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Opportunities and Challenges in Implementation
of Multiparameter Single Cell Analysis Platforms
for Clinical Translation

Susan M. Keating1, D. Lansing Taylor2, Anne L. Plant3, E. David Litwack4, Peter Kuhn5, Emily J. Greenspan6,
Christopher M. Hartshorn7, Caroline C. Sigman1, Gary J. Kelloff7, David D. Chang8, Gregory Friberg9, Jerry S. H. Lee6,∗
and Keisuke Kuida10,∗

The high-content interrogation of single cells with platforms optimized for the multiparameter characterization of cells in liquid
and solid biopsy samples can enable characterization of heterogeneous populations of cells ex vivo. Doing so will advance the
diagnosis, prognosis, and treatment of cancer and other diseases. However, it is important to understand the unique issues in
resolving heterogeneity and variability at the single cell level before navigating the validation and regulatory requirements in
order for these technologies to impact patient care. Since 2013, leading experts representing industry, academia, and govern-
ment have been brought together as part of the Foundation for the National Institutes of Health (FNIH) Biomarkers Consortium
to foster the potential of high-content data integration for clinical translation.
Clin Transl Sci (2018) 00, 1–10; doi:10.1111/cts.12536; published online on yyyy-mm-dd.

Precision medicine is moving cancer treatment from etiolog-
ical and histological parameter-based treatments to those
that target specific key molecular drivers of disease in a
time-resolved fashion. To arrive at actionable end points,
representative subsamples of the disease tissue andmultipa-
rameter measurements are required to accurately profile tis-
sues at the single cell level to describe the relevant biological
unit of disease. Bulk measurements must assume a normal
distribution of data points. Thus, given the possible spatial
and temporal heterogeneity of tumors with morphological,
biochemical, physical, and genetically different subpopula-
tions, coupled with the capacity for cell evolution,1,2 the true
variation of cellular features in the populationmay bemasked
if the measured responses from cells are averaged across
cell populations, limiting the ability to detect and target rel-
evant biomarkers.3 For example, in solid tumors, the tumor
is a “system” within the organ that includes normal cells,
cancer cells exhibiting a range of genetic alterations, stromal
cells, including fibroblasts, vasculature cells, and immune
cells, such as dendritic cells, granulocytes, macrophages,
and lymphocytes that are critical to the development, pro-
gression, metastasis, and response to therapy, for both
standard cytotoxic chemotherapy and immunotherapy. The
value in analyzing single cells as biological units of disease
to more accurately record the individual and range of cellular
responses is increasingly recognized, as is the value of
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multiparameter single cell analysis that can be obtained
using next-generation technologies. This includes iden-
tification of rare genetic mutations within a tumor, better
understanding of signaling and metabolic pathways, and
prediction of the optimal treatment regimens to prevent
tumor regrowth.4–6 Next-generation technologies are defined
here as methods that permit medium to high throughput, and
multiparameter analyses of either fixed or living, single cell
morphometric, genomic, proteomic, and/or metabolomics
characteristics. Significant challenges include the deconvo-
lution of biological variation from technical uncertainty, the
computational analysis of biological variations over time and
space, and the integration of single cell genomic, proteomic,
and metabolic data.
High-content platforms were initially built over 2 decades

ago for drug discovery screening with a focus on the
temporal-spatial dynamics and heterogeneity among cells
by making measurements on each cell in a population.7,8

Since they were first introduced, high-content systems have
been further developed to incorporate advances in optical
contrast physics, automated microscopy systems, image
analysis software, fluorescence-based reagents, and com-
putational methods. They are often coupled with other plat-
forms, such as next-generation sequencing for genomic
profiling of cells and/or imaging mass cytometry, and
are deployed as large-scale information-based tools.9 The
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Table 1 Examples of new technologies capable of clinical single cell analysis

Technology platform Developer / sponsor Description Data elements

HD-SCA Peter Kuhn, University of
Southern California /
Commercialization: Epic
Sciences, San Diego, CA

Imaging platform for multiplex single cell
measurements, imaging, immunofluorescence
labelling. Individual cells can be picked for DNA
sequencing. Slides can also be subjected to laser
ablation for imaging mass cytometry for spatial
resolution of proteins (Fluidigm, South San
Francisco, CA).52

� Cell images:
� Cell and nuclear

morphology
� Selected cell and nuclear

protein expression (2–3
immunofluorescence
label intensity)

� Multiplex protein
expression (4–37)

� Single cell DNA sequencing

SMR Scott Manalis / Massachusetts
Institute of Technology

Single-cell mass accumulation rate real-time
measurements over short time frames (20 min). Ex
vivo evaluation of patient samples provides
evidence as to the range in responses from a
patient’s tumor cells to a drug, including
development of resistance.53

� Time-stamped single-cell
mass (changes)

� Additional, protein
expression54

MxIF
GE commercial name for
imaging platform: Cell Dive

GE Global Research and Lans
Taylor & Chakra
Chennubhotla / University of
Pittsburgh

Sequential fluorescent labeling of slides with
antibodies, DNA and RNA probes, imaging for
“hyperplexed” (>7 biomarkers up to ca. 60)
fluorescence imaging for quantitative, single-cell,
and subcellular characterization of analytes in
formalin-fixed paraffin-embedded tissue coupled
with spatial statistical methods to define
microdomains.24,25

� Cell images
(immunofluorescence label
intensity):
� Protein expression
� RNA
� DNA
� In situ hybridization

SCBC James Heath / California
Institute of Technology

Multiplex quantitative protein expression, secretion,
and intracellular signaling, from single cells.
Dissociated cells are introduced into
microchambers containing miniature
antibody-DNA-barcoded microarrays. Analyte
detection using miniature ELISA measurement and
quantitation methods.42,55,56

� Cell-based
(immunofluorescence label
intensity) >20 protein
expression

Mass spectrometry imaging Garry Nolan / Stanford
University

Single-cell analysis utilizing mass spectrometric
measurement of metal elements tagged to
antibodies. Individual antibody-bound cell is
vaporized, ionized, and analyzed on a mass
spectrometer.57

� Simultaneous quantification
of 50 mass tags (markers)

CAFE MiCells David Andrews / Sunnybrook
Research Institute

Automated high-content image analysis using
nontoxic, cell permeable dyes58

� Visualization of cell states
and outcomes of treatment

CAFÉ MiCells, classification and automated feature extraction of micrographs of cells; ELISA, enzyme-linked immunosorbent assay; HD-SCA, high definition
single cell analysis; MxIF, MultiOmyx; SCBC, single-cell barcode chip; SMR, suspended microchannel resonator.

multiparameter information available in these systems is
starting to be more fully exploited in in vitro and ex vivo set-
tings to understand the biology of clinical samples. Further-
more, the definition of high-content has evolved to include
the methods defined above as next-generation technologies
that apply to genomic, proteomic, and/or metabolomic mea-
surements that are based on single cell, usually extensive,
multiparameter measurements.
The High-Content Data Integration (HCDI) working group

was formed in early 2013 out of the Foundation for the
National Institutes of Health (FNIH) Biomarkers Consor-
tium Cancer Steering Committee (a public-private partner-
ship) to evaluate emerging technologies (other than those
for sequencing) that use advanced acquisition and anal-
ysis of single and bulk cell populations for development
of tailored signatures that can assist in patient stratifi-
cation and identification of patient responses to treat-
ment. The HCDI working group has discussed platforms for

patient sample single-cell analysis, such as those listed in
Table 1, while considering key challenges and critical ques-
tions concerning real-world development and translational
potential of these types of platforms, as listed in Table 2.
In this article, the challenges encountered with newly evolv-
ing high-content measurement systems are illustrated with
examples of two platforms, the first, the High Definition Sin-
gle Cell Analysis (HD-SCA) workflow, optimized for iden-
tifying and characterizing rare cells in liquid biopsy sam-
ples and the second, the MultiOmyx Immunofluorescence
(MxIF), for enabling “hyperplexed” measurements of pro-
teins and nucleic acids in single cells or in tissues. Cre-
ation of effective approaches to the challenges discussed
here can enable characterization of heterogeneous popula-
tions of cells ex vivo, the search for agents to treat cancer
and other diseases, and identification of characteristics use-
ful for more precise diagnosis of disease and therapeutic
development.

Clinical and Translational Science
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Table 2 New technology platform translational potential checklist

� What are the possible translational or clinical research applications?
� Does the method meet an unmet medical need or significantly improve

on existing technology? Any competition?
� Provide technical description as needed (critical hardware and software

components; time for data acquisition; data analysis parameters;
platform requirements; etc). Are there redundant instrument/systems?

� Are there any unusual sample requirements (blood or tissue, shipping,
pre-analytic processing, storage conditions, stability, etc)?

� Describe the statistical analysis used; verification/validation of the
routine.

� What analytical verification/validation studies; clinical validation;
correlation studies have been done? What method is used for
comparison?

� Are there other studies/publications using the method?
� What is the intellectual property status? Are there other stakeholders in

the technology?
� What facilities are required to run the test? Will samples be run in an

academic or CLIA-certified laboratory; distributed or in a single
location?

CLIA, Clinical Laboratory Improvement Amendment.

MULTIPARAMETER CHARACTERIZATION OF
CIRCULATING VS. SOLID TUMOR CELLS

Circulating tumor cells (CTCs) are viable tumor-derived cells
that exist in the peripheral blood of patients with cancer in
very low concentrations (as low as �10–8/mL). The CTCs
extravasate into the bloodstream and circulate; they may
form secondarymetastases, self-seed, or remain in the circu-
latory system until clearance.10–13 These cells are an acces-
sible source of nonhematological tumor cells and, along with
circulating nucleic acids, are components of what are termed
liquid biopsies, which are increasingly being recognized as
potentially valuable noninvasive tools for temporal charac-
terization of a patient’s tumor (including the constituent het-
erogeneity), because they can be isolated and characterized
from a noninvasive blood draw.14,15 One significant barrier
to translation of CTC detection platforms to clinical use is
the understanding of the relationship of biological signatures
found in CTCs to those of solid tissue-derived tumor cells
to support the use of liquid biopsies in place of the more
invasive and expensive solid tissue biopsies. One approach
to overcome this hurdle is the analysis and comparison of
biomarkers measured from isolated single cells from solid
tissue and CTCs using a common platform. The HCDI work-
ing group worked with the Kuhn group at the University of
Southern California and FNIH to design and fund a project,
the High Definition Single Cell Analysis of Blood and Tissue
Biopsies in Patients with Colorectal Cancer undergoing Hep-
atic Metastasectomy (HD-SCA), to investigate the correla-
tion between single-cell-based biological signatures of liquid
biopsies, particularly CTCs and solid tumor tissue. One of the
outcomes of this project will be to demonstrate the advan-
tage of single cell, CTC-based biomarkers to assist in laying
the foundation for subsequent studies to define clinical utility
of liquid biopsy-based biomarkers.
The HD-SCA platform developed by Kuhn and

colleagues16,17 is a single-cell direct imaging analysis
system that can be used for morphometric, proteomic, and
downstream genomic characterization of any rare cell from

either the fluid phase or solid tissues with the flexibility
to probe for any combination of markers needed to char-
acterize specific populations of cells. This workflow then
can be used to generate highly multiplexed data points
derived from any combination of the morphologic, genomic,
and proteomic (4–37 proteins with copy number variant
and single nucleotide variation) measurements. As shown
in Figure 1, all nucleated cells from a liquid biopsy are
immunofluorescently labeled for high resolution digital imag-
ing, providing detailed nuclear and cytoplasmic features for
morphological and protein expression measurements. The
location of a specific cell of interest on a slide is registered
so that the cell can be selected for molecular analysis,
including genomic sequencing, targeted proteomics, and
other measurements.17–19 Moreover, a number of slides are
generated from each patient sample so that each sam-
ple can be stained multiple times for analysis of different
parameters.

HYPERPLEXED FLUORESCENCE MEASUREMENTS OF
THE CELLULAR AND SUBCELLULAR EXPRESSION
LEVELS AND SPATIAL RELATIONSHIPS BETWEEN
TUMOR BIOMARKERS IN TISSUE SECTIONS

A goal of high-content and all image cytometry methods is
to increase the number of biomarkers that can be measured
within the same cells and tissues so that the complexity of
intracellular interactions and intratumoral heterogeneities
can be defined in greater molecular detail within the physical
context or architecture of the tumor “system.” A number of
approaches have been developed to address this goal from
multiplexed fluorescence, with up to seven distinct fluores-
cent probes applied to the same sample, to hyperplexed
fluorescence, using more than seven separate images of
biomarkers in the same sample (reviewed in ref. 9). Extensive
literature exists on the development of multiplexed and more
recently hyperplexed fluorescence methods for tissue analy-
ses, including instrumentation, software, and bioinformatics
tools that can be used in the development of diagnostic
tests.9,20–23 The ability to measure many parameters in large
numbers of tissue samples has propelled these assays into
the realm of big data challenges for the future.
One platform that exemplifies this approach evolved in

collaboration among General Electric Global Research and
the Taylor/Chennubhotla Laboratories at The Drug Discov-
ery Institute, and the Department of Computational and
Systems Biology at the University of Pittsburgh (Figure 2).
MxIF is a fluorescence imaging technology that allows up
to 60 fluorescent protein biomarkers, typically antibodies,
to be analyzed in situ on a single formalin-fixed, paraffin-
embedded tissue section.24 Using single or multiplexed
(from 2–7 biomarkers) or hyperplexed (>7 biomarkers), the
expression levels and subcellular locations of proteins can
be quantified in tissue sections. DNA and RNA fluores-
cence in situ hybridization (FISH) may also be conducted
on the same sample, thus providing additional -omic mea-
surements. MxIF involves a series of sequential labeling,
imaging, and dye inactivation steps so that a large num-
ber of different biomarkers can be measured with only
a few fluorophores. Spatial statistical methods are then

www.cts-journal.com
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Figure 1 The high definition single cell analysis (HD-SCA) generic temporal and spatial analysis. The HD-SCA workflow is a single-cell
analysis system generating morphometric, proteomic, and genomic characterization of any rare cell from either liquid (blood draw or bone
marrow aspirate) or solid tissue biopsy.17,19,52 Representative circulating tumor cells (CTCs) and solid tissue samples from patients with
cancer are isolated and imaged using the same HD-SCA system. Blood cells after red blood cell depletion and tissue cells obtained from
touch preparations of either metastases or primary tumor are plated. Slides with nucleated blood cells and cell monolayers from touch
preparations are immunofluorescently labeled in the same batch in three wavelengths, and the resultant stained slides are imaged at
40× magnification to generate high-resolution digital images with detailed nuclear and cytoplasmic features for morphological cellular
characteristics and protein expression. Captured CTCs are classified as CK+ (red), CD45– (green) cells of epithelial origin with an intact,
nonapoptotic-appearing nucleus by DAPI (blue) imaging, morphologically distinct from surrounding white blood cells by shape and/or
size. Cells of interest can be picked individually and isolated for single-cell genomic copy number alteration (CNA) or targeted proteomic
analysis via imaging mass cytometry.

applied to the digital images to define the extent of het-
erogeneity and to identify tumor microdomains.25 The sin-
gle cell analysis capability was originally demonstrated in
the analysis of 700 patients with colorectal cancer with dif-
fering phosphorylation of ribosomal protein S6.24 Mutually
exclusive phosphorylation patterns of the two canonical sub-
strates of mTORC1 (S6K1 and 4E-BP1) were observed in
individual cells, large regions of most tumors, and in dis-
tinct cell lineages, demonstrating differential pathway acti-
vation. In the research setting, MxIF has also been applied
to evaluate signaling pathway changes in mouse salivary
glands,26 estrogen receptor (ER), progesterone receptor (PR),
human epidermal growth factor receptor 2 (HER2), and
Ki67 colocalization in breast cancer,27 and other single-cell
analyses.28,29

The future of targeted multiplexed and hyperplexed fluo-
rescence using platforms, such as MxIF, is very promising
for basic research, including defining pathways of cancer
evolution using “spatial proteomics” to directly map path-
ways inferred from genomics and proteomics approaches,
and defining the microdomains of cancer within the native
architecture, stromal and immune cell interactions that influ-

ence drug treatments, drug discovery/development, and
diagnostics (Figure 2). The platform is valuable for iden-
tifying the optimal/minimal combination of biomarkers that
could be incorporated into a smaller number of biomarkers
for multiplexed tissue-based diagnostic tests and biomark-
ers for drug development.30 Hyperplexed fluorescence with
the MxIF using panels of biomarkers tailored to the cell types
will be an important platform to define the functional inter-
play between the cells in the tumor microenvironment and
to define the response to therapeutics when combined with
automated machine learning software tools to identify and to
quantify spatial patterns of biomarkers that reflect the hetero-
geneity of disease.

An alternative approach is imaging mass cytometry, as
implemented on Fluidigm’s Hyperion Imaging System. Anti-
bodies are mass-tagged with metal labels and, after incu-
bation of liquid or solid biopsy samples on standard micro-
scope slides, a region of interest is selected, laser ablated,
and the atomized sample injected into a time of flight mass
spectrometer. By calculating the slide position, this approach
yields a 1micron spatial resolution of the sample with 4–37 or
more proteins simultaneously. This concept is currently being

Clinical and Translational Science
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Figure 2 Pointwise mutual information (PMI) for quantifying spatial heterogeneity. (a) A pseudo-colored multichannel fluorescence image
labeled iteratively by the MultiOmyx platform is shown for an estrogen receptor (ER)+ invasive ductal carcinoma from a tissue microar-
ray. Three biomarker channels were used to demonstrate the approach: HER2 (red), ER (blue), and PR (green), although this method
can be scaled for >50 biomarkers. Areas of PR/ER co-activation will appear in cyan, HER2/ER co-activation in magenta, and PR/HER2
co-activation in yellow. The upper and lower arrows indicate heterogeneous tumor microdomains with higher than average ER+/PR+
phenotyped cells and mostly ER+ cells, respectively. (b) Machine learning methods can be used to identify dominant cellular pheno-
types from biomarker expression patterns over an entire tissue microarray, which in this case were eight. Each cell is then classified
with the most similar dominant phenotype. (c) In order to represent the tumor topology, a spatial network of the cells in each tissue
microarray spot or whole tissue section is constructed, in which each cell has the ability to communicate with nearby cells up to a
certain limit, 250 μm,59 and the communication propensity is assumed to be inversely proportional to the cellular distance. (d) PMI
quantifies the statistical associations, both linear and non-linear, between each pair of cellular phenotypes. In particular, PMI calculates
the logarithmic joint probability of finding a particular pair of cellular phenotypes occurring in close proximity, relative to the probabil-
ity of these phenotypes co-occurring at random. (e) By referencing a specific interaction pair in the PMI plot, one can interrogate the
network subgraphs/motifs that contribute to the PMI dependencies. A PMI map with strong diagonal entries and weak off-diagonal
entries describes a globally heterogeneous but locally homogeneous tumor. On the contrary, a PMI map with strong off-diagonal entries
describes a tumor that is locally heterogeneous. (f) An example TMA spot with three locally heterogeneous tumor microdomains denoted
by the off-diagonal entries in the PMI map, containing phenotypes 1 and 6, 2 and 4, and 3 and 8. PMI maps can also portray anti-
associations (e.g., if phenotype 1 never occurs spatially near phenotype 3). The ensemble of associations and anti-associations of varying
intensities along or off the diagonal represent the true complexity of tumor images in a format that can be summarized and interrogated.
PMI maps are predicted to become diagnostic and prognostic biomarkers.

integrated into various basic science and clinical research
workflows.

UNIQUE CHALLENGES AND OPPORTUNITIES POSED
BY SINGLE-CELL ANALYSIS VARIABILITY

Single-cell science attempts to measure the biological het-
erogeneity across cell populations to provide a quantitative
description of the overall biological state or disease state.
Biological heterogeneity can bemanifested in a population of
cells by the observation of a range of phenotypes even when
the population of cells and the environment are nominally
homogeneous. This heterogeneity can be due to stochastic
fluctuations in molecular events, as well as extrinsic effects,
including the effect of nearby cells.31 Biological heterogene-
ity, and the dynamics of how heterogeneity arises in a pop-
ulation, can be used to develop theoretical constructs for
understanding control mechanisms and predicting popula-
tion dynamics,32,33 and provide a better understanding of
intracellular pathways, control systems, and mechanisms
that determine disease progression.
Biological heterogeneity cannot be assessed unless

the technical variability in the measurement can be

independently determined. Analytical methods, such as
Western blots or enzyme-linked immunosorbent assays or
other solution-based assays, provide a single value that rep-
resents an average over all the cells in the population. When
using such techniques, single-cell data that report on biolog-
ical heterogeneity are lost, although replicates of the experi-
ment can provide information about measurement variability.
Single-cell methods for transcriptomics can provide informa-
tion about biological variability between cells, but the data
are convoluted with measurement variability unless dupli-
cate or triplicate measurements can be made on each cell.
This is often impossible for single cell transcriptomics; repli-
cate measurements are not typically accessible because of
the quantity of samples and the limits on the sensitivity
of the technique. Determining how to best address mea-
surement uncertainties under this situation becomes a chal-
lenge. A number of approaches are being considered for
assuring confidence in these measurements, including the
use of the External RNA Controls Consortium (ERCC) spike-
in material34,35 to provide a metric of accuracy for those
known sequences. Other approaches include the use of
Bayesian statistics to assess real differences in the presence
of dropout events36 that occur due to the low amount of RNA

www.cts-journal.com
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in cell samples and result in detection of the gene in some
cells and not in others. When the apparent heterogeneity in
gene expression is simply due to technical issues, the data
can lead to erroneous conclusions of biological heterogene-
ity. Other methods include the use of unique molecular iden-
tifiers in the primers for counting individual transcripts.37 In
cases in which replicate measurements can be performed,
such as has been shown with single cell proteomics,38 dupli-
cate proteomic measurements from individual cells can be
performed. Such replicate measurements can result in quan-
tification of the technical error in the measurement, and
unambiguous determination of whether the values measured
from one cell are significantly different from the values mea-
sured for another cell.
Technologies, such as nondestructive microscopic imag-

ing of individual cells, can have an advantage over other ana-
lytical methods, because it is possible to generate multiple
samplings of the same field of view to provide a measure
of instrument noise, such as shot noise, lamp fluctuations,
and photobleaching. An automated routine that operates
within open source software provides an easy way to qualify
instrument performance to assess such operational figures
of merit and to provide instrument calibration.39 The relative
contribution of these sources of uncertainty can be
compared with other aspects of the measurement and
determined to be significant contributors to be quantified, or
not significant contributors and can be safely ignored. Other
aspects of the measurement that can add significantly to
uncertainty include sampling, handling, and reagents. The
aggregate of these contributions can be determined by com-
parison of the distribution of responses provided by replicate
measurements as described in ref. 40, in which the width of
the distribution of cell phenotype reflects biological hetero-
geneity and the variation between replicate measurements of
the population distribution reflects measurement uncertainty.
Using sufficient care to quantify measurement uncertainty
allows deconvolution of biological heterogeneity and mea-
surement uncertainty, and biological heterogeneity can be
unambiguously determined. Accurate quantification of het-
erogeneity requires sampling of the appropriate number of
cells; the more disperse the population phenotype the larger
the number of cells that must be sampled to accurately rep-
resent the population.
Time-resolved dynamic data on individual cells within a

living cell population are uniquely accessible through imag-
ing. Examining differences in dynamics of processes, such
as promoter activation in a large number of individual cells,
provides determination of variations in rates of fluctuations
in cellular responses and epigenetic effects, and assists
in choosing appropriate theoretical treatments.33 Dynamic
data can also confirm stability in gene expression, such as in
stem cell colonies, and the spatial location of the expressed
gene within colonies. Such analysis can also allow detection
of rare events.41 Longer-term time-dependent measure-
ments of cell populations by imaging or flow cytometry can
indicate whether population heterogeneity is the result of
stochastic fluctuations within individual cells or is due to
genomic differences within the population. A distribution in
cellular responses within a population due to stochastic fluc-
tuations will be stable or stationary over time. In this case, a

selected “subpopulation” will relax back to the original broad
distribution after a number of passages because each cell
belongs to the same distribution of probable phenotypes.33

A population that is composed of true subpopulations
that are genetically distinct will diverge according to the
relative rates of proliferation of the genetically distinct cell
populations.

Although measurement uncertainty cannot be eliminated,
it can be mitigated by good experimental design and
protocols, as discussed in Table 3. Mitigation of measure-
ment uncertainty can be achieved in single-cell measure-
ments by appropriate control experiments in the evaluation
of the single-cell barcode chip for proteomics analysis.42 This
group utilized well-characterized recombinant proteins for
calibration and defining the dynamic range of different pro-
tein assays and simulation based on known physical princi-
ples applied to the device to estimate measurement errors
from locations of cells.

VALIDATION AND REGULATORY CONSIDERATIONS

Although tests that leverage CTC platforms (i.e., platforms
or systems that identify and isolate CTCs; the entire in
vitro diagnostic (IVD) will be referred to as a “CTC test”)
remain largely in the research and development phase, their
diagnostic potential is clearly on the horizon. Widespread
adoption of these tests in the clinic will require studies to
demonstrate analytical and clinical validity for appropriate
marketing authorization,43,44 as well as clinical utility stud-
ies for adoption and reimbursement.45 Early consideration of
regulatory requirements may make a large difference in
reducing later potential regulatory challenges, many of which
may be related to the platforms used to isolate CTCs or,
if applicable, the high content methodology used for CTC
analysis.

When reviewing a premarket submission for an IVD, the
US Food and Drug Administration (FDA) typically evaluates
data establishing the analytical and clinical validity of the IVD
in the context of its proposed intended use. The types of
studies necessary for marketing authorization will depend on
the details of the diagnostic platform that is eventually devel-
oped. An open question is: what role will high-content sys-
tems play in future diagnostic tests?

Currently, research using high-content assays that use
CTC platforms aim to identify new biomarkers for CTCs. If
a discrete number of biomarkers are identified, IVDs that
usemore traditional techniques (e.g., antibody staining, poly-
merase chain reaction, etc) to detect those same biomark-
ers may be developed for a specific clinical use. In this
scenario, the analytical and clinical validity of the assay
could be demonstrated for each analyte that is detected.
To date, the only CTC test that has been authorized by the
FDA is the CellSearch Circulating Tumor Cell Kit, which is
intended for the enumeration of CD45- EpCAM+ CK+ CTCs
in whole blood for monitoring patients with metastatic breast,
prostate, and colorectal cancer (see ref. 46 and related IVDs).
The review of this product involved evaluation of the analyti-
cal and clinical validity of a well-defined analyte (e.g., a spe-
cific biomolecule or set of biomolecules) for specific clinical
conditions.

Clinical and Translational Science
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Table 3 Single cell measurement challenges and strategies for reducing uncertainty and increasing confidence

Challenge Strategy

Measurements of biological
response to environmental
conditions

� Measure sufficient numbers of cells to assure adequate sampling of
population diversity (heterogeneity)

� Use appropriate statistics for comparison (e.g., cumulative distributions,
not means)

� Both the mean response and the shape of the distribution of responses
may change in response to treatment.

� Use appropriate positive and negative controls.
� Compare the results from orthogonal analytical methods: different

methods should return similar responses.
� Measure response function (concentration or time dependence) to test for

a systematic effect.

Distinguish inherent biological
heterogeneity from
measurement variability

� Measurement variability � Quantify the uncertainty due to variability (e.g., SD) in the measured value
due to instrument response. Measure within day (repeatability) and
day-to-day (reproducibility).

� Test the sources of measurement variability (technicians, reagents,
environment, algorithms, protocols), and try to mitigate them.

� Quantify the variation in results from the same sample on different
platforms

� Biological heterogeneity due to
stochastic fluctuations

� Test the stability of the distribution of the population characteristic or
phenotype.

� Measure similar distributions from repeated measurements of the
population over long time intervals

� Sorted “subpopulations” will relax over time in culture to a stable
distribution similar to the original distribution

� “Subpopulations” are genetically identical
� Biological heterogeneity due to

genetic/genomic differences

� Population phenotypic heterogeneity diverges over time in culture
� Subpopulations have transcriptomic and genomic differences

Minimize uncertainty in
measurement variability

� Assess instrument performance with benchmarking materials for signal to
noise, linearity of response, limit of detection and saturation

� Use control materials (e.g., spike-in RNA into transcriptomic samples) to
test and compare assay platform response and to assess technical
proficiency

� Use control materials to test and optimize protocols for accuracy,
precision, sufficient dynamic range, sensitivity, specificity, and robustness
to small protocol changes

� Test and compare algorithms for robustness and accuracy against ground
truth (if available)

Another possibility may be the development of a clini-
cal test that produces as its reportable output high content
data from single cells with too many targets to validate inde-
pendently. For instance, genome sequencing of single CTCs
may help address issues of tumor heterogeneity in a patient
with cancer when selecting an appropriate therapy (e.g.,
identifying rare cells that carry actionable somatic muta-
tions). In such cases, special challenges related to the unique
features of high-content tests will need to be addressed,
including the demonstration of analytical and clinical valida-
tion of high-density data from rapidly evolving technologies;
the possibility of unlimited (unique) results, with unknown
clinical significance that are, therefore, open to interpre-
tation; and the identification and availability of appropri-
ate reference methods and clinical samples for demonstra-
tion of analytical reliability and variation across all possible
outputs.
In either case, it will be important for developers to plan

ahead on how to demonstrate analytical and clinical perfor-
mance for regulatory clearance or approval. Below, we out-
line some of the key issues that should be considered as early
as possible.

Analytical validity
Analytical validity is the ability of a test to measure or detect
a particular analyte (e.g., analytical specificity, limit of detec-
tion, analytical accuracy, precision, and robustness). Tra-
ditionally, for any type of assay that simultaneously mea-
sures multiple analytes, manufacturers must demonstrate
that the test is analytically valid for each analyte. Because
high-content tests are designed to simultaneously assess a
very large number of analytes, a complete demonstration of
analytical validity may not be feasible. In some such cases,
the FDA has allowed representative analytical performance
encompassing the type of variants and analytical challenges
that could be encountered during use of the instrument or
assay, and inferred overall performance from this represen-
tative subset (e.g., Illumina MiSeqDx Cystic Fibrosis Clinical
Sequencing Assay).47

Clinical validity
Clinical validity is the association between the test result
and a disease or condition, and is commonly described in
terms of diagnostic accuracy. Test performance is commonly
reported as clinical sensitivity and specificity, and/or positive
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or negative predictive value. Clinical validity for IVDs can be
established using a variety of approaches, such as clinical
studies or from evidence in the literature. This is often not
possible for high-content assays. Because they can simulta-
neously detect a large number of markers, such assays fre-
quently detect rare or novel biological variation. Therefore,
high-content data can often be used to divide patients with a
given diagnosis into small, or even private, subsets defined
by specific markers (e.g., rare genetic variants). With very
low prevalence markers, it is difficult to perform clinical stud-
ies to definitively demonstrate clinical validity, and published
evidencemay be limited or not available. In such cases, other
sources of evidence may be considered, provided the evi-
dence is appropriate for the intended use of the IVD. For
instance, one strategy that was successful in the clearance
of the Illumina MiSeqDX Cystic Fibrosis 139-Variant Assay48

was to leverage information from the cystic fibrosis trans-
membrane conductance regulator CFTR2 database49 which
is a high quality, well curated database that aggregates evi-
dence from patients around the globe to establish the link
between specific variants in the CFTR gene and the disease.
The applicability of this strategy to other IVDs will depend
on a number of factors, and may not be suitable for every
situation.
The following additional issues should be considered

for regulatory clearance or approval of IVDs incorporating
single-cell platforms, whether or not they included a high-
content component.

Pre-analytical variables
The term “pre-analytical” variables refers to all factors that
may affect a specimen or sample before it enters the analyt-
ical process. No matter how complete analytical and clinical
validation for an assay is, if there is not confidence that the
sample being analyzed actually reflects what is happening in
the patient, then the results will be meaningless. Often times,
especially in oncology and related fields, specimen collec-
tion, handling, and processing (CHP) variables are the most
important of these pre-analytical variables to consider. For
example, what conditions (e.g., ischemia time) will be present
at the time of surgery/resection? What will be the tempera-
ture range used for sample processing, shipping, and stor-
age? In certain cases, it may be beneficial to undergo certain
biospecimen-based or pre-analytical variable experiments to
define the optimal collection, handling, and processing vari-
ables for the system, and ultimately produce best-practice
guidelines that the rest of the field can use.

Specimens
Early planning should also take into account the need
for adequate specimens that represent the analytes to be
detected by the test. Given that high-content assays will
likely identify rare markers, it is often not possible to obtain
specimens representing all possible analytes that could be
detected. In such cases, it may be possible to use contrived
samples in lieu of some patient specimens, provided there
are data to demonstrate that the operational behavior of the
contrived samples is similar to that of clinical specimens.
Where applicable, the need for separate training and valida-
tion sets should be factored in.

Reference materials and performance standards
One of the common challenges when developing new high-
content tests is the lack of available reference materials and
performance standards for assessing analytical and clinical
error rates. For this reason, collaborative efforts involving
multiple stakeholders, including the FDA, National Institutes
of Health, the National Institute of Standards and Technol-
ogy (NIST), the Centers for Disease Control and Prevention
(CDC), academia, and industry are critical for development
of performance standards and reference materials for all
types of next-generation platforms, including both imaging
and nonimaging methods, and for standardizing file formats
and other aspects of informatics associated with these plat-
forms. Such efforts are already beginning to yield results. For
instance, the high-confidence calls produced by the National
Institute of Standards and Technology through the Genome
in a Bottle (GIAB) Consortium50 are widely used as stan-
dard reference materials for validation of next-generation
sequencing-based tests. However, those sequences do not
currently cover many of the medically relevant variants that
will be detected using genomic tests and additional work is
being done by the GIAB Consortium, the FNIH, and other
efforts to address this. For other technologies, it is impor-
tant for developers to assess whether reference materials
and standards are available and, if not, what alternative
strategies can be used to establish analytical validity in their
absence. In the absence of reference materials, confirmation
of results by a validated orthogonal method may be used to
benchmark test performance.

DISCUSSION

It is becoming apparent that cancer is an evolutionary pro-
cess of genetic, epigenetic, molecular, and physical-based
alterations that manifests as heterogeneity across a tissue
or development of resistance to therapeutic interventions
over time. Clinical treatment decisions are often made based
upon bulk measures of bone marrow blasts or size of a
tumor mass on a computed tomography scan, leaving a
vast amount of biologic information on the table that could
theoretically be leveraged for the good of the patient. The
ability to sample the cancer cells throughout the course of
treatment and disease progression, and assay multiple func-
tional changes simultaneously with the platforms, such as
those described in this paper, may enable better and quicker
detection of these changes and the ability to improve ther-
apeutic interventions for disease management. The plat-
forms profiled here are examples of instruments that translate
high-content information out of the research laboratory to the
clinical research setting for characterization and monitoring
of single cells in tissue or blood. They go beyond enumera-
tion of assay end points to enable profiling of heterogeneous
cell populations. As such, the systems could be exploited in
the drug development and clinical arenas not only for in vitro
evaluations guiding clinical decisions, but also ex vivo stud-
ies, such as assessing target activity, probing for clinically
relevant targets, and characterizing cancer cell and tumor
heterogeneity.

Because these multiparameter systems can involve com-
plicated analytic signatures, one of the keys to translation
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of these new tools into the clinic will be in the care-
ful attention to deconvolution of biological and instrument
variability, and demonstration of analytical performance. In
addition, demonstration of the biological significance and
usefulness of an analysis is key. Furthermore, it is impor-
tant to pay thoughtful attention to a developmental regulatory
strategy, including early determination of the intended use of
the platform, which will lead to successful development, vali-
dation, regulatory authorization, and clinical use. The process
of making such multi-analyte platforms and complex anal-
ysis more generally available, such as through commercial
clinical assay systems, may present interesting challenges.
An understanding of the path to market for next-generation
sequencing platforms and other complex clinical systems51

can inform that process, as more of these multiparameter,
complex technological platforms will undoubtedly make their
way to into the clinic.
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