evaluated by the execution time of one
symbolic executor.

Although we did not conduct a comprehensive efficiency
analysis, MCDC-Star generates test cases very fast. The time of
generating each test case is less than 1 minute for both tcas and
PEL and about 2 to 4 minutes per test case for utf8toutf16. In the
future, we will conduct a fair evaluation of its efficiency using
different symbolic executors.

V. THREATS TO VALIDITY
We evaluate the effectiveness of the proposed MCDC-Star

by comparing the cumulative MC/DC achievement after
executing the ith test case generated by MCDC-Star and the
random method. The bias of the random method can be an
external validity to our study. We reduce this threat by
independently running the random method 50 times and using
the average results for the comparison. Another external validity
is whether our evaluation results can reflect the actual
effectiveness of applying MCDC-Star to other programs. We

mitigate this threat by using three distinct kinds of subject
programs that are different from each other. We are confident
that MCDC-Star can be still effective on other programs. We did
not use programs such as CalDate or Triangle [18] as they are
not industrial programs.

VI. RELATED WORK
Due to the outstanding bug detection effectiveness but high

testing cost of MC/DC, many techniques have been proposed to
improve it through the automatic generation of test cases. Some
of the techniques, however, still require human effort in their test
generation. For example, the model-based techniques, such as
[19]-[21], require testers to design the input or system model
before the test generation. Other search-based techniques, such
as [22] and [23], use genetic algorithms to search input values
from the input domain.

Recently, more advanced symbolic execution-based (also
referring to dynamic symbolic execution and concolic
execution) techniques have been proposed. In the beginning, by
solving each path constraint collected using the DFS or BFS-
based algorithms, e.g., SAGE, test cases can be generated to
improve MC/DC. However, this is not effective, and it is time
consuming since it is essentially an exhaustive-based approach.
More effective code transformation-based symbolic execution
techniques, such as [24] and [25], have been proposed to
generate test cases for achieving structural code coverage
criterion, such as MC/DC. However, the code transformation-
based strategy can change the program’s behavior, which limits
its practicality. Su et al. [26] propose a coverage-driven test data
generation technique that only solves the PC of the path that
contains the uncovered targets (could be branch, decision, etc.
with respect to the different coverage criteria). Wu et al. [18]
propose a similar greedy-based symbolic execution but with 1)
inaccurate AS-based MC/DC measurement; 2) manual
instrumentation for MC/DC measurement that limits its
practicality; and 3) no path constraint conflict solution as
presented in Section III.D.

VII. CONCLUSIONS AND FUTURE WORK
In this paper, we first investigate the issue of the widely-used

AS-based MC/DC measurement approach and propose the BIE-
based MC/DC measurement approach. Then, we propose
MCDC-Star, which provides fully automated:

1) MC/DC instrumentation;
2) MC/DC measurement;
3) Test case generation using greedy-based symbolic

execution.

An experiment is conducted using three industrial programs.
The results show that MCDC-Star outperforms the random
method by 34.35% on average with respect to cumulative
MC/DC after executing each generated test case. Additionally,
the MCDC-Star still outperforms the random method even after
the random method generates and executes 100 test cases. In the
future, we will further enhance the constraint conflict solving
ability and revise our greedy strategy. Disclaimer: Any mention
of commercial products in this paper is for information only; it
does not imply recommendation or endorsement by the national
institute of standards and technology (NIST).

111

Authorized licensed use limited to: Boulder Labs Library. Downloaded on September 21,2020 at 15:50:59 UTC from IEEE Xplore. Restrictions apply.

REFERENCES
[1] RTCA, DO-178B: Software considerations in airborne systems and

equipment certification. Washington, RTCA, Inc., December 1992
[2] RTCA, DO-178C: Software considerations in airborne systems and

equipment certification. Washington, RTCA, Inc., December 2011
[3] Y. Moy, E. Ledinot, H. Delseny, V. Wiels, and B. Monate, “Testing or

formal verification: DO-178C alternatives and industrial experience,”
IEEE software, 30(3), 50-57, 2013

[4] A Practical Tutorial On Modified Condition/Decision Coverage
[5] John J. Chilenski, “An investigation of three forms of the modified

condition decision coverage (MCDC) criterion,” Tech. Rep.
DOT/FAA/AR-01/18, Federal Aviation Administration, US-Department
of Transportation, Washington, DC, April 2001

[6] K. Louden, Programming languages: principles and practices. Cengage
Learning, January 2011

[7] Is 100% Code Coverage Enough?, https://www.hitex.com/fileadmin/
documents/tools/dynamic/tessy/WP-TESSY-Is-100-Percent-Code-
Coverage-Enough.pdf, accessed July 2018

[8] Telelogic Logiscope TestChecker - Getting Started Version 6.5,
ftp://public.dhe.ibm.com/software/rationalsdp/documentation/archive/Lo
giscope/version_6-5/TestGS.pdf, June 2016

[9] J. C. King, “Symbolic execution and program testing,” ACM
Communication, 19:385–394, July 1976

[10] P. Godefroid, M. Y. Levin, and D. Molnar, “SAGE: Whitebox Fuzzing for
Security Testing,” Queue, vol. 10, no. 1, pp. 20, January 2012

[11] S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen, W. Grieskamp,
M. Harman, M. J. Harrold, and P. McMinn, "An orchestrated survey of
methodologies for automated software test case generation," Journal of
Systems and Software, vol. 86, no. 8, pp. 1978-2001, 2013

[12] GCC, the GNU Compiler Collection, https://gcc.gnu.org/, accessed July
2018

[13] GNU Binutils, https://www.gnu.org/software/binutils/, accessed July
2018

[14] Triton - A DBA Framework, https://triton.quarkslab.com/, accessed July
2018

[15] Zint Barcode Generator, https://github.com/zint/zint, accessed July 2018
[16] Software-artifact Infrastructure Repository, https://sir.unl.edu/portal/

bios/tcas.php, accessed July 2018

[17] X. Li, W. E. Wong, R. Gao, L. Hu, and S. Hosono, “Genetic Algorithm-
based Test Generation for Software Product Line with the Integration of
Fault Localization Techniques,” Empirical Software Engineering, Vol.
23, No. 1, pp 1-51, 2018

[18] T. Wu, J. Yan, and J. Zhang, “Automatic Test Data Generation for Unit
Testing to Achieve MC/DC Criterion,” in Proceedings of IEEE Eighth
International Conference on Software Security and Reliability (SERE), pp.
118-126, San Francisco, USA, June 2014

[19] S. Rayadurgam and M.P.E. Heimdahl, “Generating MC/DC Adequate Test
Sequences Through Model Checking,” SEW, Vol. 3, pp. 91-26, 2003

[20] M.P.E. Heimdahl, S. Rayadurgam, W. Visser, G. Devaraj, and J. Gao,
“Auto-generating test sequences using model checkers: A case study,” in
Proceedings of International Workshop on Formal Approaches to
Software Testing, pp. 42-59, Berlin, Germany, October 2003

[21] D. Li, L. Hu, R. Gao, W. E. Wong, D. R. Kuhn, and R. N. Kacker,
“Improving MC/DC and Fault Detection Strength Using Combinatorial
Testing,” in Proceedings of IEEE International Conference on Software
Quality, Reliability and Security Companion (QRS-C), pp. 297-303,
Prague, Czech Republic, July 2017

[22] Z. Awedikian, K. Ayari, and G. Antoniol, “MC/DC automatic test input
data generation,” in Proceedings of the 11th Annual Conference on Genetic
and Evolutionary Computation, pp. 1657-1664, Montreal, Canada, July
2009

[23] A. El-Serafy, G. El-Sayed, C. Salama, and A. Wahba, “Enhanced genetic
algorithm for MC/DC test data generation,” in Proceedings of IEEE 2015
International Symposium on innovations in Intelligent Systems and
Applications (INISTA), pp. 1-8, September 2015

[24] R. Pandita, T. Xie, N. Tillmann, and J. De Halleux, “Guided test generation
for coverage criteria,” in Proceedings of IEEE Iternational Conference on
Software Maintenance (ICSM), pp. 1-10, Timisoara, Romania, September
2010

[25] S. Godboley, A. Dutta, D. P. Mohapatra, and R. Mall, “Making a concolic
tester achieve increased MC/DC,” Innovations in Systems and Software
Engineering, vol. 12, no. 4, pp. 319-332, 2016

[26] T. Su, G. Pu, B. Fang, J. He, J. Yan, S. Jiang, and J. Zhao, “Automated
coverage-driven test data generation using dynamic symbolic execution,”
in Proceedings of IEEE Software Security and Reliability (SERE), pp. 98-
107, San Francisco, USA, June 2014

112

Authorized licensed use limited to: Boulder Labs Library. Downloaded on September 21,2020 at 15:50:59 UTC from IEEE Xplore. Restrictions apply.

