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Abstract—The emerging field of materials informatics has the
potential to greatly reduce time-to-market and development costs
for new materials. The success of such efforts hinges on access
to large, high-quality databases of material properties. However,
many such data are only to be found encoded in text within
esoteric scientific articles, a situation that makes automated
extraction difficult and manual extraction time-consuming and
error-prone. To address this challenge, we present a hybrid
Information Extraction (IE) pipeline to improve the machine-
human partnership with respect to extraction quality and person-
hours, through a combination of rule-based, machine learning,
and crowdsourcing approaches. Our goal is to leverage computer
and human strengths to alleviate the burden on human curators
by automating initial extraction tasks before prioritizing and as-
signing specialized curation tasks to humans with different levels
of training: using non-experts for straightforward tasks such as
validation of higher accuracy results (e.g., completing partial
facts) and domain experts for low-certainty results (e.g., reviewing
specialized compound labels). To validate our approaches, we
focus on the task of extracting the glass transition temperature
of polymers from published articles. Applying our approaches to
6 090 articles, we have so far extracted 259 refined data values.
We project that this number will grow considerably as we tune
our methods and process more articles, to exceed that found
in standard, expert-curated polymer data handbooks while also
being easier to keep up-to-date. The freely available data can be
found on our Polymer Properties Predictor and Database website
at http://pppdb.uchicago.edu.

Index Terms—Information Extraction, Crowdsourcing, Ma-
chine Learning, Polymers, Glass transition

I. INTRODUCTION

Materials informatics [1–3], often referred to as the fourth

paradigm of materials discovery [4, 5], combines large datasets

and computational models to identify candidates for new

materials, with the goal of reducing both time-to-market and

development costs. As such methods rely on access to large,

machine-readable databases, the traditional text-based physical

handbooks will not suffice. However, there are few examples

of these scientific digital databases and constructing new ones

is a monumental task requiring years of expert labor, as the

data that populate these databases must often be extracted

manually from free-text publications. One excellent example

of a digital database is PolyInfo [6], which contains the records

for over 200 000 properties of polymers extracted from more

than 12 000 articles—a process that required years of expert

curation effort. Achieving databases as large and useful as

PolyInfo for different material properties at a rate commen-

surate with the time-to-market goals of modern materials

engineering is a daunting task. It might appear that automated

methods of extraction could solve this problem; however,

despite considerable progress in natural language processing

(NLP) and machine learning [7–13], fully automated extrac-

tion is not yet possible due to the complexity by which such

properties are encoded in publications. Instead, human effort

is needed to develop rules, define training sets, and validate

results [14–16].

In response, we propose a hybrid Information Extraction

(IE) pipeline that combines automation and crowdsourcing

in ways that leverage the complementary strengths of com-

putational modules and humans. This pipeline first extracts

candidate properties automatically and subsequently assigns

various curation tasks to humans with the goal of maximizing

throughput and accuracy while minimizing the burden on hu-

man curators. We applied a preliminary version of this concept

to extract 263 values for the Flory-Huggins interaction param-

eter, a measure of miscibility between two entities—typically

a polymer and either another polymer or a solvent [17]. In that

case, we automatically browsed and searched a relevant journal

in polymer science for this property to identify candidate arti-

cles and trained student reviewers to extract data: an effective

but still relatively costly approach [18]. Here, we extend that

work, increasing the automation to develop an integrated IE

pipeline that combines a general-purpose NLP toolkit to parse

text and perform preliminary recognition; specialized domain-

specific models to identify entities and relationships; a ranking

system to prioritize crowdsourced tasks; and a crowdsourcing

framework to review candidate relationships. We apply this

system to extract the glass transition temperature (Tg) of

polymers. This important property in the design of new poly-

meric materials quantifies the temperature at which polymers

transition from a glassy state into a rubbery state. Values for

this parameter are often found in the text of scientific articles.

We used this new IE pipeline to process 6 090 articles
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published over the last decade in Macromolecules, a prominent

journal in polymer science. In the first pipeline step, an NLP-

based extraction process identified 1 442 Tg candidates in

these articles—text fragments with characteristics suggestive

of a Tg value, but often with various irregularities. Subsequent

automated and crowdsourcing curation steps then processed

these candidates, in some cases confirming and/or completing

a polymer–Tg value and in others establishing that no such

value is in fact present. Curating the output of the NLP

extraction required only a half-hour of expert time and a

combined six hours of untrained crowds. To date, we have

extracted 259 Tg values from a subset of our articles and

expect this number to increase dramatically as we improve our

pipeline and apply it to new data. In comparison, the recent

edition of the expert-curated Physical Properties of Polymer
Handbook [19], last published in 2007, contains only ≈600

Tg values. The most recent and machine-accessible output of

our IE pipeline is freely available at http://pppdb.uchicago.edu

and https://materialsdatafacility.org [20].

The primary contributions of this paper are: (1) the design

of a hybrid extraction pipeline that combines computer and

human strengths; (2) demonstration that this method can

accurately extract properties from publications; and (3) design

and evaluation of extraction and curation tools, including a

rule-based parser for Tg, a polymer identification module

for distinguishing polymers from other chemical compounds,

a polymer proximity search module for recovering polymer

names from related text, crowdsourcing modules for identify-

ing unrecognized polymers and flagging anomalous polymer

names, and a prioritization model to guide curation effort.

The rest of this paper is as follows. Section II reviews

related work in the information extraction of scientific facts.

Section III motivates the problem by introducing Tg and

discusses the challenges associated with automated extraction.

Section IV describes the design and implementation of our

IE pipeline. Section V evaluates the accuracy of the various

stages in our pipeline. We discuss future work in Section VI

before concluding in Section VII.

II. RELATED WORK

IE methods have been applied in various scientific domains.

The medical community has long been interested in the

automated extraction and aggregation of data from medical

text. Medical Language Extraction and Encoding System

(MedLEE) [21, 22], cTAKES [23], and medKAT [24] are NLP

tools specialized for the medical domain. These tools are

designed to extract clinical information from text documents

and to translate entities and terms to controlled ontologies

and vocabularies. Much research in this domain has focused

on the complexity of clinical text, for example there are sig-

nificant challenges identifying negation, family relationships,

temporality, and uncertainty. The general purpose nature of

these tools also allows more sophisticated and specialized

applications to be developed. For example, MedLEE has

been adapted to build biomolecular and genotype-phenotype

networks (GENIES [25] and BioMedLEE [26], respectively).

These tools tend to be specialized and rely heavily on the

development of ontologies, a tedious and time consuming

process. Similarly, several NLP tools have recently been

developed to mine data from patents and scientific literature

in chemistry and materials science [11, 12, 27].

With the recent advances in machine learning and statistical

inference approaches, scientific applications are turning their

attention to deep learning tools such as DeepDive [13]. Paleo-

DeepDive [28], built upon DeepDive, automatically extracts

paleontological data from text, tables, and figures in scientific

publications. GeoDeepDive [29] performs similar tasks in the

geosciences. For good performance in such applications, IE

software often relies on and extends large databases: for exam-

ple, PaleoDeepDive builds on PaleoDB [30] and GeoDeepDive

builds on Macrostrat [31]. However, many fields, including

materials science, do not yet have access to large and struc-

tured sets of texts that deep learning systems can use to

learn scientific facts and relationships. The IE pipeline is an

intermediary, but essential, step towards accumulating such

structured data.

Because of the challenges in fully automated IE systems

(e.g., dependence on ontologies and/or large training datasets)

but also for validation purposes, humans are often involved

in the extraction of scientific facts as domain experts. There

is also recent interest in using crowdsourcing or “human

computation” to solve problems that computers cannot han-

dle correctly or cost-efficiently. Previous work has leveraged

crowdsourcing to support extraction of data from tables within

PDF documents [16] and also to ensure human quality con-

trol (i.e., expert curation) [15] while extracting empirical

observations from literature. CrowdDB [32] uses human input

to answer queries that neither database systems nor search

engines can adequately answer due to the nature of the queries

(e.g., discovering new data not included in a database). In

our work, we aim to identify such cases—where humans

are better suited for a task—and use the complementary

strengths of humans and computers to populate a database

of scientific facts. Wallace et al. [33] also pursue this goal,

using a hybrid machine learning and crowdsourcing approach

to identify published randomized controlled trials (RCTs) [33].

They use machine learning classifiers to recognize citations

that are deemed highly unlikely to describe RCTs, deferring

to crowdsourcing otherwise.

III. MOTIVATION

We first provide a brief description of polymers and Tg
and review both the state-of-the-art in NLP and the challenges

associated with its application to the Tg problem.

A. Glass Transition Temperature

Polymers are molecules formed by covalently bonding small

molecules, referred to as monomers, together. As the resulting

polymer molecules generally have large molecular masses,

potentially exceeding three orders of magnitude greater than

water, they are sometimes referred to as macromolecules. Due

in part to their large molecular masses, often in the form of
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long chains, polymers have a variety of useful properties. For

example, the long chains of poly(ethylene terephthalate) be-

come entangled, making them harder to pull apart; this results

in strong but lightweight water bottles. In addition to being

strong, many synthetic polymers are also extremely cheap as

they can be synthesized from petroleum-based feedstocks. The

combination of low cost and useful properties has resulted in

polymers becoming a ubiquitous part of life.

In the design of new polymeric materials, the temperature

relative to the Tg can have a profound effect on the properties

of the polymeric material. Tg is defined as the temperature at

which a polymer transitions from a solid, amorphous, glassy

state to a rubbery state as the temperature is increased. Phys-

ically, when polymers are in the glassy state, the molecules

are trapped and cannot move past each other due to a lack

of thermal energy, while when they are in the rubbery state,

the molecules are mobile. As the properties for the two

states are drastically different, the glass transition plays a

key role in both choosing a polymer for a given application

and in the processing of the polymeric material. For example,

plexiglass (poly(methyl methacrylate)), used as a lightweight

substitute for glass, has a high Tg of roughly 110 ◦C, while

neoprene (polychloroprene), used for laptop sleeves, has a

low Tg of roughly -50 ◦C [34]. Exact, as opposed to rough,

values of Tg require additional contextual information such as

the molecular mass. We plan to capture such information in

future work. However, as extracting contextual information is

significantly more challenging than the already difficult task

of extracting polymer–Tg pairs from literature, we focus on

the polymer–Tg pairs first.

B. Natural Language Processing

Rule-based methods are commonly used for simple infor-

mation extraction tasks. Such methods are straightforward

to understand and allow developers to trace and fix errors;

they are suitable for simple, well-defined problems (e.g.,

extracting spouses by identifying the subject and object in

sentences containing the word married). However, they require

tedious effort to construct and modify, as many rules are

typically required to extract the same information expressed

in various forms. In contrast, statistical and machine learning

techniques are trainable, adaptable, and require little manual

labor; however, they are opaque and require training data.

Researchers often combine the two methods to increase the

completeness and accuracy of extracted information [35]. Still,

challenges remain, including the lack of the annotated corpora

need to train machine-learning models. The lack of corpora is

particularly common in fields such as bioinformatics [36] and

our own, polymer science. Other challenges, not limited to

specific scientific domains, include automatically deciphering

subtleties in the English language, in general, and language

particular to the domain itself. In polymer synthesis papers,

for example, authors sometimes omit the name of the polymer,

instead referencing or describing the underlying chemistry. In

these cases, the polymer name is not readily apparent, and may

require an expert polymer scientist to extract that information.

IV. DESIGN AND IMPLEMENTATION

The desired output of our pipeline is a set of polymer–

Tg pairs, which can then be used to construct a machine-

accessible database of values. Thus, the task can be seen as

a two-part process consisting of recognizing polymer names

and temperatures and establishing a relationship (t is a Tg of

p) between pairs of entities. In order to reduce the burden

on curators, we combine complementary human and machine

strengths throughout our pipeline. We base our pipeline on a

leading materials NLP toolkit, ChemDataExtractor [12], and

develop automated and crowdsourcing modules to extract and

curate polymer–Tg pairs. We focus here on extracted text

excerpts containing a single Tg value. While multiple Tg values

may be reported for a single polymer (e.g., prepared with

different processing methods), we focus on pairs of polymers

mapped to a single Tg for this work. In this section, we first

describe the pipeline at a high level and then present the

NLP toolkit, our various extraction and curation models, and

methods used to prioritize human review.

A. Our Pipeline

Figure 1 illustrates our current pipeline with its six main

stages. In stage 1, an extended version of a general-purpose

materials NLP toolkit called ChemDataExtractor is used to

extract a set of Tg candidates from text; in stage 2, compound

names identified by the NLP Module are processed to create

a polymer dictionary. As we describe below, the candidates

identified in stage 1 can be in various forms: compound–Tg
pairs; solitary Tgs, with no associated compound; and label–

Tg pairs, in which the Tg is associated with a label rather than

a compound. Each form requires further processing, which

is performed in stage 3 via two automated curation modules

and one crowdsourcing module. The results of those three

modules are combined as the proposed polymer–Tg pairs.

Stage 4 engages crowds in flagging erroneous results, stage 5

prioritizes final validation and curation of the proposed pairs,

and stage 6 applies final expert review.

Designing a system to make use of crowds requires tailoring

tasks to the expertise of the participants. For example, it is

significantly easier for a nonexpert to mark a polymer–Tg pair

as correct or incorrect than to extract the pair from a paragraph

of text. Thus, we focus our crowdsourcing modules on simple

micro-curation tasks. We have developed crowdsourcing mod-

ules to address two curation tasks: resolving labels that refer

to polymer names and flagging anomalous polymer names.

The output of our pipeline is a set of confirmed polymer–
Tg pairs, each associating a polymer name (with acronyms

and/or synonyms) with a single Tg. These pairs are represented

in a JSON format that can be easily processed and loaded into

a database. Listing 1 shows an example record.

B. Natural Language Processing Module

The first phase of our pipeline requires the identification

and extraction of structured representations of information

embedded within text. There has been a wealth of research into

creating specialized systems for extracting materials [11, 27]
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Fig. 1: The six-stage hybrid IE pipeline, showing (1) the NLP Module, which identifies Tg candidates; (2) the Polymer Dictionary
Module, which identifies polymer names in NLP output; (3) the three automated extraction and crowdsourcing modules used to
process different forms of candidates; (4) the Flag Bad Data Crowdsource Module, in which crowds flag anomalous results, (5) the
Prioritize Review Module, which ranks extracted polymer–Tg pairs to prioritize expert validation, and (6) the Final Expert Review.

{
"names": [

"PBMA",
"poly(butyl methacrylate)"

],
"glass_transitions": [

{
"units": "◦C",
"value": "20"

}
]

}

Listing 1: This polymer–Tg record indicates that the polymer
poly(butyl methacrylate), also known as PBMA, has a Tg of 20 ◦C.

and other domain-specific [14, 36–38] content from text. Thus,

we choose to extend an existing NLP toolkit, ChemDataEx-

tractor [12], to extract Tg values from documents.

1) ChemDataExtractor: ChemDataExtractor is a best-of-

breed system for materials extraction, as evidenced by its

performance in the relevant chemical compound and drug

name recognition (CHEMDNER) community challenge [39].

It implements an extensible end-to-end text-mining pipeline

that can process common publication formats including

Portable Document Format (PDF), HyperText Markup Lan-

guage (HTML), and eXtensible Markup Language (XML);

it also supports extraction from headings, paragraphs, and

captions, and produces machine-readable structured output

data that can be used for subsequent processing. ChemDataEx-

tractor automatically extracts chemical named entities and

their associated properties, measurements, and relationships

from scientific documents. It uses a combination of ma-

chine learning (linear-chain conditional random field) models,

dictionary-based approaches, and regular expressions for en-

tity recognition. It also detects and associates acronyms and

synonyms with polymer names. Entity properties are extracted

using a rule-based approach customized for specific properties.

Extractors are provided for properties such as melting point

and spectrum types, but not Tg.

2) Extending ChemDataExtractor for Glass Transition Tem-
peratures: Our Tg extraction module incorporates specialized

knowledge about the forms in which Tg values are expressed

in scientific articles. Adapting the format of ChemDataEx-

tractor’s melting point extractor, our module contains rules

that detect a prefix for a temperature (e.g., “a glass transition

temperature of”) and then detect and extract the associated

temperature (e.g., “20 ◦C”). ChemDataExtractor then links

these values with the associated compound(s). Of course, Tgs

are expressed in many formats and therefore our rules must

include variations of such statement structures. For instance,

we include rules that match various quantifiers, such as “a

glass transition temperature range of.” Similarly, our rules

capture approximate values, where temperatures are preceded

by terms such as ca. or around. Further, our rules support

variations of glass transition temperature including Tg, glass

transition temp. and more. In total, we defined two dozen

rules to address different variations and representations of

glass transition temperature. Our Tg extractor has since been

integrated into ChemDataExtractor.

The output of our extended ChemDataExtractor is a set of

JSON records, each containing one or more Tg values and,

optionally, an associated chemical compound name plus any

automatically-detected acronyms and synonyms.

C. Polymer Dictionary Module

The materials literature includes references to a wide

range of compounds beyond just polymers. The original

ChemDataExtractor does not distinguish polymers from non-

polymers and thus we face the challenge of correctly identi-

fying which chemical name entities in a paper correspond to

polymers. Unfortunately, no complete dictionary for polymer

names exists and the standardized International Union of Pure

and Applied Chemistry (IUPAC) naming conventions [40] of-

ten result in lengthy and, hence, rarely used names. Thus poly-

mers are expressed using a combination of common names,

IUPAC names, and trade names. The polymer identification

problem is further complicated by the fact that values are often
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reported for copolymers, in which two or more monomers are

used during synthesis.

The Polymer Dictionary Module implements heuristics for

identifying those compound names extracted by stage 1 that

likely correspond to polymers, and collects the resulting names

in a polymer dictionary. These heuristics include rules related

to text-based names (e.g., prefixes of “P” and “poly”) as well

as rules prescribed by the IUPAC guide [41] for forming poly-

mer names. The latter is valuable for identifying copolymers.

For example, names containing the substring “-alt-” indicate

copolymers comprising two species of monomeric units in

alternating sequence.

This module also handles synonyms and acronyms, a com-

mon occurrence in polymer science. For example, we may find

the polymer Polystyrene represented in the same or different

articles by the synonym poly(styrene) or the acronym PS.

ChemDataExtractor includes mechanisms for identifying and

grouping synonyms and acronyms. We record these groups in

our polymer dictionary. We also include both singular and plu-

ral representations, for example polystyrene and polystyrenes.

To avoid confusion with acronyms, we only consider plurals

for names longer than four characters. Thus, for example, PSS,

the acronym for poly(styrene sulfonate), is not identified as the

plural form of PS. We exclude copolymers from our dictionary

as these are easily recognizable via our implemented IUPAC

polymer heuristics.

To bootstrap the polymer dictionary, we ran our poly-

mer identification heuristics over all 6 090 full-text HTML

publications from Macromolecules and thereby populated the

dictionary with 12 814 polymer names and acronyms in 9 178

different detected groups.

D. Polymer Identification Module

For cases where compound-Tg pairs were idenified using the

NLP Module, the Polymer Idenification Module determines

which of those compounds are polymers and which are not.

To do so, the module simply labels any compound present in

the polymer dictionary produced by the Polymer Dictionary

Module as a polymer and all other entires as non-polymers.

E. Polymer Proximity Search Module

One significant type of error for text extraction are Tg values

that are not associated with a polymer name. To correct these

errors, we have developed a proximity-based approach for

determining whether the polymer name is mentioned nearby

where the temperature was found (for example, in the previous

sentence or paragraph). For each sentence in the document, we

determine whether it contains a Tg value, and if so, return the

closest polymer name (using the polymer dictionary) within

the sentence, if any such name is to be found. If no polymer

is found, we extend the search to the preceding sentence, as

illustrated in Figure 2.

This process increases the number of polymer–Tg pairs

discovered; however, it may decrease the accuracy of the

extracted pairs. We discuss validation in Section IV-G.

Fig. 2: The NLP Module yields a solitary Tg record in this
example text [42], as the corresponding compound is mentioned
in the previous sentence. The Polymer Proximity Search Module
disambiguates the reference and proposes isotactic polystyrene as
a (correct) candidate match for the Tg.

F. Resolve Label Crowdsource Module

This first crowdsource module addresses errors where the

text extraction matched Tg values to labels (e.g., Polymer A)

rather than the actual polymer name. These labels frequently

occur in the polymer literature to avoid repetition of complex

polymer names, such as the following.

poly(1,2:3,4-di-O-isopropylidene-6-O-(2′−formyl-4′-
vinylphenyl)-d-galactopyranose)

We created an interface that presents labels and the paper in

which each appears, and asks the crowd to enter the polymer

name for each label. As this task requires little knowledge

of polymer science, we use an untrained crowd to resolve

references. We provide these people with just a simple training

guide (less than one page) to describe the task. In an attempt

to quantify accuracy, we allow crowd members to specify their

confidence (1–5) along with their input. Our goal is to use this

confidence score to prioritize results for future review.

G. Flag Bad Data Crowdsource Module

The second crowdsource module presents users with a

list of polymer–Tg pairs and asks them to flag whether the

polymer names are incomplete or incorrect. The polymer

names identified by the text extraction tool are sometimes

not specific enough to identify the polymer being studied.

As one example, the term “hydroxyl copolyimides” describes

a family of polymers rather than a specific polymer, and

therefore cannot be attributed a single Tg value. Given the

complexity we use an expert crowd of polymer scientists to

complete this task. Our flagging interface does not delete any

data from our set, but rather records user “votes.” We then use

this information to prioritize further review.

H. Prioritize Review Module

Every stage of the pipeline uses a variety of methods to

extract values with varying confidence. Thus, each proposed

polymer–Tg pair has an associated probability of accuracy. For

example, a pair extracted from a single sentence using our NLP

rules and subsequently reviewed by an expert is likely to be

accurate. In contrast, a pair in which the polymer name is a

synonym, was found in the sentence preceding that containing

the Tg value, and was not reviewed by a human, is less likely

to be accurate. To formalize this concept, we explore methods

for estimating confidence in a particular value and use this

metric to prioritize (crowdsourced) curation tasks.
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Our initial approach for the prioritization method relies

on characteristics of polymer names and their associated Tg
values. Hypothesizing that polymer names that appear more

frequently in the database have a higher likelihood of being

correct than infrequently used names, we assign a confidence

to each polymer name based on its frequency of occurence.

Further hypothesizing that outlier or extreme temperatures are

more likely to indicate errors, we determine the minimum,

mean, and maximum of all Tg values in our current database

and use those values to identify outliers, to which we assign

lower confidence values. These two scoring methods can

be combined. For example, if two records appear equally

infrequently, we prioritize for review the one with temperature

farthest from the mean. Entries with confidence scores under a

fixed threshold will then be funnelled to Stage 6 of the pipeline

for expert review as shown in Figure 1.

V. EVALUATION

We quantitatively evaluated our pipeline by comparing

results against a gold standard, human-reviewed dataset. In

this section, we describe our input dataset and then present

our evaluation of each module in our pipeline.

A. Dataset

Our input dataset comprised of 6 090 publications in full-

text HTML format. To obtain these publications, we automati-

cally searched the journal Macromolecules using the keyword

“Tg” over the ten-year period 2006–2016. We downloaded

the full-text publications matching this query and sampled

additional Macromolecules issues from the last decade to

increase and diversify our corpus. This is the same dataset

that we used to build our polymer dictionary, as described

previously.

B. Natural Language Processing Module

Execution of the Tg–extended ChemDataExtractor NLP

module described in Section IV-B identified 364 561 records,

of which 1 330 were candidate Tg values from 927 distinct

publications: 846 compound–Tg pairs, 456 solitary Tgs, and 28

label–Tg pairs. (Another 112 linked more than one compound

and/or Tg value, a case that we leave for future work.) We

stored these records in a database for convenient access to their

features, which include the name of the associated compound,

when present, and any synonyms for that compound.

C. Assembling a Gold Standard Dataset

We manually selected a subset of 50 papers for which

the NLP module had identified one compound–Tg pair for

which the compound contained the string “poly.” We then had

two polymer scientists each read 25 of these publications to

identify all polymer–Tg pairs that they contain. The result is

a gold standard dataset containing a total of 62 polymer–Tg
pairs. We used this dataset for various evaluation steps.

To gain some initial experience with the use of this dataset,

we also asked our experts to evaluate the accuracy of the

50 compound–Tg pairs identified in these papers by the NLP

module. In evaluating precision, we assigned points to each

extracted entry as follows: 1 point for fully correct entries,

i.e., entries that were completely unambiguous and correct;

0.5 points to partially correct entries, in which information

was missing (e.g., the module extracted polyurethanes.11,

a correct but idiosyncratic name, which an expert clarified

by adding polyurethanes with various side chains); and 0

points to other incorrect cases, such as those with an in-

complete polymer name (e.g., the module extracted hydroxyl
copolyimides instead of APAF-ODA hydroxyl copolyimides:

the former describes a vast family of polymers and cannot

be clarified without additional information).

The NLP module extracted 17 fully correct and 4 partially

correct polymer–Tg pairs from the 50 articles, for a precision

of 38 %. As our experts identified 62 Tg values in the 50

articles, the recall was 31 %. While the expert reviews, being

aimed at assembling a gold standard, were particularly rig-

orous, these low values emphasize the difficulty of our task

and the need for a hybrid solution. In most cases, errors were

related to identification of the polymer name rather than the

Tg value. In fact, for the subproblem of locating Tg values,

our Tg extraction rule achieved 88 % precision (44 out of 50

cases) and 71 % recall (18 Tg values missed out of 62 total).

Precision: We attribute our low precision to three main

reasons. A first is that the compound name was incorrectly or

partially identified ≈50 % of the time. The low performance

in polymer name recognition may be explained by the fact

that the entity recognition component of ChemDataExtractor

was trained on biomedical newspaper and biomedical training

corpora, supplemented with unsupervised word cluster features

derived from chemistry articles. The use of biomedical training

data is due to the lack of appropriate annotated corpora for

training machine learning models for polymer name recogni-

tion, a general problem in materials informatics. Moreover,

our experts noted that some polymer names were difficult

even for humans to extract, as they were not named but rather

described in terms of their components: e.g., “A cross-linked
polymer with DABBF linkages was prepared by polyaddition
of poly(propylene glycol) (PPG) (Mn = 2700), hexamethylene
diisocyanate (HDI), dihydric DABBF, and triethanolamine
(TEA) as a cross-linker in the presence of di-n-butyltin dilau-
rate (DBTDL, catalyst) in N,N-dimethylformamide (DMF) in
a manner similar to that previously reported (Figure 1)” [43].

A second difficulty, which arose in 8 % of the cases, was

that one of our Tg extraction rules was loosely defined as

simply “transition,” to avoid tokenizing issues around the term

“glass-transition.” We expected that in the context of polymer

science the most common transition temperature would be Tg.

However, while this rule sometimes functioned as expected,

it also matched sentences with “gel transition” and “phase

transition” temperatures. We could redefine the loose transition

rule, but while this would increase precision, it would also

decrease recall. Initially, we view high recall as a preferable

to high precision in our “big-data” approach, as we expect

later pipeline stages to improve the precision.

A third difficulty, arising in 4 % of the cases, was that
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complex sentence structure led to incorrect Tg values being

extracted. For example, in sentences describing increases or

decreases in temperature relative to a previously mentioned

value, the software identified the difference as Tg: e.g., “Com-
paring DSC results for dried composites (Figure 3b), a drop in
Tg of 17 ◦C was observed for the clay composite, whereas the
corresponding drop in Tg of the aerogel composite was only
3 ◦C” [44]. One way to improve precision in such cases would

be to analyze sentence complexity, as indicated by features

such as number of words and the use of comparison terms such

as “lower/greater” and “decrease/increase,” and then defer to

trained crowds for sentences above a certain threshold.

Recall: We view improving recall as an iterative process as

we continue to find additional ways that Tg is expressed in

the literature. During the evaluation of the NLP module, we

inspected the results and added new rules to our Tg extractor

to increase recall. For example, sometimes authors referred to

the “Tg value of”; the extra “value” term was not included

in the original parser. Another slightly more complex example

consists of capturing a temperature expressed in the form “Tg

of <polymer name> is/was ...”. This rule depends on correctly

identifying the polymer name in the sentence, as some polymer

names, which sometimes include dashes, spaces, and colons,

will not always correspond to the regular expression class of

words. We plan to use a larger dataset for evaluation, examine

more cases of missed Tgs and identify new general rules that

will further improve recall.

D. Polymer Identification Module

To test the polymer name classifier described in Sec-

tion IV-D, we selected 100 papers: the 50 used in Section V-B

plus 50 additional papers with compound–Tg records for which

the compound names did not include “poly.”

Using our full polymer name dictionary (prefixes and

IUPAC guidelines as well as simple “poly” keyword search),

we classified the compounds from the 100 papers. We achieved

91.8 % precision and 93.2 % recall. In other words, we cor-

rectly classified 91.8 % of the compounds as polymers and

misclassified 6.8 % of the extracted compounds. An example

of a false positive is identifying a class of polymers (e.g.,

polyimides) rather than an individual polymer. An example of

a false negative is the copolymer UPy-OPG-MAA: as none of

its three components existed in the polymer name dictionary,

our heuristics could not identify it as a copolymer. The

addition of polymer heuristics improved the performance of

our polymer classification by correctly discovering additional

polymers (16 % of the compounds initially classified as “non-

polymers”), which were not detected by a simple string search

of the names, hence potentially increasing the number of

polymer–Tg pairs in the final output. They are particularly

useful for detecting copolymers using IUPAC conventions

(e.g., PPDL-block-PLLA) formed of previously seen polymer

components (e.g., PPDL or PLLA). We have since composed

a list of common polymer families that will further improve

our classification results.

E. Polymer Proximity Search Module

Recall from Section IV-E that this module seeks to address

the problem of Tg values that were extracted without a polymer

name. To test this module, we first identified 115 records

containing solitary Tg values. The module returned a polymer

for 74 out of these 115 records (64.3 %). We executed the

proximity search heuristic to consider the same and previous

sentences and compared the identified polymer names to those

identified by an expert. Our proximity search suggested correct

polymer matches for 31 of the 63 records (49.2 %) in which

the matching polymer was located within the same sentence.

Its search of the preceding sentence identified correct polymer

matches in 6 of the 11 records (54.5 %) in which the matching

polymer was in that sentence. Together, searching both the Tg
and preceding sentence led to the recovery of 37 polymers:

50.0 % of the original 74 solitary Tg mentions or 32.1 % of

the test dataset, which includes false negatives. See Table I for

a summary of the results.

TABLE I: Polymer proximity search module evaluation.

True Positives False Positives Gold
Same sentence 31 32 63
Previous sentence 6 5 11
No candidate returned 41
Total 37 37 115

We note that success here requires correct identification of

both the polymer and the temperature to be linked. Some

compounds were only partially identified and the complete

polymer–Tg pairs were not correctly recovered. Since the

proximity search module uses the polymer database, improv-

ing polymer name recognition and the Tg parser will in

turn increase proximity search performance. In some cases,

proximity search introduced false positives for a different

reason, as the compound closest to the temperature was used

for comparison and was not associated with the extracted Tg
for instance. Nevertheless, confirming or rejecting matches

from this module is a less difficult task than extracting the

polymer–Tg pairs.

F. Crowdsourcing Modules

Recall from Sections IV-F and IV-G that we have deployed

two crowdsourcing modules: one to recover polymer names

from author-defined labels and one to flag polymer–Tg pairs

deemed to require further review.

In the first case, we presented three (non-expert) reviewers

with polymer name labels and asked them to extract the

polymer name from the full text. We also asked them to state

their confidence (1-5). We identified 28 records for review

(based on regular expression matching of the form “Polymer

[a-zA-Z0-9]”). The three reviewers correctly identified 82.1 %,

78.6 %, and 35.7 % of those 28 records and reported an

average of two hours of work. A simple consensus method

across our three reviewers (selecting the answer from two

or more reviewers in agreement) obtained 78.6 % accuracy

when resolving these labels. Only in two cases did no reviewer
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identify the correct label, seemingly indicating that this task

was at an appropriate level of difficulty for our crowd. These

results show that the use of untrained crowds can reduce the

need for expert validation substantially. Table II summarizes

reviewer performance and confidence scores. It shows the

number of correct answers from reviewers with their reported

confidence scores. Reviewer 2 correctly identified 21/21 labels

with high confidence, 2/3 with medium confidence and 0/4

with low confidence.

TABLE II: Crowdsourcing for resolving polymer labels.

Confidence (correct/total) Time
Correct High Med Low spent

(1-2) (3) (4-5) (hours)
Reviewer 1 23 23/28 0 0 3
Reviewer 2 23 21/21 2/3 0/4 2
Reviewer 3 10 0 0 10/28 1

In the second crowdsourcing task, we presented an expert

polymer scientist with 302 compound–Tg pairs extracted by

the NLP module for which the compound matched the string

“poly.” The reviewer took about 30 minutes to identify 43

(14 %) of these values as incomplete or incorrect, leaving

the 259 confirmed polymer–Tg pairs noted in the abstract.

Erroneous values included names that describe a class of

polymers as opposed to a specific polymer (e.g., polyolefin)

and unrecognized labels (e.g., copolymer 10), and additional

descriptors (e.g., macroporous poly(N-isopropylacrylamide)
gel). Overall, these results suggest that our extractor performs

as expected in the majority of cases.

We will next apply this same process to the additional pro-

posed polymer–Tg pairs produced by our system. In addition

to improving our dictionary, we are currently compiling a list

of common polymer family names and working on a list of

common descriptors to ignore.

G. Prioritizing Review

We applied our scoring model (using polymer name fre-

quency and Tg value distance from the median) to 302

compound–Tg pairs for which the compound name matched

the string “poly.” We compared the pairs prioritized by the

scoring model against those flagged by experts in the previous

crowdsourcing step. After ordering these pairs by confidence,

we observed that 10 of the first 50 entries had been flagged as

erroneous by our reviewers (see Figure 3), which is 40% more

than would be expected if entries were randomly selected (≈7

errors). While not an extraordinary decrease in the number

of reviews, it was achieved by a basic ranking scheme; we

expect more sophisticated approaches to further reduce the

human effort required to improve the quality of our database.

We plan to use a similar scheme to score entries in the poly-

mer dictionary. The scheme will consider frequency, number

of synonyms, and number of duplicate entries (same acronym

for different polymers) to assign a confidence score to each

entry. We anticipate that this approach will be able to detect

additional unrecognized polymers: for example, poly(2,4′-

Fig. 3: Results of prioritizing crowdsourcing. The blue, solid line
shows the number of errors found as a function of the number
of expert reviews if the entries are evaluated following our
prioritization scheme. The black, dotted line shows the number
of errors found if entries are evaluated in a random order.

BFa) where author-defined monomer 2,4′-BF-a is specified

elsewhere in the publication.

H. Summary of Results

Table III aggregates the results of our evaluation across

the four types of Tg candidates that we have examined. The

Initial column gives the number of each type extracted from

our 6 090 articles, with poly–Tg here denoting compound–Tg
pairs for which the compound name contains the string “poly”

and nonpoly–Tg the remaining compound–Tg pairs. The Yield
column indicates the number of Tg candidates of each type that

are estimated to be correct, based on review. (For polymer–

Tg and label–Tg, this is a full review; for compound–Tg and

solitary Tg, the numbers are estimates based on expert review

of a subset.) The Pairs column gives the number of polymer–

Tg pairs that we expect from each method. Thus, we expect

the final number of pairs extracted from our initial set of

6 090 articles to increase significantly—perhaps by 145 % to

approximately 500—once we complete expert review.

TABLE III: Summary of module performance and expected
number of polymer–Tg output from initial data.

Input Type Initial Module Yield Pairs
poly–Tg 302 Flag Bad Data 86.0 % 259
nonpoly–Tg 544 Polymer Identification 16.0 % 87
solitary Tg 456 Proximity Search 32.1 % 146
label–Tg 28 Resolve Labels 78.6 % 22
Totals 1 330 514

VI. FUTURE WORK

While our pipeline initially focuses on extracting polymer–

Tg pairs, our approaches are equally applicable to other

properties and forms of data.

Polymer properties, such as Tg, are often dependent on

important contextual information, such as molecular mass

and geometry (confined or bulk) as well as the experimen-

tal methods used to calculate values. We intend to develop

methods to capture such information to provide context to

116116



extracted values. As previously mentioned, we also plan to

make improvements to the dictionary and evaluate its accuracy

using experts.

Given the significant cost of manual curation, we are also

investigating more advanced methods to prioritize where hu-

man effort should be used. Here we discuss two ideas relevant

to this topic: validation of extracted data via machine learning

models and experiment design.

A. Machine Learning Validation

The Tg of amorphous polymers is the most important

and widely studied polymeric property because many other

polymer properties, such as heat capacity and viscosity, are

affected by this transition [45]. Many researchers have devel-

oped machine learning models for Tg [45–48] that we could

retrain, using the entries in our database, to make predictions

that would in turn validate extracted values. These Tg models

provide rough estimates or reasonable ranges for the Tg values

of various polymers, which would serve as physics-based

validation of our extracted values and help prioritize curation.

B. Experiment Design

A major challenge with a hybrid pipeline is determining

when to employ human expertise and, when human exper-

tise is needed, what form of expertise to apply. While we

work towards higher levels of accuracy from our automated

modules, we do not expect the need for human input to

disappear. We have explored several methods including expert

review, untrained confidence scores, and a scoring mechanism

for prioritization; however, none is without limitation. As the

number of publications processed by our pipeline increases,

this careful scrutiny of the data will become costly and

eventually unworkable. We want to identify when and how

to inject different types of human input into the pipeline

efficiently. In other words, we want to increase accuracy while

minimizing the quantity and cost of crowd input.

We plan to explore a more rigorous approach to automatic

partitioning and assignment of extraction tasks by applying

techniques from optimal experiment design [49–51] to maxi-

mize the accuracy of extracted data while minimizing the time

and cost of human involvement. To this end, we expect to:

• Calculate the accuracy of values derived from a variety

of automated and crowdsourcing modules.

• Assign values to datasets, for example in terms of their

yield in polymer–Tg pairs and/or the rarity of those

values, and then measure how dataset value changes with

each automated and crowdsourced task.

• Assign levels of difficulty to tasks based on completeness

and accuracy of the data to be processed and/or the

information needed to complete the task, to help decide

where to crowdsource various tasks.

• Assign costs to module usage so that we can com-

pare, for instance, the costs of computational vs. crowd-

sourced modules; determine the cost of using crowds

(e.g., person-hours); and quantify the differences in cost

between a trained and untrained crowd.

We plan to investigate these topics as we develop the next

generation of our pipeline.

VII. CONCLUSION

Despite significant progress in natural language processing

and machine learning approaches to information extraction,

there remains a gap between the current data extraction needs

in fields such as materials science and the capabilities of state-

of-the-art tools. We have described a hybrid human-machine

IE pipeline that we have so far used to extract 259 glass

transition temperature (Tg) values for polymers from 6 090

scientific articles, with an expectation of many more as we

improve our methods and process more articles.

Our pipeline uses domain-specific automated and crowd-

sourcing extraction and curation modules to extract high-

quality and accurate polymer–Tg pairs. The polymer classifier

module achieved 91.8 % precision and 93.2 % recall. The

polymer proximity search module correctly identified missing

polymers for 50.0 % of those Tg values without polymers. We

crowdsourced the recovery of unrecognized polymer names

for an additional 22 polymer–Tg pairs and demonstrated

that using untrained crowds for simple, well-defined domain-

specific tasks can decrease the need for expert validation

by about three fourth (78.6 % labels resolved by non-experts

using concensus method). We have started the validation of

automatically extracted data and presented a simple scoring

scheme to prioritize the process. Our initial results show that

even a simple method for assessing the quality of extracted

data can effectively increase the impact of human curation.

While the size of our Tg database is not yet best-in-class,

the hybrid pipeline presented in this work offers a sustainable

and accelerated route to producing new materials property

datasets. With only a few hours of effort from expert and non-

expert curators, we were able to screen over 6 000 articles and

produce a refined dataset of 259 polymer–Tg pairs from just

927 articles. Thus, our results demonstrate the considerable

potential of combining automated and crowdsourcing modules

to extract scientific facts from literature in an efficient and

cost-effective manner. We continue to refine our automated

extraction tools and develop yet more effective ways of prior-

itizing human curation for maximum benefit, and to use these

tools to populate our open database. Our verified polymer–

Tg pairs are available at both http://pppdb.uchicago.edu and

https://materialsdatafacility.org.

ACKNOWLEDGMENTS

We thank our crowd members for their help. This work

was supported in part by NIST contract 60NANB15D077, the

Center for Hierarchical Materials Design, and DOE contract

DE-AC02-06CH11357. Official contribution of the National

Institute of Standards and Technology; not subject to copyright

in the United States.

REFERENCES

[1] N. Nosengo, “Can artificial intelligence create the next wonder
material?” Nature, vol. 533, no. 7601, pp. 22–25, may 2016. [Online].
Available: http://www.nature.com/doifinder/10.1038/533022a

117117



[2] J. Hill, G. Mulholland et al., “Materials science with large-
scale data and informatics: Unlocking new opportunities,” MRS
Bulletin, vol. 41, no. 05, pp. 399–409, 2016. [Online]. Available:
http://www.journals.cambridge.org/abstract_S0883769416000932

[3] J. J. de Pablo, B. Jones et al., “The Materials Genome Initiative, the
interplay of experiment, theory and computation,” Current Opinion in
Solid State and Materials Science, vol. 18, no. 2, pp. 99–117, 2014.

[4] K. M. Tolle, D. S. W. Tansley et al., “The fourth paradigm: Data-
intensive scientific discovery,” Proceedings of the IEEE, vol. 99, no. 8,
pp. 1334–1337, Aug 2011.

[5] A. Agrawal and A. Choudhary, “Perspective: Materials informatics and
big data: Realization of the “fourth paradigm” of science in materials
science,” APL Materials, vol. 4, no. 5, p. 053208, 2016.

[6] S. Otsuka, I. Kuwajima et al., “PoLyInfo: Polymer database for
polymeric materials design,” in International Conference on Emerging
Intelligent Data and Web Technologies. IEEE, 2011, pp. 22–29.

[7] S. Bird, E. Klein et al., Natural language processing with Python:
Analyzing text with the natural language toolkit. O’Reilly Media, Inc.,
2009.

[8] S. Hellmann, J. Lehmann et al., “Integrating NLP using linked data,” in
International Semantic Web Conference. Springer, 2013, pp. 98–113.

[9] C. D. Manning, M. Surdeanu et al., “The Stanford CoreNLP natural
language processing toolkit,” in ACL (System Demonstrations), 2014,
pp. 55–60.

[10] N. A. Lewinski and B. T. McInnes, “Using natural language processing
techniques to inform research on nanotechnology,” Beilstein Journal of
Nanotechnology, vol. 6, no. 1, pp. 1439–1449, 2015.

[11] L. Hawizy, D. M. Jessop et al., “ChemicalTagger: A tool for semantic
text-mining in chemistry,” Journal of Cheminformatics, vol. 3, no. 1,
p. 17, 2011.

[12] M. C. Swain and J. M. Cole, “ChemDataExtractor: A toolkit for auto-
mated extraction of chemical information from the scientific literature,”
Journal of Chemical Information and Modeling, vol. 56, no. 10, pp.
1894–1904, 2016.

[13] C. De Sa, A. Ratner et al., “DeepDive: Declarative knowledge base
construction,” ACM SIGMOD Record, vol. 45, no. 1, pp. 60–67, 2016.

[14] A. Rzhetsky, I. Iossifov et al., “GeneWays: A system for extracting,
analyzing, visualizing, and integrating molecular pathway data,” Journal
of Biomedical Informatics, vol. 37, no. 1, pp. 43–53, 2004.

[15] C. Seifert, M. Granitzer et al., “Crowdsourcing fact extraction from
scientific literature,” in Human-Computer Interaction and Knowledge
Discovery in Complex, Unstructured, Big Data. Springer, 2013, pp.
160–172.

[16] J. Takis, A. Islam et al., “Crowdsourced semantic annotation of scientific
publications and tabular data in PDF,” in 11th International Conference
on Semantic Systems. ACM, 2015, pp. 1–8.

[17] R. B. Tchoua, J. Qin et al., “Blending education and polymer science:
Semiautomated creation of a thermodynamic property database,” Journal
of Chemical Education, vol. 93, no. 9, pp. 1561–1568, 2016.

[18] R. B. Tchoua, K. Chard et al., “A hybrid human-computer approach to
the extraction of scientific facts from the literature,” Procedia Computer
Science, vol. 80, pp. 386–397, 2016.

[19] H. B. Eitouni and N. P. Balsara, “Thermodynamics of polymer blends,”
in Physical Properties of Polymers Handbook. Springer, 2007, pp.
339–356.

[20] B. Blaiszik, K. Chard et al., “The Materials Data Facility: Data services
to advance materials science research,” JOM, vol. 68, no. 8, pp. 2045–
2052, 2016.

[21] C. Friedman, P. O. Alderson et al., “A general natural-language text
processor for clinical radiology,” Journal of the American Medical
Informatics Association, vol. 1, no. 2, pp. 161–174, 1994.

[22] C. Friedman, G. Hripcsak et al., “Representing information in patient
reports using natural language processing and the extensible markup
language,” Journal of the American Medical Informatics Association,
vol. 6, no. 1, pp. 76–87, 1999.

[23] G. K. Savova, J. J. Masanz et al., “Mayo clinical text analysis and
knowledge extraction system (cTAKES): Architecture, component eval-
uation and applications,” Journal of the American Medical Informatics
Association, vol. 17, no. 5, pp. 507–513, 2010.

[24] “medkat,” http://ohnlp.sourceforge.net/MedKATp, accessed Sep, 2017.
[25] C. Friedman, P. Kra et al., “GENIES: A natural-language processing

system for the extraction of molecular pathways from journal articles,”
in ISMB (supplement of bioinformatics), 2001, pp. 74–82.

[26] L. Chen and C. Friedman, “Extracting phenotypic information from the
literature via natural language processing,” Studies in Health Technology
and Informatics, vol. 107, no. 2, pp. 758–762, 2004.

[27] D. M. Jessop, S. E. Adams et al., “OSCAR4: A flexible architecture for
chemical text-mining,” Journal of Cheminformatics, vol. 3, no. 1, p. 41,
2011.

[28] S. E. Peters, C. Zhang et al., “A machine reading system for assembling
synthetic paleontological databases,” PLoS One, vol. 9, no. 12, p.
e113523, 2014.

[29] C. Zhang, V. Govindaraju et al., “GeoDeepDive: Statistical inference us-
ing familiar data-processing languages,” in ACM SIGMOD International
Conference on Management of Data, pp. 993–996.

[30] “Paleodb,” http://paleodb.org, accessed Sep, 2017.
[31] “Macrostrat,” http://macrostrat.org, accessed Sep, 2017.
[32] M. J. Franklin, D. Kossmann et al., “CrowdDB: Answering queries

with crowdsourcing,” in ACM SIGMOD International Conference on
Management of Data, 2011, pp. 61–72.

[33] B. C. Wallace, A. Noel-Storr et al., “Identifying reports of randomized
controlled trials (RCTs) via a hybrid machine learning and crowdsourc-
ing approach,” Journal of the American Medical Informatics Association,
2017.

[34] J. Brandrup, E. H. Immergut et al., Eds., Polymer Handbook, 4th ed.
Wiley-Interscience, 1999.

[35] L. Chiticariu, Y. Li et al., “Rule-based information extraction is dead!
Long live rule-based information extraction systems!” in Conference on
Empirical Methods in Natural Language Processing, 2013, pp. 827–832.

[36] D. Zhou and Y. He, “Extracting interactions between proteins from the
literature,” Journal of Biomedical Informatics, vol. 41, no. 2, pp. 393–
407, 2008.

[37] F. Rinaldi, G. Schneider et al., “Mining of relations between proteins
over biomedical scientific literature using a deep-linguistic approach,”
Artificial Intelligence in Medicine, vol. 39, no. 2, pp. 127–136, 2007.

[38] M. Krauthammer and G. Nenadic, “Term identification in the biomedical
literature,” Journal of Biomedical Informatics, vol. 37, no. 6, pp. 512–
526, 2004.

[39] M. Krallinger, F. Leitner et al., “CHEMDNER: The drugs and chemical
names extraction challenge,” Journal of Cheminformatics, vol. 7, no. 1,
p. S1, 2015.

[40] R. G. Jones, E. S. Wilks et al., Eds., Compendium of Polymer
Terminology and Nomenclature. The Royal Society of Chemistry,
2009. [Online]. Available: http://dx.doi.org/10.1039/9781847559425

[41] R. C. Hiorns, R. J. Boucher et al., “A brief guide to polymer nomen-
clature,” Polymer, vol. 54, no. 1, pp. 3–4, 2013.

[42] J. Mattia and P. Painter, “A comparison of hydrogen bonding and order
in a polyurethane and poly (urethane- urea) and their blends with poly
(ethylene glycol),” Macromolecules, vol. 40, no. 5, pp. 1546–1554, 2007.

[43] K. Imato, A. Takahara et al., “Self-healing of a cross-linked polymer
with dynamic covalent linkages at mild temperature and evaluation at
macroscopic and molecular levels,” Macromolecules, vol. 48, no. 16, pp.
5632–5639, 2015.

[44] S. Bandi and D. A. Schiraldi, “Glass transition behavior of clay aero-
gel/poly (vinyl alcohol) composites,” Macromolecules, vol. 39, no. 19,
pp. 6537–6545, 2006.

[45] B. E. Mattioni and P. C. Jurs, “Prediction of glass transition temperatures
from monomer and repeat unit structure using computational neural
networks,” Journal of Chemical Information and Computer Sciences,
vol. 42, no. 2, pp. 232–240, 2002.

[46] A. DiBenedetto, “Prediction of the glass transition temperature of
polymers: A model based on the principle of corresponding states,”
Journal of Polymer Science Part B: Polymer Physics, vol. 25, no. 9,
pp. 1949–1969, 1987.

[47] T. Le, V. C. Epa et al., “Quantitative structure-property relationship
modeling of diverse materials properties,” Chemical Reviews, vol.
112, no. 5, pp. 2889–2919, may 2012. [Online]. Available: http:
//pubs.acs.org/doi/abs/10.1021/cr200066h

[48] X. Yu, “Support vector machine-based QSPR for the prediction of glass
transition temperatures of polymers,” Fibers and Polymers, vol. 11, no. 5,
pp. 757–766, 2010.

[49] V. V. Fedorov, Theory of optimal experiments. Elsevier, 1972.
[50] A. F. Emery and A. V. Nenarokomov, “Optimal experiment design,”

Measurement Science and Technology, vol. 9, no. 6, p. 864, 1998.
[51] V. Fedorov, “Optimal experimental design,” Wiley Interdisciplinary

Reviews: Computational Statistics, vol. 2, no. 5, pp. 581–589, 2010.

118118


