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Abstract—The US Federal Aviation Administration requires 

complete modified condition/decision coverage (MC/DC) for the 
most critical (level A) software. Complete MC/DC is a gold 
standard for thoroughness of testing. However, it is challenging to 
generate test cases to achieve high MC/DC as it requires testers to 
manually conduct complex control flow analysis. In this paper, we 
propose MCDC-Star, a white-box based automated test case 
generation technique for achieving high MC/DC coverage 
criterion using greedy-based symbolic execution. By analyzing the 
control-flow of the subject program, MCDC-Star generates test 
cases that can improve the MC/DC efficiently and effectively. An 
experiment using three industrial programs was conducted, and 
the results show its high effectiveness and efficiency.  

Keywords—test generation, MC/DC, symbolic execution, 
software testing 

I. INTRODUCTION 
To effectively and efficiently detect bugs in software, the 

Federal Aviation Administration requires software venders to 
use modified condition/decision coverage (MC/DC), which was 
first defined in DO-178B [1] and updated in DO-178C [2], to 
ensure level A (most critical) software is adequately tested. Such 
software has stringent requirements regarding safety because its 
anomalous behavior could result in catastrophic consequences, 
including property damage and human casualties. Study [3] has 
shown that MC/DC can help testers detect more bugs, but it also 
significantly increases the cost of testing, up to seven times the 
cost of other developmental tasks. This is because to achieve 
high MC/DC, testers are required to manually conduct complex 
control flow analysis to generate the test input values, which can 
be extremely difficult.  

Recently, both black-box based techniques, such as search-
based test generation, combinatorial testing, and test generation 
using genetic algorithms, and white-box based techniques, such 
as test generation using symbolic execution (also referring to 
concolic execution and dynamic symbolic execution), have been 
proposed. In general, black-box based techniques are easy to use 
and can generate test cases at a low cost. However, it is very 
unlikely that black-box techniques will deliver outstanding 
performance, as some specific execution paths required by 
MC/DC can be only executed using one or several specific input 
values. In addition, the effectiveness of black-box techniques 
relies on the testers’ knowledge to reduce the search domain, 
which can negatively impact their effectiveness in real-world 
settings.  

To address this challenge, we propose MCDC-Star, which 
automatically generates test cases to achieve high MC/DC 

coverage using greedy-based symbolic execution. An 
experiment using three industrial programs is conducted to 
evaluate the efficiency of the proposed approach and the 
effectiveness of the test cases generated by MCDC-Star against 
the test cases generated by the random method. The experiment 
results show that MCDC-Star outperforms the random method. 
Currently, MCDC-Star only works for C programs.  

The rest of the paper is organized as follows: Section II 
introduces the necessary background. In Section III, the details 
of MCDC-Star and several running examples are presented to 
help understand the approach. Experiment setup and the results 
of the case studies are presented in Section IV. Section V 
addresses threats to the validity of our approach. Section VI 
describes the related work. The conclusions and future work are 
presented in Section VII.  

II. BACKGROUND 
In this section, we give a brief introduction to the four major 

topics that are necessary for understanding MCDC-Star: 1) 
MC/DC definition and practical interpretation; 2) MC/DC 
measurement; 3) program instrumentation; and 4) test 
generation using Symbolic Execution. Hereafter, MC/DC 
coverage and MC/DC will be used interchangeably. In addition, 
test case and test input values will also be used interchangeably 
in the remainder of the paper. 

A. MC/DC Definition and  Practical Interpretation 
MC/DC is defined in DO-178C as shown below: 

1) Every point of entry and exit in the program has been 
invoked at least once; 

2) Every condition in a decision in the program has taken 
on all possible outcomes at least once; 

3) Each condition has been shown to affect that decision 
outcome independently; 

4) A condition is shown to affect a decision's outcome 
independently by (1) varying just that condition while 
holding fixed all other possible conditions or (2) 
varying just that condition while holding fixed all other 
possible conditions that could affect the outcome. 

 

                              if (A && B && C && D)  (1) 

Consider the above decision (1) with four conditions A, B, 
C, and D. A condition combination c is a set of evaluation results 
of the conditions of that decision. For example, (T, T, T, T) can 
be a condition combination for decision (1). An independence 
pair [4] (ip) is a pair of condition combinations that shows the 
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independent effect of a condition. For example, ip1:(c1, c2), 
ip2:(c1, c3), ip3:(c1, c4), and ip4:(c1, c5) as shown in TABLE 1 are 
the independence pairs for conditions A, B, C, and D, 
respectively. If a set of independence pairs can show the 
independence effects of all the conditions, this set is called an 
adequate set (AS). Therefore, TABLE 1 shows an adequate set 
AS1 for decision (1). 

To cover decision (1) with respect to (w.r.t.) MC/DC, we can 
execute the program using any test input values that can exercise 
an AS of decision (1). Notice that a decision might have multiple 
different adequate sets. For example, the c2 of the ip1 can be 
replaced by c6. This is allowed by the definition of MC/DC, as 
the false value of condition D does not affect the decision 
outcome, which is also called masking MC/DC interpretation 
[5]. 

TABLE 1. AN ADEQUATE SET AS1 FOR DECISION (1) 
 

 A B C D Decision 
Outcome 

c1 T T T T T 
c2 F T T T F 
c3 T F T T F 
c4 T T F T F 
c5 T T T F F 
c6 F T T F F 

We also include the short-circuit evaluation [6] in the 
MC/DC measurement, since most of today’s programming 
languages evaluate decisions with short-circuit evaluation. 
Short-circuit evaluation is an evaluation strategy where not 
every condition in a decision needs to be evaluated to determine 
the decision outcome. 

For example, consider the decision (1) and c6:(F, T, T, F). 
Without the short-circuit evaluation, each condition needs to be 
evaluated to determine the outcome of the decision. With short-
circuit evaluation, however, only condition A needs to be 
evaluated as it is sufficient to determine the outcome of the 
decision to be false without evaluating the rest of the conditions. 
As a result, TABLE 2 shows a simplified AS2 of decision (1), 
where N/A means that the condition is not evaluated due to the 
short-circuit evaluation, and it can be either true or false. The 
independence pairs of AS2 are, ip4:(c1, c5), ip5:(c1, c7), ip6:(c1, c8), 
and ip7:(c1, c9). 

TABLE 2. A SIMPLIFIED AS2 OF DECISION (1) 
 

 A B C D Decision 
Outcome 

c1 T T T T T 
c5 T T T F F 
c7 F N/A N/A N/A F 
c8 T F N/A N/A F 
c9 T T F N/A F 

B. MC/DC Measurements 
To apply MC/DC in real-world settings, it is important to 

measure the percentage of MC/DC since not every decision can 
be adequality tested w.r.t MC/DC. The adequate set (AS)-based 
MC/DC measurement is adopted in some tools [7],[8] that are 
widely used in the industry. For a decision with an adequate set 
AS, this approach measures its MC/DC using the following 
equation: 

no. of exercised condition combinations in 
MC/DC

no. of all condition combinations in 

AS

AS
=  

The problem of the AS-based approach is that it might 
overestimate or underestimate the contributions of some 
condition combinations. For example, the condition 
combination c1 included in ip4, ip5, ip6, and ip7 shows the 
independent effects of four conditions A, B, C, and D of decision 
(1), where c7, c8, c9, and c5 only show the independent effect of 
A, B, C, and D, respectively. Therefore, c1 contributes more than 
each of c7, c8, c9, and c5. However, the AS-based approach will 
measure the MC/DC of c1 as 20%, which significantly 
underestimates its contribution. Similarly, the AS-based 
approach will measure the MC/DC of c7, c8, c9, or c5 each as 
20%, which overestimates their contributions. 

To address this issue, we propose the branch independent 
effect (BIE)-based MC/DC approach. The BIE-based approach 
measures MC/DC by directly checking whether the independent 
effects of the branches of each condition are covered. More 
specifically, it treats a condition as two individual branches (a 
true branch and a false branch), where each branch has its own 
independent effect on the whole decision.  

Under the short-circuit evaluation, for each branch, if it is 
executed and its result is not masked by other conditions, it must 
show the independent effect of the decision outcome. 
Identifying the branches that show the independent effects can 
be done using the abstract syntax tree (AST) of that decision with 
the following steps: 1) from the condition node (the node that 
represents a complete condition) to the root node, each node will 
be labeled with true or false according to its evaluation result; 2) 
starting from the root of AST, use recursive Algorithm 1 to 
identify the conditions that do not show the independent effects; 
and 3) the conditions that are executed and not masked show the 
independent effects.   

Algorithm 1  
FindMaskedAndNotExecuted(AST) 
1     if AST.operator is && then 
2         if AST.leftChild.value is false then 
3             NotExecuted(AST.rightChild) 
4             FindMaskedAndNotExecuted (AST.leftChild) 
5         else 
6             if AST.rightChild.value is false then 
7                 Mask(AST.leftChild) 
8                 FindMaskedAndNotExecuted (AST.rightChild) 
9             else 
10               FindMaskedAndNotExecuted (AST.leftChild) 
11               FindMaskedAndNotExecuted (AST.rightChild) 
12     if AST.operator is || then 
13        if AST.leftChild.value is true then 
14            NotExecuted (AST.rightChild) 
15            FindMaskedAndNotExecuted(AST.leftChild) 
16        else 
17            if rightChild.value is true then 
18                Mask (AST.leftChild) 
19                FindMaskedAndNotExecuted(AST.rightChild) 
20            else 
21                FindMaskedAndNotExecuted (AST.leftChild) 
22                FindMaskedAndNotExecuted (AST.rightChild) 

Figure 1. Algorithm to identify masked and not-executed condition(s) 
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                               if ((A || B) && (C || D)) (2) 

For example, Figure 2 is the syntax tree of decision (2) as 
shown above, which is exercised by condition combination: (T, 
T, F, T). 

 

Figure 2. The syntax tree of decision (2) 

By running Algorithm 1, condition B is not executed because 
of condition A, and condition C is masked by condition D. As a 
result, the true branch of condition A and the true branch of 
condition D independently affect the decision outcome. In this 
case, we say the true branch of condition A and the true branch 
of condition D are covered.  

Using the BIE-based approach, the MC/DC of a decision is 
measured using the following equation: 

no. of covered branches
MC/DC

total no. of branches
=  

The following decision (3) is another example that 
demonstrates why the BIE-based approach is more accurate. 
Consider the decision (3) and the AS3 shown in TABLE 3, 

                                  if (A && B && C) (3) 
 

TABLE 3. AN ADEQUATE SET AS3 OF DECISION (3)  

 A B C Decision 
Outcome 

c10 T T T T 
c11 F N/A N/A F 
c12 T F N/A F 
c13 T T F F 

The AS-based approach measures the MC/DC of c10 as 25%, 
which underestimates its contribution. The BIE-based approach, 
however, measures the MC/DC of c10 as 50% because it shows 
the independent effects of the true branches of conditions A, B, 
and C. Similarly, the AS-based approach overestimates the 
MC/DC contributions of c11, c12, and c13 by reporting 25% for 
each of them, while the BIE-based approach reports 16.67% for 
each of them. Therefore, the BIE-based approach measures 
MC/DC more accurately than the AS-based approach. 

C. Program Instrumentation 

Automated MC/DC measurement is very important for 
MCDC-Star. To measure MC/DC for a program, we need the 
boolean value of each condition when its decision is executed. 
Unfortunately, we are not aware of any existing tools that satisfy 
our needs. Therefore, we designed our MCDC-Star to 
automatically perform program instrumentation w.r.t. MC/DC. 
MCDC-Star uses instrumentation variables to save the value of 

each condition when it is evaluated. Consider the following 
decision (4) with three conditions and two boolean operators. 

                       if ((a == 3 || foo(b)) && c > 200) (4) 

MCDC-Star constructs the syntax tree of decision (4), adds 
instrumentation variables iv, and converts it to decision (5) as 
shown below. 

      if ((iv1 = (a==3) || iv2 = (foo(b))) && iv3 = (c>200)) (5) 

In addition to the instrumentation variables, we also need to 
save these values of the instrumentation variables to trace files 
by adding two saving functions for each decision. For an if 
statement, MCDC-Star adds one saving function before the first 
statement of the true branch and another before the first 
statement of the false branch. A similar process is also applied 
to for, while, and do-while decisions. Figure 3 shows the code 
segment before and after the instrumentation.  

1. if (a > b && c < a)  
2.     max = a; 
3. else  
4.     max = b;  
5.  
6. for (a; a > y; a++)  
7.     foo(x) 
8.  
9. while (b < z) 
10.     foo(x) 
11.  
12. do 
13. { 
14.     foo(x) 
15. } while (c < z); 

(a) Before instrumentation 
 

1. if (iv1 = (a > b) && iv2 = (c < a))  
2. { 
3.     save (iv1, iv2) 
4.     max = a; 
5. } 
6. else 
7. { 
8.     save (iv1, iv2) 
9.     max = b;  
10. } 
11.  
12. for (a; iv1 = (a > y); a++)  
13. { 
14.     save(iv1) 
15.     foo(x) 
16. } 
17. save(iv1) 
18.  
19. while (b < z) 
20. { 
21.     save(iv1) 
22.     foo(x) 
23. } 
24. save(iv1) 
25.  
26. int first = 1; 
27. do 
28. { 
29.     if (first != 1) 
30.    { 
31.         save(iv1); 
32.         first = 0; 
33.     } 
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34.     foo(x) 
35. } while (iv1 = (c < z)); 
36. save(iv1) 

(b) After instrumentation 
Figure 3. MC/DC Instrumentation 

D. Test Generation Using Symbolic Execution 
The symbolic execution was first introduced in the study by 

J. C. King [9], which proposes a new method of program 
analysis and test generation. In general, when a program is 
executed, the symbolic executor can substitute some variables 
of the program with symbolic variables. The symbolic variable 
not only stores the value but also maintains the symbolic 
expression of that variable, which is updated along with the 
program execution. During the program execution, the symbolic 
executor will construct a path constraint (pc), which is a boolean 
expression, at each decision point, e.g., a condition in a decision 
(if, for, while, etc.). The pc is constructed using the symbolic 
expressions of the symbolic variables that are related to this 
decision point. When the program execution finishes, a boolean 
formula PC of the execution path is constructed by connecting 
all pci using and operator (e.g., PC = pc1  pc2  …  pcn). Next, 
a constraint solver tries to solve this PC to generate the 
corresponding input values. If the generation is successful, we 
then obtain a set of input values for this specific execution path. 
If it is not successful, then this path is considered an infeasible 
path. Notice that the unsuccessful generation for a certain path 
does not guarantee the infeasibility of this path, as some pci of 
PC are neither too difficult to be solved nor supported by the 
solver.  

Figure 4 shows a C function that determines whether a given 
character is in the alphabet or not.  

1. int check_alphabet (char c) 
2. { 
3.      if (( c >= ‘a’ && c <= ‘z’ ) || ( c >= ‘A’ && c <= ‘Z’ )) 
4.          return 1; 
5.      else 
6.          return 0; 
7. } 

Figure 4. A function that checks whether a given character is in the alphabet 

Figure 5 shows the code structure of the function 
check_alphabet in assembly code view. The if decision shown 
in line 3 of Figure 4 is represented by the code blocks 2, 3, 4, 
and 5. TABLE 4 shows the seven possible execution paths of 
check_alphabet, their corresponding PC, and a possible 
generated input for each PC. A traditional symbolic executor 

usually explorers all the paths of the program by negating every 
pc using a DFS or BFS-based algorithm, e.g, SAGE [10]. 
However, exploring every path using symbolic execution in 
real-world settings might not be feasible, as it suffers from the 
path explosion problem [11]. 

 

 
Figure 5. check_alphabet function in assembly code view 

TABLE 4. SEVEN POSSIBLE PATHS,  
THEIR CORRESPONDING PC, AND A POSSIBLE INPUT 

Execution Path PC Input 

p1 1, 2, 3, 6 c >= ‘a’  c <= ‘z’ ‘b’ 

p2 1, 2, 4, 5, 6 ¬ (c >= ‘a’)  c >= ‘A’  
 c <= ‘Z’ ‘B’ 

p3 1, 2, 3, 4, 5, 6 c >= ‘a’  ¬ (c <= ‘z’)  
 c >= ‘A’  c <= ‘Z’ N/A 

p4 1, 2, 4, 7 ¬ (c >= ‘a’)  ¬ (c >= ‘A’) ‘#’ 

p5 1, 2, 3, 4, 7 c >= ‘a’  ¬ (c <= ‘z’)  
 ¬ (c >= ‘A’) N/A 

p6 1, 2, 4, 5, 7 ¬ (c >= ‘a’)  c >= ‘A’  
 ¬ (c <= ‘Z’) ‘]’ 

p7 1, 2, 3, 4, 5, 7 c >= ‘a’  ¬ (c <= ‘z’)  
 c >= ‘A’  ¬ (c <= ‘Z’) ‘}’ 
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Figure 6. An overview of MCDC-Star 

 

III. OUR TECHNIQUE 
In this section, we will explain the details of the proposed 

MCDC-Star technique and give several running examples along 
with descriptions to help understand how it works. Figure 6 
shows an overview of how MCDC-Star generates test cases for 
a C program in six steps.  

The overall test generation process can be described as 
follows. Step 1 is to instrument the subject program and compile 
it to get the instrumented executable. The instrumented 
executable will be used in Step 5 for the test execution later. We 
also compile the subject program without instrumentation to 
obtain its executable in Step 2. In Step 3, the executable and the 
coverage information are then used to generate a desired path 
direction, which will be used to guide the symbolic execution in 
Step 4. A greedy-based symbolic execution will be performed in 
Step 4 to try to generate the test input values. Once the test input 
values are successfully generated, we execute against the 
instrumented executable generated in Step 1 and update the 
MC/DC coverage information. Steps 3, 4, 5, and 6 are conducted 
repeatedly until no more test input values can be successfully 
generated. We now explain the details of each step using a 
sample C program running_example as shown in Figure 7. 
Notice that, although for demonstration purposes the 
running_example does not contain any loops, all the analysis 
presented in the following sections can be applied to for, while, 
and do-while in a similar manner. 

 

 

 

 
Figure 7. The source code of running_example 

A. Step 1: Program Instrumentation and Compilation 
MCDC-Star needs to keep track of the MC/DC coverage 

information of each decision of the program to generate the test 
input values that can improve the MC/DC effectively. To do 
this, we instrument the subject program and compile it using 
GCC, the gnu compiler [12], to generate the instrumented 
executable, which will be used in Step 5. Figure 8 shows the 
source code of the running_example after the instrumentation.  

 
Figure 8. Source code of running_example after the instrumentation 
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B. Step 2: Compilation 
In addition to the instrumented executable generated in Step 

1, we also compile the subject program using GCC with its 
debug option “-g” enabled. The debug option is required as it 
will generate additional debug information, which will be 
analyzed to generate the path direction in Step 3. The generated 
executable will also be used for symbolic execution later on in 
Step 4. 

C. Step 3: Path Direction Generation 
The key of generating test cases that can effectively improve 

the MC/DC of the subject program using symbolic execution is 
to identify the specific path that can improve the MC/DC 
effectively. Suppose a subject program has in total n execution 
paths, P = {p1, p2, …, pn}. Theoretically, we can generate and 
execute test input values using symbolic execution to improve 
MC/DC of a subject program in the following optimal way: a) 
prioritize these execution paths w.r.t. their MC/DC 
improvements in a descending order; b) run the symbolic 
executor to generate the input values of execution path with the 
highest rank (suppose that the symbolic executor can generate 
input values for all execution paths); c) execute the generated 
input values; and then repeat a), b), and c) until the MC/DC 
cannot be further improved. However, due to memory and 
computation limitations, this is not feasible, as there might be an 
overwhelmingly large number of execution paths, which can 
make identifying all execution paths of a program and the path 
prioritization impossible. Furthermore, in real-world settings, 
this approach might be useless if its computation cost (w.r.t. time 
or computation power) is unacceptable. 

To overcome this challenge, MCDC-Star conducts the 
control-flow analysis to identify the path directions of each 
decision and lets the symbolic executor only generate input 
values for those directions that can improve MC/DC effectively. 
We will elaborate on the path direction generation process using 
running_example, as shown in Figure 7.  

For a program, we need to construct the path direction PD = 
{i = 1…n, k = 1…m | pdi,k}, where i represents the ith decision 
in the program and k represents the ith decision’s kth condition 
combination. Each pdi,k = (ci,k, mcdci,k, aesi,k) is a three tuple, 
where ci,k, mcdci,k, and aesi,k represent the ith decision’s kth 
condition combination, the corresponding MC/DC 
improvement, and the assembly code execution sequence,  
respectively. We will now present the details on how pdi,k is 
constructed. 

First, ci,k and mcdci,k can be generated using the BIE-based 
MC/DC measurement approach. running_example has the 
following two if decisions (6) and (7) at lines 7 and 8. 

                                if (a < 10 && b > 100) (6) 

                                   if (c == 8 || a > 15) (7) 

Initially, running_example is not executed by any input 
values; therefore, the MC/DC of each decision in 
running_example is 0.0%. MCDC-Star computes each 
condition combination’s MC/DC improvement for each 
decision to obtain mcdci,k,, as shown in TABLE 5. 

 

 
TABLE 5. CONDITION COMBINATIONS AND THEIR MC/DC IMPROVEMENTS  

Decision 1: if (a < 10 && b > 100) 

Condition Combination MC/DC 
Improvement Will Cover Covered 

Branches 

c1,1 T T 50.0% 1st: True 
2nd: True N/A 

c1,2 T F 25.0% 2nd: False N/A 

c1,3 F N/A 25.0% 1rd: False N/A 

Decision 2: if (c == 8 || a > 15) 

Condition Combination MC/DC 
Improvement Will Cover N/A 

c2,1 T N/A 25.0% 1st: True N/A 

c2,2 F T 25.0% 2nd: True N/A 

c2,3 F F 50.0% 1st: False 
2nd: False N/A 

Next, aesi,k can be generated by analyzing the assembly 
code, as shown in Figure 9. The assembly code is generated by 
objdump [13] from the executable that we obtained from Step 2.  

 
Figure 9. Assembly code of running_example 

The generated assembly code contains the detailed assembly 
execution information, where each condition of a decision can 
be mapped to a jump instruction. For each decision, we only 
need the jump instructions and the address of the first instruction 
of the true and false branch of the decision. By parsing this 
assembly code, we can obtain the mapping shown in TABLE 6.  

TABLE 6. EACH CONDITION AND ITS  
CORRESPONDING JUMP INSTRUCTIONS 

Branch Address Assembly Code 

Decision 1: if (a < 10 && b > 100) 

a < 10 400542 jg 400560 

b > 100 400548 jle 400560 

107

Authorized licensed use limited to: Boulder Labs Library. Downloaded on September 21,2020 at 15:50:59 UTC from IEEE Xplore.  Restrictions apply. 



First Instruction 
of True Branch 40054a Not Interested 

First Instruction 
of False Branch 400560 Not Interested 

Decision 2: if (c == 8 || a > 15) 

c == 8 40054e: je 400556  

c > 15 400554: jle 400560 

First Instruction 
of True Branch 400556 Not Interested 

First Instruction 
of False Branch 400560 Not Interested 

A jump instruction, such as jg or jle, has a destination 
address, which represents the next instruction’s address if the 
jump instruction’s condition is satisfied. If the jump 
instruction’s condition is not satisfied, the execution will simply 
move to its next instruction. Although whether a jump 
instruction’s condition can be satisfied or not depends on the 
actual execution result, a jump instruction’s condition will be 
satisfied if the result of its corresponding condition can short-
circuit other conditions (except for the final jump instruction). 
Hence, the execution sequence that is represented by the 
instruction address can be constructed using this rule. For the 
final jump instruction, if the decision outcome is true, we append 
the address of the true branch’s first instruction to the execution 
sequence, and vice versa.  

For example, if both conditions of the Decision 1 shown in 
TABLE 6 are true, the conditions of both jump instructions will 
not be satisfied because no condition can short-circuit other 
conditions. Therefore, the execution sequence will be (40053e 

 400542  400544  400548), where NI represents the 
instructions in which we are not interested. Since the decision 
outcome is true, the address of the first instruction of the true 
branch 40054a is appended to the execution sequence. As a 
result, the execution sequence will be (40053e  400542  
400544  400548  40054a).  

If the first condition is false, it will short-circuit the second 
condition. Therefore, the condition of the jump instruction of the 
first condition at 400542 will be satisfied. Hence, the execution 
sequence will be (40053e  400542  400560). Because the 
decision outcome is false and 400560 is already the address of 
the first instruction of the decision’s false branch, there is no 
need to append 400560 at the end of the execution sequence.  

By conducting this analysis, MCDC-Star maps ci,k to the 
corresponding execution sequence asei,k. At this point, we now 
obtain the path directions, PD = {i = 1…n, k = 1…m | pdi,k = 
(ci,k, mcdci,k, aesi,k)} of each decision. TABLE 7 shows the PD of 
running_example.  

TABLE 7. CONSTRUCTED PD OF RUNNING_EXAMPLE 

Condition 
Combination 

MC/DC 
Improvement 

Assembly Code  
Execution Sequence 

Decision 1: if (a < 10 && b > 100) 

c1,1 T T mcdc1,1 50.0% aes1,1 

40053e  400542  
400544  400548  

40054a 

c1,2 F N/A mcdc1,2 25.0% aes1,2 
40053e  400542  

400560 

c1,3 T F mcdc1,3 25.0% aes1,3 
40053e  400542  
400544  400548  

400560 

Decision 2: if (c == 8 || a > 15) 

c2,1 T N/A mcdc2,1 25.0% aes2,1 
40054a  40054e  

400556 

c2,2 F T mcdc2,2 25.0% aes2,2 
40054a  40054e  
400550  400554  

400556 

c2,3 F F mcdc2,3 50.0% aes2,3 
40054a  40054e  
400550  400554  

400560 

D. Steps 4, 5, and 6 
Once we obtain the PD of the subject program from Step 3, 

we now can generate the test input values for the subject 
program. Before we start the symbolic execution, MCDC-Star 
uses greedy strategy to create an assembly execution sequence 
set AESj, where j represents the jth symbolic execution. AESj 
consists of aesi,k from each pdi,k that has the highest mcdci,k. For 
example, the AES1 of running_example = {aes1,1, aes2,3} = 
{(40053e  400542  400544  400548  40054a), (40054a 

 40054e  400550  400554  400560)}. In the actual 
symbolic execution, the AESj will be used to guide the symbolic 
executor to explore the path directions that have the highest 
MC/DC improvement of each direction. 

For the symbolic execution, MCDC-Star uses Triton [14], a 
highly customizable dynamic symbolic executor to generate 
input values. Notice that different symbolic executors can be 
easily integrated with MCDC-Star. 

 
Figure 10. Overview of Step 4 

Figure 10 shows the overview of Step 4. First, Triton starts 
the symbolic execution using the program executable and initial 
input values (initial input values can be either fixed or randomly 
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generated). When the symbolic execution is completed, Triton 
analyzes the execution path to generate its corresponding path 
constraint PCi = {i = 1…n, k = 1…m | pci,k = (dai,k, bei,k, bnei,k)}, 
where i represents the ith iteration of the current symbolic 
execution and dai,k, bei,k, and bnei,k represent the address of the 
kth decision point, the address of the corresponding branch that 
was executed after the dai,k, and the branch that was not 
executed, respectively. For a pci,k, if the bei,k is not the desired 
execution direction, we can swap the bei,k with bnei,k so that we 
can use solver to generate test input values that will execute 
bnei,k. 

For example, in the first symbolic execution of 
running_example, if test input values (a = 0, b = 0, c = 8) are 
used, the collected PC1 will be {pc1,1(400542, 400544, 400560), 
pc1,2(400548, 400560, 40054a)}. As we mentioned previously, 
we want to generate the input values that can execute the 
execution sequences with the highest MC/DC improvements, 
which is indicated by the AES1 = {aes1,1(40053e  400542  
400544  400548  40054a), aes2,3(40054a  40054e  
400550  400554  400560)}. Therefore, we check PC1 with 
AES1 to see whether each be is our desired execution direction 
or not. In this example, pc1,1 indicates that the actual execution 
after 400548 went to the instruction at 400560, which does not 
match the execution sequence aes1,1 of AES1. Hence, we modify 
the pc1,2 to pc1,2’ (400548, 40054a, 400560), and then we obtain 
our new PC1’ = {pc1,1(400542, 400544, 400560), pc1,2’(400548, 
40054a, 400560)}.  

Next, Triton uses constraint solver to solve the PC1’ and gets 
generated input values (a = 5, b = 150, c = 8). We then use the 
input values (a = 5, b = 150, c = 8) to continue the next iteration 
of the symbolic execution, which will return a PC2 = 
{pc2,1(400542, 400544, 400560), pc2,2(400548, 40054a, 
400560), pc2,3 (40054e, 400556, 400550)}. By checking the PC2 
with AES1 again, we can construct a new PC2’ = {pc2,1(400542, 
400544, 400560), pc2,2(400548, 40054a, 400560), 
pc2,3’(40054e, 400550, 400556)}. A new input (a = 5, b = 150, 
c = 0) can be solved and generated by the constraint solver.  

At this point, if we execute the input values (a = 5, b = 150, 
c = 0) and check the obtained PC3, we will observe that no more 
execution sequences can be solved. Hence, we can stop Step 4 
and move on to Step 5 to conduct the actual test execution.  

In Step 5, we execute the generated input values (a = 5, b = 
150, c = 0) and then update the MC/DC of running_example. 
We achieve 50% MC/DC in Step 6 (four covered independent 
effects divided by eight independent effects in total), as c1,1 and 
c2,3 are covered. Once Step 6 is complete, we then return to Step 
3 to obtain a new PD, followed by Steps 4, 5, 6, and so on. Steps 
3, 4, 5, and 6 will be conducted repeatedly until the MC/DC 
cannot be further improved. 

Although the major steps of MCDC-Star have been 
presented, there are two issues we need to overcome to ensure 
the test input values can be generated successfully. The first 
issue is that the symbolic execution using the presented greedy 
strategy might not be able to reach some decisions. For example, 
consider that we have finished the first three symbolic execution 
of running_example, and we are about to start the fourth 
symbolic execution. After the first three executions, we already 

covered all the condition combinations of decision 1 and the c2,3 
of decision 2. The AES4 will be {aes2,1(40054a  40054e  
400556)}, which contains no information for decision 1. 
Because decision 2 is in the true branch of decision 1, the initial 
input values cannot take the execution path to the true branch of 
decision 1. Therefore, decision 2 will not be reached.  

To address this issue, MCDC-Star will check the current PC 
to determine whether we have reached any decision points that 
are in the AES. If the result is false and AES is not null, we will 
combine the current AES with every previous AES and start the 
symbolic execution again until we can reach some decision 
points in the AES. For example, if the initial input values of the 
fourth symbolic execution are (a = 0, b = 0, c = 8), the PC4 will 
be {pc4,1(400542, 400544, 400560), pc4,2(400548, 400560, 
40054a)}. MCDC-Star detects that no decision points in AES4 
are in PC4; therefore, it then combines the AES1 with AES4 to 
generate AES4’ = (aes1,1(40053e  400542  400544  
400548  40054a), aes2,1(40054a  40054e  400556)). As a 
result, the symbolic execution will reach decision 2 and 
generate the corresponding input values. 

Another issue is that if a condition combination has the highest 
MC/DC improvements but cannot be solved due to constraint 
conflicts, the symbolic execution might end up with an infinite 
loop. For example, consider that we have finished the first four 
symbolic executions of running_example and are about to start 
the fifth symbolic execution. MCDC-Star will pick c2,2 to 
construct AES5. The AES5 is obviously not solvable as it 
requires decision 1 and the second condition of decision 2, as 
shown below, to be true at the same time.  
 

a < 10 && b > 100 && a > 15 
 

In this simple example, we know that the constraint conflict 
is due to a < 10 and a > 15. However, in real-world settings, it 
is very difficult to analyze these constraint conflicts, as they 
require tremendous data-flow analysis. However, if we do not 
address the constraint conflict issue, the MC/DC might not be 
improved effectively, or we can even end up in a dead loop, as 
MCDC-Star will select this c2,2 again. To address this, MCDC-
Star will try to solve and generate the input values using the 
intermediate constructed PC whenever a swap of be and bne is 
conducted. If an intermediate PC cannot be solved, we compare 
this intermediate PC with its previous version to identify the last 
changed pci,k. Then, we trace back to its corresponding condition 
combination that cannot be solved and add it to a blacklist, so it 
will be ignored in future symbolic executions. 

IV. CASE STUDIES 

A. Subject Programs 
We conducted our case studies using three industrial 

programs. The first program is utf8toutf16 [15], which converts 
a utf8 encoding to a utf16 encoding. The second program is tcas 
[16], a well-known traffic collision avoidance system. The third 
program, Photo Editing Line (PEL) [17], is a constraint 
verification module of a customization program for a photo 
editing software. TABLE 8 shows the line of code and number of 
decisions of each subject program.  
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TABLE 8. INFORMATION OF THE THREE SUBJECT PROGRAMS 

 
Subject Programs 

utf8toutf16 tcas PEL 

LOC 70 197 188 

No. of 
Decisions 7 15 14 

B. Experiment Setup 
We first evaluate the effectiveness of MCDC-Star by 

measuring the cumulative MC/DC achievement after executing 
the ith test case generated by MCDC-Star versus a random 
method. For each subject program, if MCDC-Star generates n 
test cases (the generated test cases by MCDC-Star are 
deterministic), we also stop the random method after executing 
nth test cases to conduct a fair comparison. In addition, to 
remove any potential bias, we independently run the random 
method 50 times and compare their average results with MCDC-
Star.  

 
(a) utf8toutf16 

 
 

 
(b) tcas 

 

 
(c) PEL 

  
Figure 11. Comparison between the random method (average score) and MCDC-Star w.r.t. MC/DC achievement 

 

TABLE 9. THE CUMULATIVE MC/DC COVERAGE ACHIEVEMENTS OF  
RANDOM METHOD AND MCDC-STAR AFTER EXECUTING EACH GENERATED TEST CASE 

 utf8toutf16 tcas PEL 
Random MCDC-Star Random MCDC-Star Random MCDC-Star 

t1 23.27% 13.64% 11.50% 29.69% 3.16% 37.00% 
t2 39.00% 27.27% 17.97% 35.94% 6.18% 45.00% 
t3 44.45% 40.91% 21.72% 40.62% 7.74% 48.00% 
t4 49.63% 54.55% 26.88% 42.19% 9.30% 52.00% 
t5 53.18% 68.18% 30.56% 62.50% 10.80% 57.00% 
t6 55.91% 77.27% 32.84% 76.56% 12.22% 58.00% 
t7 - - 34.28% 79.69% 13.12% 62.00% 
t8 - - 36.56% 84.38% 13.88% 66.00% 
t9 - - - - 14.86% 68.00% 
t10 - - - - 16.10% 69.00% 
t11 - - - - 17.16% 70.00% 
t12 - - - - 17.88% 71.00% 
t13 - - - - 18.62% 72.00% 
t14 - - - - 19.34% 73.00% 
t15 - - - - 20.52% 74.00% 
t16 - - - - 21.18% 75.00% 

 
TABLE 10. THE COMPARISON BETWEEN THE HIGHEST MC/DC ACHIEVEMENTS OF MCDC-STAR  

AND THE MC/DC ACHIEVEMENTS OF RANDOM METHOD AFTER EXECUTING 100 TEST CASES 
utf8toutf16 tcas PEL 

Random MCDC-Star Random MCDC-Star Random MCDC-Star 
t100 76.00% t6 77.27% t100 71.78% t8 84.38% t100 46.86% t16 75.00% 
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C. Experiment Results 
Figure 11 shows the comparison between the random 

method and MCDC-Star, and TABLE 9 shows the detailed 
cumulative MC/DC coverage achievements of the random 
method and MCDC-Star after executing each test case. For tcas 
and PEL, MCDC-Star achieved higher cumulative MC/DC than 
the random method after executing every generated test case. In 
utf8toutf16, the random method achieved higher cumulative 
MC/DC in the first three test cases and was then outperformed 
by MCDC-Star after executing the fourth test case. We 
investigated the reason why the random method outperformed 
MCDC-Star until the fourth execution. The reason is that 
utf8toutf16 has several condition combinations that have the 
highest MC/DC improvement for that decision, but it will end 
the test execution after that, so other decisions cannot be 
executed. This is a typical local optimization versus global 
optimization problem. On average, MCDC-Star outperforms the 
random method by 34.35%. 

In addition, since MCDC-Star achieves higher cumulative 
coverage than the random method in each subject program after 
executing the last test case generated by MCDC-Star, we 
continue the test generation of the random method to examine 
whether it can outperform MCDC-Star after executing up to 100 
test cases. The results presented in TABLE 10 show that MCDC-
Star still outperforms the random method even after executing 
100 test cases. 

Due to tool limitations, we did not conduct a comprehensive 
evaluation on the efficiency of w.r.t., the time required for 
generating each test case. One reason for this is that one of our 
required tools (pintool) will cause compatibility issues when 
using an Intel Core Processor that is newer than the fourth 
generation, and we have not yet found a solution to address this. 
As a result, the desktop we used for the experiment has an Intel 
i7-4790 processor, which is outdated and cannot reflect the real 
efficiency of using a state-of-the-art processor. Another reason 
is that MCDC-Star is a technique that automatically generates 
test cases by guiding symbolic execution using the greedy 
strategy. Different symbolic executors can be easily integrated 
with MCDC-Star. Therefore, the efficiency of MCDC-Star 
should not be simply evaluated by the execution time of one 
symbolic executor. 

Although we did not conduct a comprehensive efficiency 
analysis, MCDC-Star generates test cases very fast. The time of 
generating each test case is less than 1 minute for both tcas and 
PEL and about 2 to 4 minutes per test case for utf8toutf16. In the 
future, we will conduct a fair evaluation of its efficiency using 
different symbolic executors. 

V. THREATS TO VALIDITY 
We evaluate the effectiveness of the proposed MCDC-Star 

by comparing the cumulative MC/DC achievement after 
executing the ith test case generated by MCDC-Star and the 
random method. The bias of the random method can be an 
external validity to our study. We reduce this threat by 
independently running the random method 50 times and using 
the average results for the comparison. Another external validity 
is whether our evaluation results can reflect the actual 
effectiveness of applying MCDC-Star to other programs. We 

mitigate this threat by using three distinct kinds of subject 
programs that are different from each other. We are confident 
that MCDC-Star can be still effective on other programs. We did 
not use programs such as CalDate or Triangle [18] as they are 
not industrial programs. 

VI. RELATED WORK 
Due to the outstanding bug detection effectiveness but high 

testing cost of MC/DC, many techniques have been proposed to 
improve it through the automatic generation of test cases. Some 
of the techniques, however, still require human effort in their test 
generation. For example, the model-based techniques, such as 
[19]-[21], require testers to design the input or system model 
before the test generation. Other search-based techniques, such 
as [22] and [23], use genetic algorithms to search input values 
from the input domain.   

Recently, more advanced symbolic execution-based (also 
referring to dynamic symbolic execution and concolic 
execution) techniques have been proposed. In the beginning, by 
solving each path constraint collected using the DFS or BFS-
based algorithms, e.g., SAGE, test cases can be generated to 
improve MC/DC. However, this is not effective, and it is time 
consuming since it is essentially an exhaustive-based approach. 
More effective code transformation-based symbolic execution 
techniques, such as [24] and [25], have been proposed to 
generate test cases for achieving structural code coverage 
criterion, such as MC/DC. However, the code transformation-
based strategy can change the program’s behavior, which limits 
its practicality. Su et al. [26] propose a coverage-driven test data 
generation technique that only solves the PC of the path that 
contains the uncovered targets (could be branch, decision, etc. 
with respect to the different coverage criteria). Wu et al. [18] 
propose a similar greedy-based symbolic execution but with 1) 
inaccurate AS-based MC/DC measurement; 2) manual 
instrumentation for MC/DC measurement that limits its 
practicality; and 3) no path constraint conflict solution as 
presented in Section III.D. 

VII. CONCLUSIONS AND FUTURE WORK 
In this paper, we first investigate the issue of the widely-used 

AS-based MC/DC measurement approach and propose the BIE-
based MC/DC measurement approach. Then, we propose 
MCDC-Star, which provides fully automated: 

1) MC/DC instrumentation; 
2) MC/DC measurement; 
3) Test case generation using greedy-based symbolic 

execution. 
 

An experiment is conducted using three industrial programs. 
The results show that MCDC-Star outperforms the random 
method by 34.35% on average with respect to cumulative 
MC/DC after executing each generated test case. Additionally, 
the MCDC-Star still outperforms the random method even after 
the random method generates and executes 100 test cases. In the 
future, we will further enhance the constraint conflict solving 
ability and revise our greedy strategy.  Disclaimer: Any mention 
of commercial products in this paper is for information only; it 
does not imply recommendation or endorsement by the national 
institute of standards and technology (NIST). 
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