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Abstract—Accurate, precise, and unambiguous definitions of 
software weaknesses (bugs) and clear descriptions of software 
vulnerabilities are vital for building the foundations of 
cybersecurity. The Bugs Framework (BF) comprises rigorous 
definitions and (static) attributes of bug classes, along with their 
related dynamic properties, such as proximate, secondary and 
tertiary causes, consequences, and sites. This paper presents an 
overview of previously developed BF classes and the new 
cryptography related classes: Encryption Bugs (ENC), 
Verification Bugs (VRF), and Key Management Bugs (KMN). We 
analyze corresponding vulnerabilities and provide their clear 
descriptions by applying the BF taxonomy. We also discuss the 
lessons learned and share our plans for expanding BF. 
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I. INTRODUCTION 
Advances in scientific foundations of 

cybersecurity rely on the availability of accurate, 
precise, and unambiguous definitions of software 
weaknesses (bugs) and clear descriptions of software 
vulnerabilities. The myriad unprecedented attacks 
and security exposures, including on Internet of 
Things (IoT) applications, calls for serious efforts 
towards such formalization.  

To provide a foundation, we are developing the 
Bugs Framework (BF) [1], which organizes bugs into 
distinct classes, such as buffer overflow (BOF), 
injection (INJ), faulty operation (FOP), and control of 
interaction frequency bugs (CIF). Each BF class has 
an accurate and precise definition and comprises: 
level (added after [1]), causes, attributes, 
consequences, and sites of bugs. Closely related 
classes may be grouped in clusters. Level (high or 
low) identifies the fault as language-related or 
semantic. Causes bring about the fault. At least one 
attribute (denoted as underlined) identifies the 
software fault, while the rest may be simply 
descriptive. It is useful to catalog possible 
consequences of faults. Sites are locations in code 
(identifiable mainly for low level classes) where the 

bug might occur under circumstances indicated by the 
causes. The goal of BF is to help researchers and 
practitioners more accurately and quickly diagnose, 
describe, and measure security vulnerabilities.  

In this paper, we summarize the BF classes we 
previously developed, then detail our newly-
developed cryptography-related classes: Encryption 
Bugs (ENC), Verification Bugs (VRF), and Key 
Management Bugs (KMN). The details include 
definitions and taxonomy of these classes, examples 
of vulnerabilities from the Common Vulnerabilities 
and Exposures (CVE) [2], and corresponding 
Common Weakness Enumerations (CWE) [3] or 
Software Fault Patterns (SFP) [4]. The final section 
summarizes our work, discusses lessons we learned, 
and presents our plans for expanding BF further.  

II. PREVIOUSLY DEVELOPED BF CLASSES 
Our first developed BF classes were: Buffer 

Overflow (BOF), Injection (INJ), and Control of 
Interaction Frequency Bugs (CIF) [1]. Here we only 
give their definitions and attributes. Details and 
examples of use are available at 
https://samate.nist.gov/BF/. 

BOF: The software accesses through an array a 
memory location that is outside the boundaries of 
that array. Attributes: Access, Boundary, Location, 
Magnitude, Data Size, Reach. 

INJ: Due to input with language-specific special 
elements, the software assembles a command string 
that is parsed into an invalid construct. Attributes: 
Invalid Construct, Language, Special Element, Entry 
Point. 

CIF: The software does not properly limit the 
number of repeating interactions per specified unit. 
Attributes: Interaction, Number, Unit, Actor. 

Disclaimer: Certain trade names and company products are mentioned in the 
text or identified. In no case does such identification imply recommendation 
or endorsement by the National Institute of Standards and Technology (NIST), 
nor does it imply that they are necessarily the best available for the purpose. 



III. CRYPTOGRAPHIC STORE OR TRANSFER BUGS 
A. Cryptography 

Cryptography is a broad, complex, and subtle area. 
It incorporates many clearly separate processes, such 
as encryption/decryption, verification of data or 
source, and key management. There are bugs if the 
software does not properly transform data into 
unintelligible form, verify authenticity or correctness, 
manage keys, or perform other related operations. 
Some transformations require keys, for example 
encryption and decryption, while others do not, for 
example secret sharing. Authenticity covers integrity 
of data, identity of data source, origin for non-
repudiation, and content of secret sharing. 
Correctness is verified for uses such as zero-
knowledge proofs. Cryptographic processes use 
particular algorithms to achieve particular security 
services [5].  

Examples of attacks are spoofing messages, brute 
force attack, replaying instructions, timing attack, 
chosen plaintext attack, chosen ciphertext attack, and 

exploiting use of weak or insecure keys. 
In this paper, we use cryptographic store or 

transfer to illustrate our ENC, VRF, and KMN classes 
of bugs. Note that these classes may appear in many 
other situations such as self-sovereign identities [6], 
block ciphers, and threshold cryptography. We focus 
on transfer (or store) because it is well known and it 
is what most people think of when “cryptography” is 
mentioned. We define bugs in cryptographic store or 
transfer as: The software does not properly 
encrypt/decrypt, verify, or manage keys for data to be 
securely stored or transferred. 
B. Our Model 

A modern, secure, flexible cryptographic storage 
or transfer protocol likely involves subtle interaction 
between encryption, verification, and key 
management processes. It may involve multiple 
stages of agreeing on encryption algorithms, 
establishing public and private keys, creating session 
keys, and digitally signing texts for verification. 
Thus, encryption may use key management, which  

 

Fig. 1. Our Model of Cryptographic Store or Transfer Bugs. Encryption may occur in tandem with Verification or it may precede Verification serially, if the 
cipertext is signed or hashed. Encryption uses Key Management, and Key Management likely uses Encryption and Verification to handle keys.	



itself uses encryption and verification. Fig. 1 presents 
a model of these recursive interactions and where 
potentially the corresponding ENC, VRF, KMN, and 
other BF bugs could happen. The rounded rectangles 
indicate the boundaries of the classes. The dashed 
ones show sending and receiving entities. 

KMN is a class of bugs related to key 
management. Key management comprises key 
generation, selection, storage, retrieval and 
distribution, and determining and signaling when 
keys should be abandoned or replaced. A particular 
protocol may use any or all of these operations. Key 
management could be by a third party, the source, or 
the user – thus the KMN area intersects the Source 
and User areas. A third-party certificate authority 
(CA) distributes public keys in signed certificates. 
Key management often uses a recursive round of 
encryption and decryption, and verification to 
establish a shared secret key or session key before the 
actual plaintext is handled.  

ENC is a class of bugs related to encryption and 
decryption. Encryption is by the source, decryption is 
by the user. The encryption/decryption algorithm 
may be symmetric, that is uses the same key for both, 
or asymmetric, which uses a pair of keys, one to 
encrypt and the other to decrypt. Public key 
cryptosystems are asymmetric. Ciphertext may be 
sent directly to the user, and verification accompanies 
it separately. The red line is a case where plaintext is 
signed or hashed and then encrypted. 

VRF is a class of bugs related to verification. 
Verification takes a key and either plaintext or 

ciphertext, signs or hashes it, then passes the result to 
the user. The user uses the same key or the other key 
from the key-pair to verify data integrity or source. 
Note that hash alone without any other mechanism 
cannot be used to verify source or to protect data 
integrity against attackers. However, it can be used to 
protect data integrity against channel errors [5]. 

In the cases of symmetric encryption, one secretly 
shared key (shKey) is used. The source encrypts with 
shKey, and the user decrypts also with shKey. In the 
cases of asymmetric encryption, pairs of 
mathematically related keys are used. The source pair 
is pbKeySrc and prKeySrc; the user pair is pbKeyUsr 
and prKeyUsr. The source encrypts with pbKeyUsr and 
signs with prKeySrc. The user decrypts with prKeyUsr 
and verifies with pbKeySrc. 

IV. ENCRYPTION/DECRYPTION BUGS CLASS – ENC 
A. Definition 

We define Encryption Bugs (ENC) as:  
The software does not properly transform sensitive 
data (plaintext) into unintelligible form (ciphertext) 

using cryptographic algorithm and key(s).  
We define also Decryption Bugs as:  

The software does not properly transform ciphertext 
into plaintext using cryptographic algorithm and 

key(s). 
Note that “transform” is for confidentiality. 
ENC is related to KMN, Randomization (RND), 

and Information Exposure (IEX). 

 

Fig. 2. The Encryption Bugs (ENC) class represented as causes, attributes and consequences. 



B. Taxonomy 
Fig. 2 depicts ENC causes, attributes and 

consequences. In the graph of causes, modification of 
algorithm is remove/change or add a cryptographic 
step. Improper algorithm or step could be missing, 
inadequate, weak, risky/broken. Insecure mode of 
operation leads to weak encryption algorithm.  

The attributes of ENC are: 
Sensitive Data – Credentials, System Data, State 

Data, Cryptographic Data, Digital Documents. This 
is secret (confidential) data. Credentials include 
password, token, smart card, digital certificate, 
biometrics (fingerprint, hand configuration, retina, 
iris, voice.) System Data could be configurations, 
logs, Web usage. Cryptographic Data is hashes, keys, 
and other keying material. 

Data State – Stored, Transferred. This reflects if 
data is in rest or use, or if data is in transit. Secure 
store is needed for data that is in rest or use from files 
(e.g. ini, temp, configuration, log server, debug, 
cleanup, email attachment, login buffer, executable, 
backup, core dump, access control list, private data 
index), directories (Web root, FTP root, CVS 
repository), registry, cookies, source code & 
comments, GUI, environmental variables. Secure 
transfer is needed also for data in transit between 
processes or over a network. 

Algorithm – Symmetric, Asymmetric. This is the 
key encryption scheme used to securely store/transfer 
sensitive data. Symmetric (secret) key algorithms 
(e.g. Serpent, Blowfish) use one shared key. 
Asymmetric (public) key algorithms (e.g. Diffie-
Hellman, RSA) use a pair of keys: public and private.  

Security Service(s) – Confidentiality (and 
Integrity and Identity Authentication). This is the 
security service that was failed by the encryption 
process. Confidentiality is the main security service 
provided by encryption. Those marked with ‘~’ are 
only for some specific modes of encryption. 

ENC is a high level class, so sites do not apply. 
C. Examples 

1) CVE-2002-1946  
This vulnerability is listed in [7] and discussed in 

[8, 9, 10]. Our BF description is: 
ENC: Use of weak symmetric encryption algorithm 
(one-to-one mapping) allows confidentiality failure 

of stored (in registry) sensitive data (passwords), 
which may be exploited for IEX of that sensitive 

data (passwords). 
Analysis (based on [8, 9, 10]): The one-to-one 

mapping uses two fixed arrays of characters. There 
was no remedy as of 09/01/2014! 

2) CVE-2002-1697 
This vulnerability is listed in [11] and discussed in 

[12, 13, 14]. Our BF description is: 
ENC: Use of insecure mode of operation (ECB) 

leads to weak symmetric encryption algorithm (for 
same shared key produces same ciphertext from 

same plaintext) and allows confidentiality failure of 
transferred sensitive data, which may be exploited 

for IEX of that sensitive data. 
Analysis (based on [12, 13, 14]): Using electronic 

codebook (ECB) results in weak encryption, that 
produces the same ciphertext from the same plaintext 
blocks. This is a case of deterministic encryption, 
where patterns in plaintext become evident in the 
ciphertext. 
D. Related CWEs and SFP 

CWEs related to ENC are: CWE-256, 257, 261, 
311-318, 325, 326, 327, 329, 780 [3].  

The related SFP clusters are SPF 17.1 Broken 
Cryptography and SFP 17.2 Weak Cryptography 
under Primary Cluster: Cryptography [4]. Note that 
some of the CWEs listed there are not ENC.  

V. VERIFICATION BUGS CLASS – VRF 
A. Definition 

We define Verification Bugs (VRF) as: 
The software does not properly sign data, check and 

prove source, or assure data is not altered.  
Note that “check” is for identity authentication, 

“prove” is for origin (signer) non-repudiation, and 
“not altered” is for integrity authentication. 

VRF is related to KMN, RND, ENC, 
Authentication (ATN), IEX. 
B. Taxonomy 

Fig. 3 depicts VRF causes, attributes and 
consequences. In the graph of causes, modification of 
algorithm and improper algorithm or step have the 
same meaning as in ENC. 



The attributes of VRF are: 
Verified Data – Secret, Public. This is the data 

that needs verification. It may be confidential or 
public. Secret (confidential) data could be 
cryptographic hashes, secret keys, or keying material. 
Public data could be signed contract, documents, or 
public keys.  

Algorithm – Hash Function + RND, message 
authentication code (MAC), Digital Signature. Hash 
functions are used for integrity authentication. They 
may use RND. MAC are symmetric key algorithms 
(one secret key per source/user), used for integrity 
authentication, identity authentication. It needs 
authentication code generation, source signs data, 
user gets tag for key and data, and verifies data by tag 
and key. Digital Signature is an asymmetric key 
algorithm (two keys), used for integrity and identity 
authentication, and origin (signer) non-repudiation. It 
needs key generation, signature generation, and 
signature verification. MAC and Digital Signature 
use KMN and recursively VRF.	 

Security Service – Data Integrity Authentication, 
Identity Authentication, Origin (Signer) Non-
Repudiation. This is the security service the 
verification process failed. Integrity Authentication is 
for data and keys. Identity Authentication and Origin 
Non-Repudiation are for source authentication.  

VRF is a high level class, so sites do not apply. 
C. Examples 

1) CVE 2001-1585  
This vulnerability is listed in [15] and discussed in 

[16, 17]. Our BF description is: 

VRF: Missing verification step (challenge-response 
of private key using digital signature) in public key 

authentication allows identity authentication 
failure, which may be exploited for IEX. 

Analysis (based on [16, 17]): The step that should 
be included is challenge-response authentication: The 
client is required by the server to sign a message 
using the client's private key. Successful verification 
of that signature by the server, using the public key, 
confirms that the client owns the private key that is 
paired with that public key, and therefore that client 
should be allowed to login. That challenge-response 
authentication step is missing. 

2) CVE-2015-2141 
This vulnerability is listed in [18] and discussed in 

[19, 20, 21]. Our BF description is: 
VRF: Modification of digital signature verification 

algorithm (Rabin-Williams) by adding a step 
(blinding) leads to recovery of private key, that 

allows identity authentication failure, which may be 
exploited for IEX. 

Analysis (based on [19, 20, 21]): Having the 
private key allows an attacker to be authenticated as 
the owner of that key.  

The software intends to use blinding to defend 
against a timing attack, as follows: Instead of signing 
the data directly, the data is first transformed using a 
secret random value (blinding) and then is digitally 
signed using a private key. At the end, the effect is 
removed (unblinding), so that there is signed data as 
if no transformation took place. See [20, 21] for 
blinding used for RSA. 

 
Fig. 3. The Verification Bugs (VRF) class represented as causes, attributes and consequences. 



The flaw in this CVE is in doing blinding/ 
unblinding incorrectly, so that in some cases the 
effect of the transformation is not removed from the 
data. This enables the attacker to use the transformed 
data to recover the private key using a mathematical 
calculation as described in [20]. In [20] it is observed 
that if the secret random integer used to transform the 
message is a quadratic residue modulo an appropriate  

integer, then the unblinding step correctly undoes the 
transformation. The fix in [20] assures that the integer 
is such a quadratic residue. 
D. Related CWEs and SFP 

CWEs related to VRF are: CWE-295-296, 347 [3]. 
The related SFP cluster is 17.2 Weak 

Cryptography under Primary Cluster: Cryptography 
[4]. Note that some of the listed CWEs are not VRF.  

VI. KEY MANAGEMENT BUGS CLASS – KMN 

A. Definition 
We define Key Management Bugs (KMN) as: 
The software does not properly generate, store, 

distribute, use, or destroy cryptographic keys and 
other keying material. 

KMN is related to ENC, RND, VRF, IEX. 
B. Taxonomy 

Fig. 4 depicts KMN causes, attributes and 
consequences.  

The attributes of KMN are: 

Cryptographic Data – Hashes, Keying Material, 
Digital Certificate. 

Algorithm – Hash Function + RND, MAC, 
Digital Signature. Different cryptosystem have their 
own key generation algorithm(s). 

Operation – Generate or Select, Store, Distribute, 
Use, Destroy. This is the failed operation. Generate 
uses RND. Store includes update and recover. 
Distribute includes key establishment, transport, 
agreement, wrapping, encapsulation, derivation, 
confirmation, shared secret creation; uses ENC and 
KMN (reclusively).  

KMN is a high level class, so sites do not apply. 
C. Examples  

1) CVE-2016-1919 
This vulnerability is listed in [22] and discussed in 

[23]. Our BF description is: 
A KMN leads to an ENC. 

KMN: Use of weak algorithm (eCryptFS-key from 
password and stored TIMA key) allows generation 
of keying material (secret key) that can be obtained 
through brute force attack, which may be exploited 

for IEX of keying material (the secret key). 
ENC: KMN fault leads to exposed secret key that 
allows confidentiality failure of stored sensitive 

data, which may be exploited for IEX of that 
sensitive data. 

 
Fig. 4. The Key Management Bugs (KMN) class represented as causes, attributes and consequences 



Analysis (based on [23]): The set of possible 
keys is a known small set.  

The TIMA key is a random stored byte string. 
The secret key used is obtained by XOR of the 
TIMA key and the password characters, where the 
minimum password length is 7. However, if the 
password length is no more than 8, a base 64 
expansion results in a key that does not depend on 
the password. The TIMA key is stored, and for a 
known TIMA key, the key is known, or, if the 
password length slightly exceeds 8, there is a small 
set of possible keys. The TIMA key can be obtained 
using a preliminary step. 

2) CVE-2015-0204, 1637, 1067 (FREAK - 
Factoring attack on RSA-ExportKeys) 

This vulnerability is listed in [24, 25, 26] and 
discussed in [27, 28, 29, 30]. Our BF description is:  

An inner KMN leads to an inner ENC, which 
leads to an outer ENC. 

Inner KMN: Client-accepted improper offer of 
weak protocol (SSL with Export RSA) from 

MITM-tricked server allows use of an algorithm 
(Export RSA) that generates 512-bit keying 

material (pair of keys), for which private key may 
be obtained through factorization of public key, 

which may be exploited for IEX of keying material 
(the private key). 

Inner ENC: KMN fault leads to exposed private 
key for asymmetric encryption (RSA) that allows 

confidentiality failure of transferred sensitive data 
(Pre-Master Secret), which may be exploited for 

IEX of sensitive data (Master Secret). 

Outer ENC: KMN fault leads to exposed secret 
key (Master Secret) for symmetric encryption 
allows confidentiality failure of transferred 

sensitive data (passwords, credit cards, etc.), 
which may be exploited for IEX of that sensitive 

data (passwords, credit cards, etc.). 
Inner KMN and inner ENC only set up the secret 

key. Outer ENC is the actual general data transfer. 
Interestingly in this example the consequence 

from the first bug (inner KMN) causes the second 
bug (inner ENC), whose consequences cause the 
third bug (outer ENC). The inner KMN is a server 
bug, sending a weak key, (that the client did not ask 
for), intended for KMN use by client (encrypting 

Pre-Master Secret). It is also a client bug, as the 
client accepted the offer of using the insecure 
method, and therefore the server proceeded. The 
client could have refused that offer. The inner ENC 
is a client bug, using that weak key to encrypt the 
Pre-Master Secret, and then transmitting that 
weakly encrypted Pre-Master Secret over a network 
that is not secure. 

Analysis (based on [27, 28, 29, 30]): The server 
offers a weak protocol (Export RSA) while the 
client requested strong protocol (RSA).  

Communication is encrypted by symmetric 
encryption. The key for that encryption (Master 
Secret) is created by both client and server from a 
Pre-Master Secret and nonces sent by client and 
server. The Pre-Master Secret is sent encrypted by 
RSA cryptosystem. The client requests RSA 
protocol, but man in the middle (MITM) intercepts 
and requests Export RSA that uses a 512 bit key. 
Factoring a 512 bit RSA key is feasible.  

Because of a bug, the client agrees to Export 
RSA. MITM factors the public 512 bit public RSA 
key, uses this factoring to recover the private RSA 
key, and then uses that private key to decrypt the 
Pre-Master Secret. Then it uses the Pre-Master 
Secret and the nonces to generate the Master Secret. 
The Master Secret enables MITM to decrypt the 
encrypted communication from that point on.  
D. Related CWEs and SFP 

CWEs related to KMN are: CWE-321, 322, 323, 
324 [3].  

The related SFP clusters are SFP 17.2 Weak 
Cryptography under Primary Cluster: 
Cryptography and SFP 4.13 Digital Certificate 
under Primary Cluster: Authentication [4]. Note 
that, some of the CWEs listed in 17.2 are not KMN.  

VII. CONCLUDING REMARKS 
A. Summary 

We presented three new BF classes: 
Encryption/Decryption Bugs (ENC), Verification 
Bugs (VRF), and Key Management Bugs (KMN). 
They join other rigorously-defined classes: 
Injection (INJ), Control of Interaction Frequency 
Bugs (CIF), and Buffer Overflow (BOF). We 
presented the (static) attributes of the classes, along 
with the classes’ causes and consequences. 



We analyzed particular vulnerabilities related to 
those classes and provided clear descriptions. We 
showed that the BF-structured description of 
FREAK, using KMN and ENC, is quite concise and 
still far clearer than unstructured explanations that 
we have found.  
B. Lessons Learned 

At first, we tried to define a Cryptography class 
with attributes, causes, and consequences. 
However, we realized that subsidiary processes, 
like randomization and verification, are used in 
completely different contexts. As we developed a 
model of cryptographic store and transfer bugs, we 
learned how rich and subtle the relations between 
processes were. We ended up defining separate 
ENC, VRF, and KMN classes of bugs. 

We found that a model of the cryptographic store 
or transfer processes helps: it illustrated the relation 
between the classes and helped us determine what 
operations should be included and what should not. 
We learned that the structure of BF is not settled. It 
may need to be refined further. 
C. Future Work 

One of our next steps is to explain more 
cryptographic bugs using ENC, VRF, and KMN. 
We also need to explore the use of ENC, VRF, and 
KMN in contexts other than cryptographic store and 
transfer. This will show where BF structures need 
refinements.  

Another step is to develop other BF classes. We 
are currently working on Randomization Bugs 
(RND), Authentication Bugs (ATN), Authorization 
Bugs (AUT), Information Exposure (IEX), Faulty 
Operation (FOP), and Memory Allocation Bugs 
(MAL). FOP includes faults during arithmetic 
operations, such as integer overflow and divide by 
zero. MAL includes memory allocation faults, like 
use after free, multiple free, and failure to free. 

Our goal is BF to become the software 
developers’ and testers’ “Best Friend.” 
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