
Cryptography Classes in Bugs Framework (BF):
Encryption Bugs (ENC), Verification Bugs (VRF),

and Key Management Bugs (KMN)

Irena Bojanova; Paul E. Black
NIST, Gaithersburg, USA

irena.bojanova@nist.gov, paul.black@nist.gov

Yaacov Yesha
NIST, Gaithersburg, USA; UMBC, Baltimore, USA

yaacov.yesha@nist.gov

Abstract—Accurate, precise, and unambiguous definitions of
software weaknesses (bugs) and clear descriptions of software
vulnerabilities are vital for building the foundations of
cybersecurity. The Bugs Framework (BF) comprises rigorous
definitions and (static) attributes of bug classes, along with their
related dynamic properties, such as proximate, secondary and
tertiary causes, consequences, and sites. This paper presents an
overview of previously developed BF classes and the new
cryptography related classes: Encryption Bugs (ENC),
Verification Bugs (VRF), and Key Management Bugs (KMN). We
analyze corresponding vulnerabilities and provide their clear
descriptions by applying the BF taxonomy. We also discuss the
lessons learned and share our plans for expanding BF.

Keywords—software weaknesses; bug taxonomy; attacks.

I. INTRODUCTION
Advances in scientific foundations of

cybersecurity rely on the availability of accurate,
precise, and unambiguous definitions of software
weaknesses (bugs) and clear descriptions of software
vulnerabilities. The myriad unprecedented attacks
and security exposures, including on Internet of
Things (IoT) applications, calls for serious efforts
towards such formalization.

To provide a foundation, we are developing the
Bugs Framework (BF) [1], which organizes bugs into
distinct classes, such as buffer overflow (BOF),
injection (INJ), faulty operation (FOP), and control of
interaction frequency bugs (CIF). Each BF class has
an accurate and precise definition and comprises:
level (added after [1]), causes, attributes,
consequences, and sites of bugs. Closely related
classes may be grouped in clusters. Level (high or
low) identifies the fault as language-related or
semantic. Causes bring about the fault. At least one
attribute (denoted as underlined) identifies the
software fault, while the rest may be simply
descriptive. It is useful to catalog possible
consequences of faults. Sites are locations in code
(identifiable mainly for low level classes) where the

bug might occur under circumstances indicated by the
causes. The goal of BF is to help researchers and
practitioners more accurately and quickly diagnose,
describe, and measure security vulnerabilities.

In this paper, we summarize the BF classes we
previously developed, then detail our newly-
developed cryptography-related classes: Encryption
Bugs (ENC), Verification Bugs (VRF), and Key
Management Bugs (KMN). The details include
definitions and taxonomy of these classes, examples
of vulnerabilities from the Common Vulnerabilities
and Exposures (CVE) [2], and corresponding
Common Weakness Enumerations (CWE) [3] or
Software Fault Patterns (SFP) [4]. The final section
summarizes our work, discusses lessons we learned,
and presents our plans for expanding BF further.

II. PREVIOUSLY DEVELOPED BF CLASSES
Our first developed BF classes were: Buffer

Overflow (BOF), Injection (INJ), and Control of
Interaction Frequency Bugs (CIF) [1]. Here we only
give their definitions and attributes. Details and
examples of use are available at
https://samate.nist.gov/BF/.

BOF: The software accesses through an array a
memory location that is outside the boundaries of
that array. Attributes: Access, Boundary, Location,
Magnitude, Data Size, Reach.

INJ: Due to input with language-specific special
elements, the software assembles a command string
that is parsed into an invalid construct. Attributes:
Invalid Construct, Language, Special Element, Entry
Point.

CIF: The software does not properly limit the
number of repeating interactions per specified unit.
Attributes: Interaction, Number, Unit, Actor.

Disclaimer: Certain trade names and company products are mentioned in the
text or identified. In no case does such identification imply recommendation
or endorsement by the National Institute of Standards and Technology (NIST),
nor does it imply that they are necessarily the best available for the purpose.

III. CRYPTOGRAPHIC STORE OR TRANSFER BUGS
A. Cryptography

Cryptography is a broad, complex, and subtle area.
It incorporates many clearly separate processes, such
as encryption/decryption, verification of data or
source, and key management. There are bugs if the
software does not properly transform data into
unintelligible form, verify authenticity or correctness,
manage keys, or perform other related operations.
Some transformations require keys, for example
encryption and decryption, while others do not, for
example secret sharing. Authenticity covers integrity
of data, identity of data source, origin for non-
repudiation, and content of secret sharing.
Correctness is verified for uses such as zero-
knowledge proofs. Cryptographic processes use
particular algorithms to achieve particular security
services [5].

Examples of attacks are spoofing messages, brute
force attack, replaying instructions, timing attack,
chosen plaintext attack, chosen ciphertext attack, and

exploiting use of weak or insecure keys.
In this paper, we use cryptographic store or

transfer to illustrate our ENC, VRF, and KMN classes
of bugs. Note that these classes may appear in many
other situations such as self-sovereign identities [6],
block ciphers, and threshold cryptography. We focus
on transfer (or store) because it is well known and it
is what most people think of when “cryptography” is
mentioned. We define bugs in cryptographic store or
transfer as: The software does not properly
encrypt/decrypt, verify, or manage keys for data to be
securely stored or transferred.
B. Our Model

A modern, secure, flexible cryptographic storage
or transfer protocol likely involves subtle interaction
between encryption, verification, and key
management processes. It may involve multiple
stages of agreeing on encryption algorithms,
establishing public and private keys, creating session
keys, and digitally signing texts for verification.
Thus, encryption may use key management, which

Fig. 1. Our Model of Cryptographic Store or Transfer Bugs. Encryption may occur in tandem with Verification or it may precede Verification serially, if the
cipertext is signed or hashed. Encryption uses Key Management, and Key Management likely uses Encryption and Verification to handle keys.	

itself uses encryption and verification. Fig. 1 presents
a model of these recursive interactions and where
potentially the corresponding ENC, VRF, KMN, and
other BF bugs could happen. The rounded rectangles
indicate the boundaries of the classes. The dashed
ones show sending and receiving entities.

KMN is a class of bugs related to key
management. Key management comprises key
generation, selection, storage, retrieval and
distribution, and determining and signaling when
keys should be abandoned or replaced. A particular
protocol may use any or all of these operations. Key
management could be by a third party, the source, or
the user – thus the KMN area intersects the Source
and User areas. A third-party certificate authority
(CA) distributes public keys in signed certificates.
Key management often uses a recursive round of
encryption and decryption, and verification to
establish a shared secret key or session key before the
actual plaintext is handled.

ENC is a class of bugs related to encryption and
decryption. Encryption is by the source, decryption is
by the user. The encryption/decryption algorithm
may be symmetric, that is uses the same key for both,
or asymmetric, which uses a pair of keys, one to
encrypt and the other to decrypt. Public key
cryptosystems are asymmetric. Ciphertext may be
sent directly to the user, and verification accompanies
it separately. The red line is a case where plaintext is
signed or hashed and then encrypted.

VRF is a class of bugs related to verification.
Verification takes a key and either plaintext or

ciphertext, signs or hashes it, then passes the result to
the user. The user uses the same key or the other key
from the key-pair to verify data integrity or source.
Note that hash alone without any other mechanism
cannot be used to verify source or to protect data
integrity against attackers. However, it can be used to
protect data integrity against channel errors [5].

In the cases of symmetric encryption, one secretly
shared key (shKey) is used. The source encrypts with
shKey, and the user decrypts also with shKey. In the
cases of asymmetric encryption, pairs of
mathematically related keys are used. The source pair
is pbKeySrc and prKeySrc; the user pair is pbKeyUsr
and prKeyUsr. The source encrypts with pbKeyUsr and
signs with prKeySrc. The user decrypts with prKeyUsr
and verifies with pbKeySrc.

IV. ENCRYPTION/DECRYPTION BUGS CLASS – ENC
A. Definition

We define Encryption Bugs (ENC) as:
The software does not properly transform sensitive
data (plaintext) into unintelligible form (ciphertext)

using cryptographic algorithm and key(s).
We define also Decryption Bugs as:

The software does not properly transform ciphertext
into plaintext using cryptographic algorithm and

key(s).
Note that “transform” is for confidentiality.
ENC is related to KMN, Randomization (RND),

and Information Exposure (IEX).

Fig. 2. The Encryption Bugs (ENC) class represented as causes, attributes and consequences.

B. Taxonomy
Fig. 2 depicts ENC causes, attributes and

consequences. In the graph of causes, modification of
algorithm is remove/change or add a cryptographic
step. Improper algorithm or step could be missing,
inadequate, weak, risky/broken. Insecure mode of
operation leads to weak encryption algorithm.

The attributes of ENC are:
Sensitive Data – Credentials, System Data, State

Data, Cryptographic Data, Digital Documents. This
is secret (confidential) data. Credentials include
password, token, smart card, digital certificate,
biometrics (fingerprint, hand configuration, retina,
iris, voice.) System Data could be configurations,
logs, Web usage. Cryptographic Data is hashes, keys,
and other keying material.

Data State – Stored, Transferred. This reflects if
data is in rest or use, or if data is in transit. Secure
store is needed for data that is in rest or use from files
(e.g. ini, temp, configuration, log server, debug,
cleanup, email attachment, login buffer, executable,
backup, core dump, access control list, private data
index), directories (Web root, FTP root, CVS
repository), registry, cookies, source code &
comments, GUI, environmental variables. Secure
transfer is needed also for data in transit between
processes or over a network.

Algorithm – Symmetric, Asymmetric. This is the
key encryption scheme used to securely store/transfer
sensitive data. Symmetric (secret) key algorithms
(e.g. Serpent, Blowfish) use one shared key.
Asymmetric (public) key algorithms (e.g. Diffie-
Hellman, RSA) use a pair of keys: public and private.

Security Service(s) – Confidentiality (and
Integrity and Identity Authentication). This is the
security service that was failed by the encryption
process. Confidentiality is the main security service
provided by encryption. Those marked with ‘~’ are
only for some specific modes of encryption.

ENC is a high level class, so sites do not apply.
C. Examples

1) CVE-2002-1946
This vulnerability is listed in [7] and discussed in

[8, 9, 10]. Our BF description is:
ENC: Use of weak symmetric encryption algorithm
(one-to-one mapping) allows confidentiality failure

of stored (in registry) sensitive data (passwords),
which may be exploited for IEX of that sensitive

data (passwords).
Analysis (based on [8, 9, 10]): The one-to-one

mapping uses two fixed arrays of characters. There
was no remedy as of 09/01/2014!

2) CVE-2002-1697
This vulnerability is listed in [11] and discussed in

[12, 13, 14]. Our BF description is:
ENC: Use of insecure mode of operation (ECB)

leads to weak symmetric encryption algorithm (for
same shared key produces same ciphertext from

same plaintext) and allows confidentiality failure of
transferred sensitive data, which may be exploited

for IEX of that sensitive data.
Analysis (based on [12, 13, 14]): Using electronic

codebook (ECB) results in weak encryption, that
produces the same ciphertext from the same plaintext
blocks. This is a case of deterministic encryption,
where patterns in plaintext become evident in the
ciphertext.
D. Related CWEs and SFP

CWEs related to ENC are: CWE-256, 257, 261,
311-318, 325, 326, 327, 329, 780 [3].

The related SFP clusters are SPF 17.1 Broken
Cryptography and SFP 17.2 Weak Cryptography
under Primary Cluster: Cryptography [4]. Note that
some of the CWEs listed there are not ENC.

V. VERIFICATION BUGS CLASS – VRF
A. Definition

We define Verification Bugs (VRF) as:
The software does not properly sign data, check and

prove source, or assure data is not altered.
Note that “check” is for identity authentication,

“prove” is for origin (signer) non-repudiation, and
“not altered” is for integrity authentication.

VRF is related to KMN, RND, ENC,
Authentication (ATN), IEX.
B. Taxonomy

Fig. 3 depicts VRF causes, attributes and
consequences. In the graph of causes, modification of
algorithm and improper algorithm or step have the
same meaning as in ENC.

The attributes of VRF are:
Verified Data – Secret, Public. This is the data

that needs verification. It may be confidential or
public. Secret (confidential) data could be
cryptographic hashes, secret keys, or keying material.
Public data could be signed contract, documents, or
public keys.

Algorithm – Hash Function + RND, message
authentication code (MAC), Digital Signature. Hash
functions are used for integrity authentication. They
may use RND. MAC are symmetric key algorithms
(one secret key per source/user), used for integrity
authentication, identity authentication. It needs
authentication code generation, source signs data,
user gets tag for key and data, and verifies data by tag
and key. Digital Signature is an asymmetric key
algorithm (two keys), used for integrity and identity
authentication, and origin (signer) non-repudiation. It
needs key generation, signature generation, and
signature verification. MAC and Digital Signature
use KMN and recursively VRF.	

Security Service – Data Integrity Authentication,
Identity Authentication, Origin (Signer) Non-
Repudiation. This is the security service the
verification process failed. Integrity Authentication is
for data and keys. Identity Authentication and Origin
Non-Repudiation are for source authentication.

VRF is a high level class, so sites do not apply.
C. Examples

1) CVE 2001-1585
This vulnerability is listed in [15] and discussed in

[16, 17]. Our BF description is:

VRF: Missing verification step (challenge-response
of private key using digital signature) in public key

authentication allows identity authentication
failure, which may be exploited for IEX.

Analysis (based on [16, 17]): The step that should
be included is challenge-response authentication: The
client is required by the server to sign a message
using the client's private key. Successful verification
of that signature by the server, using the public key,
confirms that the client owns the private key that is
paired with that public key, and therefore that client
should be allowed to login. That challenge-response
authentication step is missing.

2) CVE-2015-2141
This vulnerability is listed in [18] and discussed in

[19, 20, 21]. Our BF description is:
VRF: Modification of digital signature verification

algorithm (Rabin-Williams) by adding a step
(blinding) leads to recovery of private key, that

allows identity authentication failure, which may be
exploited for IEX.

Analysis (based on [19, 20, 21]): Having the
private key allows an attacker to be authenticated as
the owner of that key.

The software intends to use blinding to defend
against a timing attack, as follows: Instead of signing
the data directly, the data is first transformed using a
secret random value (blinding) and then is digitally
signed using a private key. At the end, the effect is
removed (unblinding), so that there is signed data as
if no transformation took place. See [20, 21] for
blinding used for RSA.

Fig. 3. The Verification Bugs (VRF) class represented as causes, attributes and consequences.

The flaw in this CVE is in doing blinding/
unblinding incorrectly, so that in some cases the
effect of the transformation is not removed from the
data. This enables the attacker to use the transformed
data to recover the private key using a mathematical
calculation as described in [20]. In [20] it is observed
that if the secret random integer used to transform the
message is a quadratic residue modulo an appropriate

integer, then the unblinding step correctly undoes the
transformation. The fix in [20] assures that the integer
is such a quadratic residue.
D. Related CWEs and SFP

CWEs related to VRF are: CWE-295-296, 347 [3].
The related SFP cluster is 17.2 Weak

Cryptography under Primary Cluster: Cryptography
[4]. Note that some of the listed CWEs are not VRF.

VI. KEY MANAGEMENT BUGS CLASS – KMN

A. Definition
We define Key Management Bugs (KMN) as:
The software does not properly generate, store,

distribute, use, or destroy cryptographic keys and
other keying material.

KMN is related to ENC, RND, VRF, IEX.
B. Taxonomy

Fig. 4 depicts KMN causes, attributes and
consequences.

The attributes of KMN are:

Cryptographic Data – Hashes, Keying Material,
Digital Certificate.

Algorithm – Hash Function + RND, MAC,
Digital Signature. Different cryptosystem have their
own key generation algorithm(s).

Operation – Generate or Select, Store, Distribute,
Use, Destroy. This is the failed operation. Generate
uses RND. Store includes update and recover.
Distribute includes key establishment, transport,
agreement, wrapping, encapsulation, derivation,
confirmation, shared secret creation; uses ENC and
KMN (reclusively).

KMN is a high level class, so sites do not apply.
C. Examples

1) CVE-2016-1919
This vulnerability is listed in [22] and discussed in

[23]. Our BF description is:
A KMN leads to an ENC.

KMN: Use of weak algorithm (eCryptFS-key from
password and stored TIMA key) allows generation
of keying material (secret key) that can be obtained
through brute force attack, which may be exploited

for IEX of keying material (the secret key).
ENC: KMN fault leads to exposed secret key that
allows confidentiality failure of stored sensitive

data, which may be exploited for IEX of that
sensitive data.

Fig. 4. The Key Management Bugs (KMN) class represented as causes, attributes and consequences

Analysis (based on [23]): The set of possible
keys is a known small set.

The TIMA key is a random stored byte string.
The secret key used is obtained by XOR of the
TIMA key and the password characters, where the
minimum password length is 7. However, if the
password length is no more than 8, a base 64
expansion results in a key that does not depend on
the password. The TIMA key is stored, and for a
known TIMA key, the key is known, or, if the
password length slightly exceeds 8, there is a small
set of possible keys. The TIMA key can be obtained
using a preliminary step.

2) CVE-2015-0204, 1637, 1067 (FREAK -
Factoring attack on RSA-ExportKeys)

This vulnerability is listed in [24, 25, 26] and
discussed in [27, 28, 29, 30]. Our BF description is:

An inner KMN leads to an inner ENC, which
leads to an outer ENC.

Inner KMN: Client-accepted improper offer of
weak protocol (SSL with Export RSA) from

MITM-tricked server allows use of an algorithm
(Export RSA) that generates 512-bit keying

material (pair of keys), for which private key may
be obtained through factorization of public key,

which may be exploited for IEX of keying material
(the private key).

Inner ENC: KMN fault leads to exposed private
key for asymmetric encryption (RSA) that allows

confidentiality failure of transferred sensitive data
(Pre-Master Secret), which may be exploited for

IEX of sensitive data (Master Secret).

Outer ENC: KMN fault leads to exposed secret
key (Master Secret) for symmetric encryption
allows confidentiality failure of transferred

sensitive data (passwords, credit cards, etc.),
which may be exploited for IEX of that sensitive

data (passwords, credit cards, etc.).
Inner KMN and inner ENC only set up the secret

key. Outer ENC is the actual general data transfer.
Interestingly in this example the consequence

from the first bug (inner KMN) causes the second
bug (inner ENC), whose consequences cause the
third bug (outer ENC). The inner KMN is a server
bug, sending a weak key, (that the client did not ask
for), intended for KMN use by client (encrypting

Pre-Master Secret). It is also a client bug, as the
client accepted the offer of using the insecure
method, and therefore the server proceeded. The
client could have refused that offer. The inner ENC
is a client bug, using that weak key to encrypt the
Pre-Master Secret, and then transmitting that
weakly encrypted Pre-Master Secret over a network
that is not secure.

Analysis (based on [27, 28, 29, 30]): The server
offers a weak protocol (Export RSA) while the
client requested strong protocol (RSA).

Communication is encrypted by symmetric
encryption. The key for that encryption (Master
Secret) is created by both client and server from a
Pre-Master Secret and nonces sent by client and
server. The Pre-Master Secret is sent encrypted by
RSA cryptosystem. The client requests RSA
protocol, but man in the middle (MITM) intercepts
and requests Export RSA that uses a 512 bit key.
Factoring a 512 bit RSA key is feasible.

Because of a bug, the client agrees to Export
RSA. MITM factors the public 512 bit public RSA
key, uses this factoring to recover the private RSA
key, and then uses that private key to decrypt the
Pre-Master Secret. Then it uses the Pre-Master
Secret and the nonces to generate the Master Secret.
The Master Secret enables MITM to decrypt the
encrypted communication from that point on.
D. Related CWEs and SFP

CWEs related to KMN are: CWE-321, 322, 323,
324 [3].

The related SFP clusters are SFP 17.2 Weak
Cryptography under Primary Cluster:
Cryptography and SFP 4.13 Digital Certificate
under Primary Cluster: Authentication [4]. Note
that, some of the CWEs listed in 17.2 are not KMN.

VII. CONCLUDING REMARKS
A. Summary

We presented three new BF classes:
Encryption/Decryption Bugs (ENC), Verification
Bugs (VRF), and Key Management Bugs (KMN).
They join other rigorously-defined classes:
Injection (INJ), Control of Interaction Frequency
Bugs (CIF), and Buffer Overflow (BOF). We
presented the (static) attributes of the classes, along
with the classes’ causes and consequences.

We analyzed particular vulnerabilities related to
those classes and provided clear descriptions. We
showed that the BF-structured description of
FREAK, using KMN and ENC, is quite concise and
still far clearer than unstructured explanations that
we have found.
B. Lessons Learned

At first, we tried to define a Cryptography class
with attributes, causes, and consequences.
However, we realized that subsidiary processes,
like randomization and verification, are used in
completely different contexts. As we developed a
model of cryptographic store and transfer bugs, we
learned how rich and subtle the relations between
processes were. We ended up defining separate
ENC, VRF, and KMN classes of bugs.

We found that a model of the cryptographic store
or transfer processes helps: it illustrated the relation
between the classes and helped us determine what
operations should be included and what should not.
We learned that the structure of BF is not settled. It
may need to be refined further.
C. Future Work

One of our next steps is to explain more
cryptographic bugs using ENC, VRF, and KMN.
We also need to explore the use of ENC, VRF, and
KMN in contexts other than cryptographic store and
transfer. This will show where BF structures need
refinements.

Another step is to develop other BF classes. We
are currently working on Randomization Bugs
(RND), Authentication Bugs (ATN), Authorization
Bugs (AUT), Information Exposure (IEX), Faulty
Operation (FOP), and Memory Allocation Bugs
(MAL). FOP includes faults during arithmetic
operations, such as integer overflow and divide by
zero. MAL includes memory allocation faults, like
use after free, multiple free, and failure to free.

Our goal is BF to become the software
developers’ and testers’ “Best Friend.”

REFERENCES
[1] I. Bojanova, P. E. Black, Y. Yesha, and Y. Wu, “The Bugs Framework

(BF): A Structured Approach to Express Bugs,” 2016 IEEE
International Conference on Software Quality, Reliability, and Security
(QRS 2016). Vienna, Austria. August 1-3 2016.

[2] The MITRE Corporation, CVE Common Vulnerabilities and
Exposures, (CVE), http://www.cve.mitre.org.

[3] The MITRE Corporation, Common Weakness Enumeration (CWE),
http://cwe.mitre.org.

[4] N. Mansourov, “DoD Software Fault Patterns,” KDM Analytics, Inc.,
2011. http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADB381215.

[5] E. Barker, “NIST Special Publication 800-175B Guideline for Using
Cryptographic Standards in the Federal Government: Cryptographic
Mechanisms,” August 2016.
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-
175B.pdf.

[6] A. Tobin and D. Reed, “The Inevitable Rise of Self-Sovereign
Identity”, September 2016, https://sovrin.org/wp-
content/uploads/2017/07/The-Inevitable-Rise-of-Self-Sovereign-
Identity.pdf.

[7] The MITRE Corporation, CVE-2002-1946, http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2002-1946.

[8] The MITRE Corporation, CWE 326,
https://cwe.mitre.org/data/definitions/326.html.

[9] SecurityTracker. VSNL Integrated Dialer Weak Encoding Discloses
Passwords to Local Users Alert ID: 1005515,
http://securitytracker.com/id/1005515.

[10] IBM X-Force Exchange, Integrated Dialer Software stores passwords
using weak encryption algorithm: CVE-2002-1946,
https://exchange.xforce.ibmcloud.com/vulnerabilities/10517.

[11] The MITRE Corporation, CVE-2002-1697, http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2002-1697.

[12] Wikipedia, RSA (cryptosystem),
http://en.wikipedia.org/wiki/RSA_(cryptosystem).

[13] Seclists, Security weaknesses of VTun,
http://seclists.org/bugtraq/2002/Jan/119.

[14] Wikipedia, Deterministic encryption,
https://en.wikipedia.org/wiki/Deterministic_encryption.

[15] The MITRE Corporation, CVE-2001-1585, http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2001-1585.

[16] OpenBSD Security Advisory, Authentication By-Pass Vulnerability in
OpenSSH-2.3.1, http://www.openbsd.org/advisories/ssh_bypass.txt.

[17] S. Tatham, PuTTY User Manual – Chapter 8: “Using public keys for
SSH authentication,”
http://the.earth.li/~sgtatham/putty/0.60/htmldoc/Chapter8.html.

[18] The MITRE Corporation, CVE-2141, http://www.cve.mitre.org/cgi-
bin/cvename.cgi?name=2015-2141

[19] Bugzilla – Bug 936435, VUL-0: CVE-2015-2141: libcryptopp:
libcrypto++ -- security update,
https://bugzilla.suse.com/show_bug.cgi?id=936435.

[20] E. Sidorov, “Breaking the Rabin-Williams digital signature system
implementation in the Crypto++ library,” 2015,
http://eprint.iacr.org/2015/368.pdf.

[21] Wikipedia, “Blinding Cryptography,”
https://en.wikipedia.org/wiki/Blinding_(cryptography).

[22] The MITRE Corporation, CVE-2016-1919, https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2016-1919.

[23] openwall.net, [CVE-2016-1919] “Weak eCryptFS Key generation
from user password,” http://lists.openwall.net/bugtraq/2016/01/17/2.

[24] The MITRE Corporation, CVE--2015-0204, https://cve.mitre.org/cgi-
bin/cvename.cgi?name=cve-2015-0204.

[25] The MITRE Corporation, CVE--2015-1637, https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2015-1637.

[26] The MITRE Corporation, CVE--2015-1067, https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2015-1067.

[27] R. Heaton, The SSL FREAK vulnerability explained,
http://robertheaton.com/2015/04/06/the-ssl-freak-vulnerability.

[28] Censys, The FREAK Attack. https://censys.io/blog/freak
[29] StackExchange, Protecting phone from the FREAK bug,

http://android.stackexchange.com/questions/101929/protecting-
phone-from-the-freak-bug/101966.

[30] GitHub, openssl, Only allow ephemeral RSA keys in export
ciphersuites,
https://github.com/openssl/openssl/commit/ce325c60c74b0fa784f587
2404b722e120e5cab0?diff=split.

