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If a measurement is made on one half of a bipartite system then, conditioned on the outcome, the 
other half achieves a new reduced state. If these reduced states defy classical explanation — that 
is, if shared randomness cannot produce these reduced states for all possible measurements — the 
bipartite state is said to be steerable. Classifying the steerability of states is a challenging problem 
even for low dimensions. In the case of two-qubit systems a criterion is known for T -states (that 
is, 2-qubit states that have a maximally mixed marginal on the first subsystem) under projective 
measurements. In the current work we introduce the concept of keychain models — a special class 
of local hidden state models — which allows us to study steerability outside the set of T -states. We 
use keychain models to give a complete classification steering within the set of partially entangled 
Werner states. We also give a partial classification of steering for states that arise from applying 
uniform noise to pure two-qubit states. 

I. INTRODUCTION 

In his 1964 paper [1] John Bell made the fundamental observation that measurement correlations exhibited by some 
entangled quantum states cannot be explained by any local causal model. Specifically, if ρAB is the state of a bipartite 
system shared by Alice and Bob, and Alice is given a private message x ∈ X and Bob is given a private message 
y ∈ Y, then it is possible for Alice and Bob to measure ρAB and produce output messages a ∈ A and b ∈ B such that 
the conditional probability distribution P(ab | xy) cannot be simulated by any local hidden variable (LHV) model. 
This can be interpreted as a fundamental confirmation of the models for nonlocality used in quantum physics, and 

it also has important applications in information processing. Device-independent quantum cryptography is based 
on the observation that if two untrusted input-output devices exhibit nonlocal correlations, their internal processes 
must be quantum. With correctly chosen protocols and mathematical proof, this observation allows a classical user 
to manipulate the devices to perform basic cryptographic tasks and at the same time verify their security [2]. 
In 2007, the related notion of quantum steering was distilled [3], in which, rather than having Bob make a mea-

ρ x,asurement, we directly consider the subnormalized marginal states ˜ that occur when Alice receives input x andB 
produces output a. A local hidden state (LHS) model attempts to generate these via shared randomness. Denot-
ing the shared randomness λ, distributed according to probability density µ(λ), Bob can output quantum state σλ, 
while Alice outputs a according to a probability distribution Px,λ(a). A LHS model produces a faithful simulation if R 
ρ x,a˜B = 

λ Px,λ(a)σλdµ(λ). 
If these states cannot be simulated with an LHS model, then we say that the state ρ is steerable. One can think 

of steering as an analogue of non-locality for the case where one party (Bob) trusts their measurement device (and 
hence in principle could do tomography to determine his marginal state after being told Alice’s measurement and 
outcome). It is hence a useful intermediate between entanglement witnessing (both measurement devices trusted) and 
Bell violations (neither trusted) and has applications such as one-sided device-independent quantum cryptography [4] 
and channel discrimination [5]. Exhibiting new steerable states offers an expanded toolbox for such problems. 
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But while simple to state, the steering classification problem has proved to be difficult even for 2-qubit systems. 
We consider why this is so. Let ρAB be a two-qubit state. If Alice were to measure {|0ih0|, |1ih1|} on input 0 and√ 
{|+ih+|, |−ih−|} on input 1 (where |±i = (|0i±|1i)/ 2), then it is possible for Bob to obtain one of four subnormalized 

ρ0 ρ1 ρ+ ρ− ρ0states which we denote ˜B , ˜B , ˜B , ˜ (where, for example, ˜ = TrA[(|0ih0| ⊗ 11B )ρ]). Determining whether a localB B 
hidden state model exists for these four states is a search over a finite-dimensional space and is not difficult. Next 
suppose Alice additionally performs the measurement {|π/4ihπ/4|, |5π/4ih5π/4|} on a third input letter, where 

θ θ |θi := cos |0i + sin |1i , (1)
2 2 

π/4 5π/4
leading to states ρ̃ , ρ̃ . There is no guarantee that a local hidden state model that simulates the previousB B 

π/8 5π/8
four states will simulate this new pair as well (generally, the states ρ̃ , ρ̃ are not in the convex hull of theB B 
former states). A new search for local hidden state models is required, and the search space increases exponentially 
with each new measurement. Thus a direct approach — even when just dealing with measurements of the form 
{|θihθ|, |θ + πihθ + π|} — is unlikely to be feasible. 
Previous work on steering classification has achieved success by exploiting the symmetries of certain classes of 

states. For the class of Werner states {Φη | η ∈ [0, 1]} given by 

Φη = η|Φ+ihΦ+| + (1 − η)11/4, (2) 

an exact classification of P -steerability (i.e., steerability under projective measurements) has been performed (see 
Subsection II B in the current paper for a summary of results on Werner states). More recently a complete classification 
of P -steerability for T -states (i.e., states for which ρA is a maximally mixed state) has been given [6, 7]. In both cases 
the methods depended critically on the symmetry of the marginal state on Alice’s side. 
In the current work, we develop new techniques that allow us to step beyond T -states and consider the case where 

ρA is not maximally mixed. We study the simple case of RP -steerability (i.e., steerability by measurements in the 
span of {X, Z}). We give a complete classification of RP -steerability within the class of partially entangled Werner 
states {Φα,η}, which is given by 

|φαi := cos α |00i + sin α |11i , (3) 

Φα,η := η|φαihφα| + (1 − η)11/4. (4) 

The classification is shown in Figure 1, where the shaded/unshaded region represents the states that are unsteer-
able/steerable for real projective measurements. Our classification also applies to a larger class of real 2-qubit states 
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FIG. 1: RP -unsteerable partially entangled Werner states 

(specifically, all states whose steering ellipse is tilted at an angle less than π/4). See Theorem 9 and Corollary 10 
for the formal statement. To achieve this classification we introduce the concept of keychain models, which are a 
geometrically motivated class of local hidden state models for one-dimensional families of measurements. We explain 
this in more detail in the next subsection. 
Our approach invites generalizations. In its current form we have a criterion for steerability among all real 2-qubit 

states whose steering ellipse is tilted at an angle less than π/4. With additional work one may be able to generalize 
the classification to all real 2-qubit states. Additionally, the keychain approach could be applied in more general 
scenarios where steering is attempted with any one-dimensional family of measurements. 
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Studying the behavior of qubit states under real projective measurements is a natural problem, since, for example, 
it models measuring the polarizations of entangled photons. However, another future goal would be to extend our 
methods to arbitrary complex measurements on 2-qubit states. This looks more challenging — steering with a 2-
dimensional family of measurements is considerably harder than with a 1-dimensional family of measurements — but 
if it can be accomplished, it would be an important step towards a complete criterion for steering among 2-qubit 
states. 

A. Proof techniques 

The difficulty in establishing steerability for a given set of measurements is that the space of LHS models is 
intractably large. Our proof begins with the observation that, in the case of real 2-qubit states and real projective 
measurements, a more tractable (though still infinite dimensional) class of LHS models suffices. Specifically, we 
consider the class of LHS models that we call “keychain models.” Let RP1 denote the set of all real one-dimensional 
projectors on C2 . A key chain model is a pair (µ, {fθ}θ), where µ is a probability distribution on S1, and fθ : S1 → [0, 1] 
is a two-step function (meaning, roughly, a function that is constant at all but two points of S1 — see Definition 4). 
We show that ρAB is RP-steerable if and only if it can be computed by a key chain model, i.e., Z 

ρ̃B (θ) = xfθ(x)dµ. (5) 
x∈S1 

(This is similar to the model of [6, 7], which is based on functions on S2 that are supported on half-spheres.) From 





 
this we can conclude that that if the circumference of the steering ellipse {ρ̃B (θ)} is greater than 2, i.e., 



 Z 

d 

S1 dθ 
ρ̃B (θ) dθ > 2, (6) 

1 

then the state ρAB has no local hidden state model. 
At this point our proof diverges from that of [6, 7], since the converse of the above statement is not true in our 

case: if (6) fails to hold, there could still be no local hidden state model. However, the following stronger claim does 
guarantee the existence of a local hidden state model: Z ���� 

S1 

Moreover, the state ρAB is steerable if and only if 

ρ0 AB := (11A ⊗ Y )ρAB (11B ⊗ Y ) 

d 
dθ 

ρ̃B (θ) 

���� dθ ≤ 2ρB . (7) 

(8) 

is steerable for all positive definite Y , and by substituting in ρ0 for ρAB in (6) and (7) we obtain an infinite familyAB 
of criterion for RP -steerability and RP -unsteerability. We thus need to find a Y such that one of (6) and (7) holds 
for ρ0 AB . 
The most technically difficult part of our proof then shows that there must exist a positive definite density matrix 

Y such that 

Y −1 

�Z ���� �� 
d 

Y ρ̃B (θ) Y 
dθ 

���� dθ 

� 
Y −1 (9) 

S1 

is a scalar multiple of ρB . This compels (9) to either be greater than, or less than or equal to ρB , and thus we achieve 
a criterion for steering which is both necessary and sufficient. We prove this by demonstrating that if we let Y tend 
to any projector P in RP1, the normalization of (9) must tend to the orthogonal projector P ⊥ . Any map from a 
2-dimensional disc to itself which rotates the boundary of the disc must be an onto map, and this gives the desired 
result. (The proof of the aforementioned limit assertion is surprisingly subtle – the rate at which the normalization 
of (9) approaches P ⊥ turns out to be only logarithmic.) 
Theorem 9 gives a formal statement of our main result. Figure 1 is then obtained by numerical computations to 

find appropriate operators Y for each partially entangled Werner state. 
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II. PRELIMINARIES 

A. Notation and Definitions 

For any Hilbert space H, let A(H) denote the set of all Hermitian operators on H, P≥(H) be the set of positive 
semidefinite operators on H, P>(H) be the set of positive definite operators on H, D(H) denote the set of all density 
operators on H, and D>(H) denote the set of all positive definite density operators on H. Let RA(H), RP≥(H) etc. 
denote the respective subsets of real operators (operator X is real if hi|A|ji ∈ R for all i, j, where {|ii} is the standard√ 
basis). For an operator X on H we use |X| := X†X and kXk1 := tr|X|, the latter being the trace norm of X. 
Throughout this paper, we let HA = HB = C2 denote qubit systems possessed by Alice and Bob. Let let RP1 ⊆ 

RD(H) denote the set of one-dimensional real projectors on C2 . 

1. The steering ellipse 

Any operator λ ∈ RP≥(C2) can be expressed uniquely as 

1 
λ = (n11 + r1σ1 + r3σ3) , (10)

2 

where σ1 = |0ih1| + |1ih0| and σ3 = |0ih0| − |1ih1| are the usual Pauli operators. If λ ∈ RP1 then r0 = 1. p
2 2The tilt of λ, denoted Tilt(λ), is the quantity r1 + r /n. The tilt angle of λ is arctan(Tilt(λ)). If we think of3

(n, r1, r3) as 3-dimensional Cartesian coordinates, then the tilt angle of λ is angle that it forms with the (1, 0, 0) axis. 
We will use these coordinates when we sketch ellipses later in this work. Note that an operator is positive semidefinite 
if and only if its tilt is less than or equal to 1. It is useful to note that � 

|n| if Tilt(λ) ≤ 1 pkλk1 = (11)2 2r1 + r if Tilt(λ) > 13 

Let ρAB ∈ RD(HA ⊗HB ). Then, the steering ellipse of ρAB on B is the function ρ̃B : RP1 → P≥(C2) given by 

ρ̃B (θ) := TrA [(|θihθ| ⊗ 11B ) ρAB ] , (12) 

where |θi is defined in (1). Note that {|θi, |θ + πi} form an orthonormal basis, so ρB = ρ̃B (θ) + ρ̃B (θ + π) for any θ. 
(In the more general case of arbitrary projective measurements, the states on Bob’s side are a two-parameter family 
that define an ellipsoid rather than an ellipse [6].) 

Definition 1. Let ρAB ∈ RD(HA ⊗HB ). Then, the tilt of the steering ellipse of ρAB is the equal to the tilt of any 
1nonzero vector that is normal to the 2-dimensional affine space that contains the steering ellipse of ρAB . 

Note that if the tilt of the steering ellipse is less than or equal to 1, then no element of the steering ellipse is strictly 
greater (in the positive semidefinite sense) than any other. 

2. Local hidden state models 

In the most general sense, a local hidden state model for an indexed set of real 2-qubit subnormalized states {τ̃a}a∈A� 
is a probability distribution µ on D(C2) and functions fa : D(C2) → [0, 1] such that 

a Z 
τ̃a = xfa(x)dµ (13) 

x∈D(C2) 

However, via the map D(C2) → RD(C2) given by x 7→ (x + x)/2, we may assume µ, fa are supported on RD(C2), and 
by decomposing each operator in RD(C2) into a convex combination of one-dimensional projectors, we may further 
assume that µ, fa are supported in RP1 . We are thus led to the following definition. 

1 If the steering ellipse does not span a 2-dimensional affine space (i.e., it is degenerate) then we say that its tilt is equal to ∞. 
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FIG. 2: Summary of known results for Werner states. The boundary of 2/π for RP-(un)steerability is new to the present paper. 

Definition 2. A local hidden state model for an indexed set {τ̃a} ⊆ RP≥(C2) is a pair (µ, {fa}a) such that µ is a∈A 

a probability distribution on RP1 , fa : RP1 → [0, 1], and Z 
τ̃a = xfa(x)dµ. (14) 

x∈RP1 

A real 2-qubit state ρAB is RP -steerable if its steering ellipse, {ρ̃B (θ)}θ∈[0,2π), does not have a local hidden state 
model. 

Remark 3. The property of having a LHS model is convex, i.e., if ρAB and ρ0 have LHS models (for some set ofAB 
measurements), then so does pρAB + (1 − p)ρ0 for all 0 ≤ p ≤ 1 (and the same set of measurements).AB 

B. Known results for Werner states 

1 1Werner states (cf. (2)) are separable if and only if η ≤ [8], are steerable if η > [3] and are non-local if3 2 
η > 1/KG(3) [9], where KG(3) is Grothendieck’s constant of order 3 [10], which is known to be below 1.52 (so that 
1/KG(3) > 0.658) [9]. They are local for projective measurements if η ≤ 1/KG(3) and are local for all measurements 

5 5for η ≤ [11] and also have a LHS model in this range [12]. For 1/3 < η ≤ the states are non-separable and12 12 
1unsteerable. For 1 < η ≤ the states are local for projective measurements and steerable. It is unknown whether2 KG(3) 

these states are local for all measurements anywhere in this range, which would show steerability =6 ⇒ non-locality, 
however, this non-implication is known using another family of states [12]. 
The above is summarized in Figure 2, which also includes the new result about Werner states from the present 

paper. 

III. KEYCHAIN MODELS 

Next we formalize the class of keychain models. We begin with some preliminary definitions. Drawing from [7], if 
µ is a probability distribution on RP1, let Box(µ) denote the convex set of all operators of the form Z 

xf(x) dµ, (15) 
x∈RP1 

where f is a function from RP1 to the interval [0, 1]. Note that Box(µ) ⊂ RA(C2) with tr(z) ≤ 1 for z ∈ Box(µ) and 
that an ellipse has a local hidden state model if and only if it is contained in Box(µ) for some probability distribution 
µ. 
Note that there is a natural identification between RP1 and the unit circle S1 ⊆ R2 which is given by 1 (11+ r1σ1 +2 

2 2r3σ3) ↔ (r1, r3) with r1 + r = 1. We say that a sequence s1, s2, s3 ∈ RP1 is a clockwise sequence if the images3 
of s1, s2, s3 form a clockwise sequence in S1, and counterclockwise if the images of s1, s2, s3 form a counterclockwise 
sequence in S1 . (If any of the points s1, s2, s3 are the same, then we will say that the sequence is both clockwise 
and counterclockwise.) We say that a sequence t1, . . . , tn ∈ RP1 is clockwise (resp. counterclockwise) if every 3-term 
subsequence of t1, t2, . . . , tn, t1 is clockwise (resp. counterclockwise). 
For any x, y ∈ RP1, let [x, y] denote the set of all z ∈ RP1 such that x, y, z is a clockwise sequence. Let (x, y) = 

RP1 r [y, x]. 
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Definition 4. A function f : RP1 → [0, 1] is a two-step function if there are (not necessarily distinct) elements 
x, y ∈ RP1 and q ∈ [0, 1/2] such that � 

1 − q if z ∈ (x, y)
f(z) = (16)

q if z ∈ (y, x), 

and 

q ≤ f(x) ≤ 1 − q, (17) 

q ≤ f(y) ≤ 1 − q. (18) 

We refer to q as the bias of the function and to x, y as the the endpoints of the function. If q < 1/2, then we refer 
specifically to x as the left endpoint and to y as the right endpoint. 

We prove the following. Our method is very similar to that in [7]. 

Proposition 5. Let µ be a probability distribution on RP1 . Any element of z ∈ Box(µ) can be written Z 
z = xg(x)dµ, (19) 

RP1 

where g is a two-step function (cf. Definition 4). If z is on the boundary of Box(µ), then such a function g exists with 
bias q = 0. 

Proof. The proof will be divided into two cases: (1) the case where z lies on the boundary of Box(µ), and (2) the case 
where z lies in the interior of Box(µ). 
(1) In the case where z lies on the boundary of Box(µ), there must exist H ∈ RA(C2) such that the function 

x 7→ hx, Hi on Box(µ) is maximized at z. We subdivide into three cases depending on H. 
Case 1a: The element z is on the boundary and H > 0. 
The operator Z 

ρ = x dµ (20) 
RP1 

is greater than or equal to z, so hρ − z, Hi ≥ 0. But this quantity cannot exceed 0 by assumption, so hρ − z, Hi = 0, 
which yields ρ = z. Since the constant function RP1 → {1} satisfies the definition of a two-step function, we are done. 

Case 1b: The element z is on the boundary and H � 0. 
In this case, there are unique distinct elements y, w ∈ RP1 such that hy, Hi = hw, Hi = 0, hx, Hi > 0 for all 

x ∈ (y, w), and hx, Hi < 0 for all x ∈ (w, y). Choose a function f : RP1 → [0, 1] such that Z 
z = xf(x) dµ (21) 

RP1 

(such a function must exist because z ∈ Box(µ)). Let g be the two step-function 

g(x) = 

⎧⎪⎨ ⎪⎩ 
1 if x ∈ (y, w) 
0 if x ∈ (w, y) 

f(y) if x = y 
f(w) if x = w. 

(22) 

and let Z 
r = xg(x) dµ . (23) 

x∈RP1 

Since r ∈ Box(µ), hr, Hi ≤ hz, Hi. Hence we have *Z + *Z + 
0 ≥ hr − z, Hi = (1 − f(x))xdµ, H − f(x)xdµ, H ≥ 0 , (24) 

x∈(y,w) x∈(w,y) 

where the final inequality follows because any operator x ∈ (y, w) has positive inner product with H and any operator 
x ∈ (w, y) has negative inner product with H. It follows that z = r, which completes this case. 
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Case 1c: The element z is on the boundary and H is positive semidefinite and rank-one. 
Let y ∈ RP1 be the unique element such that hH, yi = 0. Let � 

g(x) = 
1 

f(y) 
if 
if 

x 6= y 
x = y , (25) 

where f : RP1 → [0, 1] is a function such that (21) holds. By similar reasoning as in Case 1b, this function also 
computes z. 
Case 2: The element z is in the interior of Box(µ). 
Let Z 

c = (1/2)xdµ. (26) 
RP1 

Since z is interior it can be written as z = tc +(1 − t)b, where t ∈ [0, 1] and b is an element on the boundary of Box(µ). 
Let g be a two-step function which computes b, which must exist from the first part of the proof. Then, the function 
t/2 + (1 − t)g computes z. 

A keychain model for a set {σa} ⊆ RP≥(C2) of subnormalized states is a local hidden state model (µ, {fa}) in 
which the functions are all two-step functions. The previous proposition shows that any set that has a local hidden 
state model also has a keychain model. 
Next we will use the foregoing techniques to prove a geometric fact about steerability. Let us say that the length 

of a piecewise differentiable curve S : [0, 1] → RA(C2) is its length under the trace norm: Z 1 



 
0 

d 
dt 

S(t) 





 
1 

dt. (27) 

Proposition 6. Let ρAB ∈ RD(C2 ⊗ C2) be a two-qubit state whose steering ellipse has tilt < 1 and whose steering 
ellipse {ρ̃B (θ)}θ has a local hidden state model. Then, the length of {ρ̃B (θ)}θ is no more than 2. 

Note that, using (11), the length of this curve is the Euclidean length of the projection of the ellipse onto the r0 = 0 
plane in Bloch representation. It can be calculated using �sZ �2 � �22π d d 

r1(θ) + r3(θ) dθ . 
dθ dθ0 

For the proof of Proposition 6, we will need the following definition. 

Definition 7. A probability distribution on RP1 is discrete if it supported at a finite number of points. 

Any probability distribution on RP1 can be approximated to an arbitrary degree of accuracy by discrete probability 
distributions. 
The next lemma asserts that if µ is a discrete probability distribution, certain slices of Box(µ) must have circum-

ference ≤ 2 under the trace norm. R 
Lemma 8. Let µ be a discrete probability distribution on RP1 with RP1 xdµ = ρ, and H ∈ RP>(C2). Then, the set 

{M ∈ Box(µ) | hM, Hi = (1/2) hρ, Hi} (28) 

is enclosed by a curve of length ≤ 2. 

where the points |0ih0|, s1, . . . , sn are in clockwise order, and define ρ̃m := 
For any t ∈ [0, hH, ρi], define a two-step function ht : RP1 → [0, 1] as follows: if 

PProof. We will construct an explicit curve which is the boundary of (28). Let S = 
m 
i=1 µsi 

{s1, . . . , sn} be the support of µ, 
si. 

t ∈ [hρm, Hi , hρm+1, Hi) , (29) 

then 

ht(x) = 1 (30)� for x ∈ [|0ih0|, sm+1) 

t − hρm, Hi 
ht(sm+1) = , (31) 

µ(sm+1) hsm+1, Hi 

� 



� 

� 
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and ht is zero elsewhere. Note that, by construction, Z 
ht(x) hx, Hi dµ = t. (32) 

x∈RP1 

Also define a two-step function ht : RP1 → [0, 1] by 

ht = 

⎧⎨ ⎩ h(t+hρ,Hi/2) − ht if t < hρ, Hi /2 

1 − ht + h(t−hρ,Hi/2) otherwise, 
(33) 

so that for any t, Z 
ht(x) hx, Hi dµ = hρ, Hi /2. (34) 

x∈RP1 

Let Z 
G(t) = ht(x)x dµ. (35) 

x∈RP1 

The image of G is then the boundary of (28). 
Note that for any fixed i, the function t 7→ ht(si) is bitonic (in the sense that it only increases once and decreases 

once, modulo hρ, Hi) and has extreme values 0, 1, and thus ���� ����Z hρ,Hi �d 
ht(si) dt = 2. (36)

dt0 

Therefore, the length of the curve G is given by 

 d

dt0 1 0 





 



 



 




 
1 

Z Z Zhρ,Hi hρ,Hi d 
G(t) dt ht(x)xdµ dt (37) 

dt (38) 

= 

X dt x∈RP1 

n





 

Z hρ,Hi d 
ht(si)siµ(si)= 

dt Xn0 i=1 1 ���� ����µ(si)dt (39) 
Z hρ,Hi �d ≤ ht(si)

dt0 i=1 

= 

= 

nX 
i=1 

2µ(si) 

2, 

(40) 

(41) 

as desired. 

Proof of Proposition 6. Let (µ, {fθ}) be a keychain local hidden state model for the steering ellipse of ρAB . Let H 
be a (non-zero) positive semidefinite operator which is normal to the steering ellipse of ρAB (such an operator exists 
because the tilt of the steering ellipse of ρAB is at most 1 by assumption). Because it is normal to the ellipse, 
hρ̃B (θ), Hi = u (independent of θ). Choose a sequence µ1, µ2, . . . of discrete probability distributions on RP1 which 
converges to µ. Then, the sets 

{M ∈ Box(µi) | hM, Hi = (1/2) hρB , Hi} , (42) 

each of which is enclosed by some curve of circumference ≤ 2, converge to the set 

{M ∈ Box(µ) | hM, Hi = (1/2) hρB , Hi} . (43) 

Because hρ̃B , Hi = hρ̃B (θ), Hi + hρ̃B (θ + π), Hi = 2u, this set contains ρ̃B (θ). The desired result follows. 
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IV. A CRITERION FOR RP -STEERABILITY 

The previous section gave a necessary condition for RP-steeraibility. Our next goal is to create a criterion that is 
both necessary and sufficient. 
We now state our main result. 

Theorem 9. Let ρAB ∈ RD(C2 ⊗ C2) be a two-qubit state whose steering ellipse has tilt < 1. Then, ρAB is RP-
unsteerable if and only if there exists Y ∈ RP>(C2) such that Z π ���� ���� dθ ≥ 0 . (44) 

d 
Y ρB Y − Y (ρ̃B (θ)) Y 

dθ0 

Corollary 10. Let ρAB ∈ RD(C2 ⊗ C2) be a two-qubit state whose steering ellipse has tilt < 1. Then ρAB is 
RP-steerable if and only if there exists Y ∈ RP>(C2) such that Z π ���� ���� dθ ≤ 0 , (45) 

d 
Y ρB Y − Y (ρ̃B (θ)) Y 

dθ0 

with the left-hand-side not equal to 0. 

* * * Some definitions removed since in preliminaries; we could consider whether the definition below could be 
removed with a little rewriting of the appendix. * * * 
For the proofs of Theorem 9 and Corollary 10, we begin with the following definition. 

Definition 11. For Y ∈ A(H) with Y > 0, define 

|X| := Y −1 |Y XY | Y −1 (46)Y 

and kXk := Tr(|X| ).1,Y Y 

Note that (52) can be rewritten as 

Z π ���� ���� dθ ≥ 0 . 
d 

ρB − (ρ̃B (θ)) (47)
dθ0 Y 

We proceed by developing various components for the proof of Theorem 9. The following result found in [12] will 
be useful. 

Lemma 12. If ρAB has a LHS model (for any set of measurements), then so does 

(I ⊗M)(ρAB )/tr((I ⊗M)(ρAB )) (48) 

for any positive linear map M. 

Additionally, we need the following lemma about the asymptotic behavior of the integral in inequality (47). For 
any � and any real unit vector v ∈ C2, let 

D�,v = �(11 − |vihv|) + |vihv|. (49) 

For any nonzero positive semidefinite matrix A, we use hAi to denote the normalization of A, i.e., hAi := A/tr(A). 

Lemma 13. Let ρAB ∈ RD(C2 ⊗ C2) be a two-qubit state whose steering ellipse has tilt < 1. Let {v, w} be an 
orthogonal basis for C2 . Then, *Z 2π 

lim 
�→0 0 

���� d 
dθ 

ρ̃B (θ) 

���� 
+ 

dθ = |wihw|. (50) 
D�,v 

Proof. This is given by Corollary 26 in the Appendix. 
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As a consequence of Lemma 13, the function RD>(C2) → RD(C2) given by 

Y 7→ 

*Z 2π 

0 

���� d 
dθ 

ρ̃B (θ) 

���� 
+ 

dθ . (51) 
D�,v 

extends continuously to a map RD(C2) → RD(C2) which has the effect of mapping each element of RP1 to its 
orthogonal complement. By Lemma 18 in the appendix, the function given by (51) is onto. In particular, its image 
contains ρB . We therefore have the following. 

Lemma 14. Let ρAB ∈ RD(C2 ⊗ C2) be a two-qubit state whose steering ellipse has tilt < 1. Then, there exists 
Y ∈ RD>(C2) such that Z 2π ���� 

0 

d 
dθ 

ρ̃B (θ) 

���� 
Y 

dθ (52) 

is a scalar multiple of ρB . 

Proof of Theorem 9. For any Hermitian operator X, define |X|± := (|X| ± X)/2, and kXk± = tr |X|±. 
Case 1: Suppose 

π ���� (ρ̃B (θ)) 

���� dθ , (53) 
Z

d 
dθ 

ρB ≥ ρ0 := 
0

and define 

σλ := 

���� ���� + 
ρB − ρ0 

2π+ 

. (54) 
d 
(ρ̃B (λ))

dλ 

Because ρ̃B (λ + π) = ρB − ρ̃B (λ), the operator (d/dλ)ρ̃B (λ + π) is the negation of the operator (d/dλ)ρ̃B (λ), and so 
the following equality also holds: 

σλ = 

���� d 
dλ 
(ρ̃B (λ + π)) 

���� + 
ρB − ρ0 

(55). 
2π− 

���� ���� 
We proceed to construct a local hidden state model from {σλ}λ. 

2π 

We have the following: Z Z 2π d 
dλ + ρB − ρ0σλdλ ρ̃B (λ) (56)= 

dλ0 0 + ���� ���� ���� ���� Z Zπ 2πd d 
dλ + (ρB − ρ0)ρ̃B (λ) dλ + ρ̃B (λ) (57)= 

dλ dλ0 π+ +���� ���� ���� ���� Z Zπ πd d 
dλ + (ρB − ρ0)ρ̃B (λ) dλ + ρ̃B (λ) (58)= 

dλ dλ0 0 −+���� ����Z π d 
dλ + (ρB − ρ0)ρ̃B (λ) (59)= 

dλ0 

ρ0 + ρB − ρ0 (60)= 

= ρB . (61) 

For any θ ∈ [0, π] let gθ : RP1 → [0, 1] be equal to zero on the interval [θ, θ + π] and equal to 1 elsewhere, and define 
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gθ for θ ∈ (π, 2π] by gθ = 1 − gθ−π. Then, �Z2π 2π �Z Z 2π1 
gθ(λ)σλdλ = (2gθ(λ) − 1)σλdλ + σλdλ (62)

20 0 0" #Z Zθ+π mod 2π θ+2π mod 2π1 − σλdλ + σλdλ + ρB (63)= 
2 θ θ+π mod 2π #" ���� ���� ���� ���� Z Zθ+π mod 2π θ+π mod 2π1 d d − ρ̃B (λ) dλ + ρ̃B (λ) dλ + ρB (64)= 
2 dλ dλθ θ −+ #" Z θ+π mod 2π1 d 

= − ρ̃B (λ)dλ + ρB (65)
2 dλθ 

1 
= [−ρ̃B (θ + π) + ρ̃B (θ) + ρB ] (66)
2 

= ρ̃B (θ). (67) 

Thus {ρ̃B (θ)}θ has a local hidden state model. 
Case 2: Suppose that there exists Y ∈ RP>(C2) such that 

π ���� ���� dθ . (68) 
Z

d 
Y ρB Y ≥ Y (ρ̃B (θ)) Y 

dθ0 

In this case, the state 

(11 ⊗ Y )ρAB (11 ⊗ Y )
ρAB = (69)

Tr[(11 ⊗ Y )ρAB (11 ⊗ Y )] 

satisfies the conditions of Case 1. Since M : X 7→ Y −1XY −1 is a positive map, by Lemma 12, a local hidden state 
model exists for ρAB . 
Case 3: Suppose that for all Y ∈ RP>(C), Z π ���� ���� dθ (70) 

d 
Y ρB Y � IY := Y (ρ̃B (θ)) Y 

dθ0 

By Lemma 14, we can find Y such that IY is a scalar multiple of Y ρB Y (this is why Corollary 10 follows from 
Theorem 9). Thus we have Z π ���� ���� dθ (71) 

d 
Y ρB Y = c Y (ρB (θ)) Y 

dθ0 

for some c < 1. Letting γAB = h(11 ⊗ Y )ρAB (11 ⊗ Y )i, we have 
π ���� ����Z

d 
γB = c (γB (θ)) dθ (72)

dθ0 

which in particular means Z π 



 
0 

d 
dθ 
(γB (θ)) 





 
1 

dθ ≥ (1/c)Tr(γB ) > 1. (73) 

By symmetry, replacing the upper limit (π) in the integral above has the effect of doubling its value; thus, Z 2π 



 
0 

d 
dθ 
(γB (θ)) 





 
1 

dθ > 2, (74) 

which implies by Proposition 6 that γ (and therefore ρ) has no local hidden variable model. 
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FIG. 3: [left] Steering ellipses in the Bloch representation for η = 1, α = π/4 (blue), 0.65 (brown), 0.35 (purple), 0.1 (red) and 
0 (green); [right] α = 0.35 and η = 1 (blue), 3 

4
(brown), 1 

2
(purple), 1 

4
(red) and η = 0.01 (green). The small yellow circle on 

the right marks the origin. 

V. EXPLICIT CALCULATIONS FOR STEERING ELLIPSES 

A. Application I: RP-steerability of Werner states 

1
It is interesting to see what this criteria gives for Werner states. Let us consider the family ρAB (η) = η|Φ+ihΦ+| + 

(1 − η)11/4 where η ∈ [0, 1] and |Φ+i = √ 
2
(|00i + |11i). 

2 2 
π .Theorem 15. States of the form ρAB (η) are RP-unsteerable for η ≤ and are RP-steerable for η >π �� 

1 + η cos θ η sin θ 
and have zero tilt for all η (since

η sin θ 1 − η cos θProof. The steering ellipses for these states are ρ̃B (θ) =
1 
4 

d 

�� 
d 

all these states have the same trace, the difference between any two states on the ellipse is orthogonal to 11/2). The 
− sin θ cos θ ηwhich has | (ρ̃B (θ))| =derivative with respect to θ is 4(ρ̃B (θ)) = η 11. Hence,dθ dθ 4cos θ sin θ 

ρB − 
0 

Z π ���� d 
dθ 
(ρ̃B (θ)) 

���� πη 
dθ = 11/2 − 11 . 

4 

πη 1≤Applying Theorem 9 and Corollary 10 with Y = 11 we have that Werner states are RP-unsteerable if , i.e.,4 2
2 2η ≤ ≈ 0.637 and are RP-steerable if η > .π π 

� 
4

� 11 
�� 

B. Application II: RP-steerability of partially entangled Werner states 

πConsider the family ρAB (α, η) := η|φαihφα| + (1 − η)11/4, where |φαi := cos α|00i + sin α|11i for 0 ≤ α ≤ 
− η η cos(α) sin(α) sin(θ) 

− η 

.4
θη cos2(α) cos2 +

The steering ellipses for these states are ρ̃ α,η(θ) = B 
4

η cos(α) sin(α) sin(θ) 
2 24 and are 

η sin2(α) sin21 θ 1+2 2 4 ��plotted in the Bloch representation in Fig. 3. 
sin2 α 0 α,η(θ)) = 1 

8 (2−η(1−cos(4α))), i.e., is independent of θ. AαOne can verify that for Aα , tr(Aαρ̃B = 
0 cos2 α 

is hence normal to the steering ellipse and so the tilt of the ellipse is cos(2α) ≤ 1, and approaches 1 as α approaches 
0. 
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Remark 16. The tilt is independent of η and hence the steering ellipse for any two-qubit pure state has tilt at most 1. 
1We have ρB (α, η) = 1 (1 + η cos(2α))|0ih0| + (1 − η cos(2α))|1ih1|.2 2 

The derivative of the steering ellipse with respect to θ is � � 
d α,η η − cos2(α) sin (θ) cos(α) sin(α) cos(θ)
ρ̃ (θ) = . (75)Bdθ 2 cos(α) sin(α) cos(θ) sin2(α) sin (θ) 

πFor α = the case is as before. To investigate other values of α, we note that, by Remark 3, if ρAB (α, η) has a4 
LHS model, then so does ρAB (α, η0) for η0 < η. Thus, for each α there is a critical value η̄(α) such that ρAB (α, η) is 
RP-steerable for η > η̄(α) and is RP-unsteerable for η < η̄(α). We search for this critical value numerically. 
Since Y has real entries, is positive and multiplying by a constant doesn’t affect whether (52) holds, we can take 

Y to have tr(Y ) = 1 and parameterize it in terms of two parameters r1 and r3 using a plane of the Bloch sphere via 
1Y = (11 + r1σ1 + r3σ3). To do the search we use the following subroutines:2 

1. For fixed α and η this searches over r1, r3 to find the largest value of the minimum eigenvalue of the expression 
on the left of (52). This uses gradient ascent with decreasing step-size, terminating when no improvement can 
be found for some minimal step-size, or when r1, r3 are found such that the minimum eigenvalue is positive 
(i.e., (52) is satisfied). The output is either the largest value found or the first positive value found. 

2. This is analogous to Subroutine 1, except it searches for the smallest value of the maximum eigenvalue of the 
expression on the left of (52), terminating either when a negative value is obtained or when no improvement 
can be found for some minimal step-size. 

3. For fixed α, this uses Binary Search to find the largest η for which Subroutine 1 returns a positive value, for 
some number of search steps. 

4. For fixed α, this uses Binary Search to find the smallest η for which Subroutine 2 returns a negative value, for 
some number of search steps. 

Subroutine 3 hence gives a certified lower bound on η̄(α) and Subroutine 4 a certified upper bound. By varying the 
step-sizes and number of steps, in principle, we can make the gap between these as small as we like (in practice, the 
limits of machine precision provide a cut-off). 
Note that if Subroutine 1 has a negative output, we cannot strictly rule out that there exists a Y such that 

condition (52) holds: in principle a smaller step-size might reveal a suitable Y . This is why we use Subroutine 2 in 
parallel. 
The result is given in Figure 1 (although the plot only shows η > 0.6, the region extends to η = 0). 

C. RP-steerability of depolarizing channel states 

Consider a source that generates an entangled state that is sent to two parties via two depolarizing channels with 
parameters ηA and ηB , i.e., these channels take S(C2 ⊗ C2) 7→ S(C2 ⊗ C2) : ρAB 7→ ρ̂AB := (EηA ⊗ EηB )(ρAB ), where 
Eη : S(C2) 7→ S(C2) is given by Eη (ρ) = ηρ + (1 − η)11/2. 
For ρAB = |Φ+ihΦ+|, this channel leads to Werner states (except with parameter ηAηB instead of η). The states 

are hence RP-unsteerable iff ηAηB ≤ 2 ≈ 0.637.π 
More generally, for ρAB = |φαihφα|, we call the state after the channel ρ̂AB (α, ηA, ηB ) and note that ρ̂B = 

1 ((1 + ηB cos(2α))|0ih0| + (1 − ηB cos(2α))|1ih1|) is independent of ηA. The steering ellipse for such a state is2 � � 
α,ηA ,ηB 

1 1 + ηA cos(2α) cos(θ) + ηB (ηA cos(θ) + cos(2α)) ηAηB sin(2α) sin(θ)ρ̃ (θ) = B 4 ηAηB sin(2α) sin(θ) 1 + ηA cos(2α) cos(θ) − ηB (ηA cos(θ) + cos(2α)) ! 
ηB −cos(2α) 

2ηB α,ηA ,ηB 1For Aα,ηA,ηB = 
0 

, we have tr(Aα,ηA,ηB ρ̃ (θ)) = sin2(2α), which is independentηB +cos(2α) B 20 2ηB 
cos(2α)of θ. Hence Aα,ηA,ηB is the normal to the steering ellipse, and the ellipse has tilt ηB 

. This is at most 1 for 
ηB ≥ cos(2α), so we can use Theorem 9 and Corollary 10 provided this holds. 
The derivative of the steering ellipse is � � 

d 
ρ α,ηA,ηB 

ηA −(ηB + cos(2α)) sin(θ) ηB sin(2α) cos(θ)˜ (θ) = .Bdθ 4 ηB sin(2α) cos(θ) (ηB − cos(2α)) sin(θ) 

Since this is proportional to ηA, the amount of noise on Alice’s side (the untrusted side), the case of noise only on 
Bob’s side is representative of the general case. 
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FIG. 4: Plot of the region where a LHS model exists for all real projective measurements for ηA = 1 (blue), ηA = 0.9 (orange) 
and ηA = 0.8 (green), ηA = 0.7 (red), together with the purple curve ηB = cos(2α) which we need to be above to use Theorem 9 
and Corollary 10. In the case ηA = 

π 
2 (not shown), the state is steerable for all ηB and α. Above each of the regions, the state 

is RP-steerable. To the left of the blue region our criteria is unable to decide whether or not the states have a LHS model 
because the boundary between criteria (52) and (45) is below the purple curve. The line intersects the curve upper bounding 
the blue region at (α, ηB ) ≈ (0.37, 0.74). 

1. No noise on Bob’s side (i.e., the trusted side) 

θ 
d α,ηA ,1Firstly, if ηB = 1, ρ̃B (θ) is identical to that in (75), and the tilt of the steering ellipse of ρAB (α, ηA, 1) isd

cos(2α) ≤ 1, so we obtain the same result. 

2. The maximally entangled case 

π In other words, ηAηB ≤ 2 
πSecondly, if α = , the situation is exactly the same as for a Werner state with η = ηAηB .4

is a necessary and sufficient condition for RP-unsteerability of a state of the form ρAB (π/4, ηA, ηB ). 

3. The general case 

We study this numerically, using similar techniques to before. The results are shown in Figure 4. 
The left hand side of (52) becomes easier to satisfy for lower ηA and so the region of RP-unsteerability increases as 

ηA is lowered. In other words, if ρ̂AB (α, ηA, ηB ) is RP-unsteerable, then so is ρ̂AB (α, η0 , ηB) for η0 ≤ ηA. At ηA = A A 
2 
π 

the state is RP-unsteerable for all ηB and α. 
Note that the regions shown in the above plot extend below the purple curve, although the condition on the tilt of 

the steering ellipse ceases to be satisfied there. To extend to this region we use the fact that more noise (lower ηB ) 
makes a LHS model easier to construct. This is stated in the following lemma. 

Lemma 17. If ρ̂AB (α, ηA, ηB ) has a LHS model (for any set of measurements), then so does ρ̂AB (α, ηA, η0 ) for allB 
η0 < ηB .B 

ηB −η0 
B BProof. This follows from Remark 3 and the fact that ρ̂AB (α, ηA, η0 ) = η
0 

ρ̂AB (α, ηA, ηB )+ ρ̂A(α, ηA, ηB ) ⊗ 11/2,B ηB ηB 

i.e., is a convex combination of ρ̂AB (α, ηA, ηB ) and ρ̂A(α, ηA, ηB ) ⊗ 11/2, both of which have LHS models. 

Hence, although we cannot use Theorem 9 throughout the α-ηB plane, we can nevertheless establish steerability 
of all states of the form ρ̂AB (α, 1, ηB ) for α & 0.37 (for example). Furthermore, the numerics point to the existence 
of a critical value around 0.92 such that for values of ηA below this we can always use our criteria (graphically, the 
boundary of the region in which a LHS model exists always lies above ηB = cos(2α) for ηA . 0.92). 
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Appendix A: Supplementary Proofs 

1. A topological lemma 

Lemma 18. Let D = {z ∈ C | |z| ≤ 1} and let S1 = {z ∈ C | |z| = 1}. Let F : D → D be a continuous function such 
that for any z ∈ S1 , F (z) = −z. Then, F is onto. 

Proof. Suppose, for the sake of contradiction, that y ∈ D r F (D). Let G : D → S1 be the (unique) function defined 
by the condition that for any z ∈ D, F (z) lies on the line segment from y to G(z). Note that the function G also fixes� 
S1 . The family of functions Hα : S1 → S1 | α ∈ [0, 1] given by Hα(z) = G(αz) is a continuous deformation between 
the negation map on S1 and the constant map which takes S1 to G(0). This is impossible, since these maps represent 
different elements of the fundamental group of S1 . Thus, by contradiction, the original map F must be onto. 

p
2. Integrals with denominator x2 + y2 

Proposition 19. Let a be a positive real number. Let F : [−a, a]2 → R be a continuous function such that p
|F (x, y) − F (0, 0)| ≤ O( x2 + y2). Then, R pa 

[F (x, y)/ x2 + y2]dx 
lim −a = F (0, 0). (A1) 
y→0 ln(1/y2) p p

Proof. We have F (0, 0) − C x2 + y2 ≤ F (x, y) ≤ F (0, 0) + C x2 + y2 for some C > 0. Thus, Z Za ap p
[F (x, y)/ x2 + y2]dx ≤ [F (0, 0)/ x2 + y2]dx + 2aC (A2) 

−a −a h � �ip x=a 
= F (0, 0) ln �� x2 + y2 + x�� + 2aC (A3) 

x=−a! 
a2 + y2 + a 

= F (0, 0) ln 

pp + 2aC (A4) 
a2 + y2 − a p ! 

( a2 + y2 + a)2 

= F (0, 0) ln + 2aC (A5) 
y2 �p � 

= F (0, 0) ln(1/y2) + 2F (0, 0) ln a2 + y2 + a + 2aC (A6) 

The second and third summands in (A6) are both o(ln(1/y2)) — in fact, they both tend to constants, since�p � 
limy→0 ln a2 + y2 + a = ln(2a) < ∞. Thus R pa 

[F (x, y)/ x2 + y2]dx−alim ≤ F (0, 0). (A7) 
y→0 ln(1/y2) 

Similar reasoning shows the reverse inequality. 

Next we state some generalizations of the above proposition. 

Proposition 20. Let U ⊆ R2 be a compact region that contains (0, 0) in its interior. Let F : U → R be a continuous p
function such that |F (x, y) − F (0, 0)| ≤ O( x2 + y2). Then, R p

[F (x, y)/ x2 + y2]dx{x|(x,y)∈U}
lim = F (0, 0). (A8) 
y→0 ln(1/y2) R p

Proof. Choose a sufficiently small that [−a, a] ⊆ U . Since |F (x, y)| / x2 + y2 < ∞, replacing U with [−a, a]
Ur[−a,a] 

in (A8) has no effect on the resulting limit. 



16 

For any differentiable function H : Rn → Rn, let Jac(H) = [∂Hi/∂xj ]ij denote the Jacobian of H. 

Corollary 21. Let U ⊆ R2 be a compact region that contains (0, 0) in its interior, and let F : U → R be a continuous 
x2 + y2). Let G : U → R2 

, and G−1(0, 0) = {(0, 0)}.

p
be a twice-differentiable function such that function such that |F (x, y) − F (0, 0)| ≤ O(

1 0 
�� 

Jac(G)(0, 0) = Then,
0 1 R 

lim 
y→0 

{x|(x,y)∈U}[F (x, y)/ |G(x, y)|]dx 

ln(1/y2) 
= F (0, 0). (A9) 

Proof. Let ⎧⎪⎨ ⎪⎩ 
|G(x, y)| / 

���px2 + y2 
��� if (x, y) 6= (0, 0) 

g(x, y) = (A10) 

1 if (x, y) = (0, 0) 

2
Let I : R2 → R2 be the identity map. By assumption, |G − I| ≤ O(|I|������ 

������ 
), and thus ���� |G||I| − 1 

������� |G(x, y)| x2 + y2
p ��� − 1 (A11)= 

≤ p
if 

O(|I|) 
x2 + y2). 

(A12) 

(A13)O(= 

x2 + y2),O(

Applying Proposition 20 with the function F (x, y) replaced by F (x, y) yields 

p
Therefore, |g(x, y) − g(0, 0)|
F (x, y) − F (0, 0)

p���� ≤ and likewise we let F (x, y) = F (x, y)/g(x, y), we have 
x2 + y2).≤ O(

the result. 

The next corollary follows easily by change of coordinates. 

pCorollary 22. Let U ⊆ R2 be a compact region that contains (0, 0) in its interior, and let F : U → R be a continuous 
x2 + y2). Let G : U → R2 

R 
function such that |F (x, y) − F (0, 0)| ≤ O(
Jac(G)(0, 0) is invertible, and G−1(0, 0) = {(0, 0)}. 

be a twice-differentiable function such that 
Then, 

{x|(x,y)∈U}
lim 
y→0 

[F (x, y)/ |G(x, y)|]dx 

ln(1/y2) 
= �� F (0, 0) �� . (A14)

∂G (0, 0)∂x 

3. Formulas for the absolute value of a 2 × 2 matrix 

The following propositions address the asymptotic behavior of the modified absolute value function. In all of the 
following, � denotes a real parameter from the interval (0, 1]. 
If � ∈ (0, 1], let �� 

1 
D� = . (A15)

� �� 
If X = 

a b 
, then let Δ(X) = (x1 − x2)

2, where x1, x2 denote the eigenvalues of X. (This is the discriminant of b c 
X.) �� 
Proposition 23. Let X = 

a 
b 

b 
c . Then, the discriminant Δ = Δ(X) is given by 

Δ = (a − c)2 + 4b2 . (A16) 

The tilt of X is equal to 

Tilt(X) = 

√ 
Δ 

a + c 
. (A17) 
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If X is positive semidefinite, then |X| = |X|+ = X and |X|− = 0. If X is negative semidefinite, then |X| = |X|− = 
−X and |X|+ = 0. If X is neither positive semidefinite nor negative semidefinite, then an orthogonal rank-one 
decomposition for X is given by !� √ � √ 

(a − c) + Δ 2b a + c + Δ 
X = √ √ (A18)

2b (c − a) + Δ 4 Δ !� √ � √ 
(c − a) + Δ −2b a + c − Δ 

+ √ √ ,−2b (a − c) + Δ 4 Δ 

(The above expression can be used easily to express |X|+, |X|−, and |X|.) If X is neither positive semidefinite nor 
negative semidefinite, the following formula holds: � �� � 

a2 − ac + 2b2 ab + ac 1 |X| = √ (A19)
ab + ac c2 − ac + 2b2 

Δ 

Proof. If we let x1, x2 denote the eigenvalues of X, then 

Δ = (x1 − x2)
2 (A20) 

= (x1 + x2)
2 − 4x1x2 (A21) 

= Tr(X)2 − 4 det(X) (A22) 

= (a + c)2 − 4(ac − b2), (A23) 

which is easily transformed into (A16). For (A18), it is easy to check by direct computation that the difference 
between the two summands is equal to X, that the summands are of rank one and orthogonal. 
We obtain (A19) from (A18). Exactly one of the terms in (A18) is positive semidefinite; suppose that it is the first 

term. Then, !� √ � √ 
(a − c) + Δ 2b a + c + Δ |X| = √ √ (A24)

2b (c − a) + Δ 4 Δ !� √ � √ 
(c − a) + Δ −2b a + c − Δ − √ √ ,−2b (a − c) + Δ 4 Δ 

Multiplying the numerators of the fractions in (A24) into the respective matrices, and performing cancellations, �� �� � �� �� a b � 2a2 − 2c2 + 2Δ 4b(a + c) 1� � = √ (A25)� b c � 4b(a + c) −2a2 + 2c2 + 2Δ 4 Δ� �� � 
2a2 − 2c2 + 2[(a − c)2 + 4b2] 4b(a + c) 1 

= √ (A26)
4b(a + c) −2a2 + 2c2 + 2[(a − c)2 + 4b2] 4 Δ� �� � 

a2 − c2 + [(a − c)2 + 4b2] 2b(a + c) 1 
= √ (A27)22b(a + c) −a + c2 + [(a − c)2 + 4b2] 2 Δ� �� � 

2a2 − 2ac + 4b2 2ab + 2ac 1 
= √ (A28)

2ab + 2ac 2c2 − 2ac + 4b2 
2 Δ� �� � 

a2 − ac + 2b2 ab + ac 1 
= √ , (A29)

ab + ac c2 − ac + 2b2 
Δ 

as desired. 

We wish to understand how the function 

� 7→ |X| (A30)D� 

varies as � → 0. If X ≥ 0 or X ≤ 0, this is easy: the function is constant and is equal to |X|. Thus we focus on the 
case where X is neither positive semidefinite nor negative semidefinite. 



 

 

� 
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By substitution, ���� ���� = 

���� ����� � � �� � � �
1 0 a b 1 0 
0 � b c 0 � 

�ba 
(A31)

�2c�b !�� 
a2 − �2ac + 2�2b2 �ab + �2ac 1 

(A32) 
(a − �2c)2 + 4�2b2 

Multiplying the above equation on both the left and the right by (D�)
−1, we obtain the following proposition. 

p= 
�ab + �2ac �4c2 − �2ac + 2�2b2 

�� 
a b 

Proposition 24. Let X = and � ∈ (0, 1]. Then,
b c !���� ���� � � �� 

2 − �2ac + 2�2b2 ab + �ac 1ba a
(A33)

ab + �ac �2c2 − ac + 2b2
p
(a − �2c)2 + 4�2b2 

= .
b c 

D� 

4. The steering ellipse of a two-qubit state 

We now integrate the results from the previous subsections. Assume, as in the main text, that ρAB is a two-qubit 

� state and that its steering ellipse {ρ̃B (θ) | θ ∈ R} has tilt less than 1. Define functions a, b, c : R → R so that �
d a(θ) b(θ)
ρ̃B (θ) = . (A34)

b(θ) c(θ)dθ 

Let �� 
a2 − �2ac + 2�2b2 ab + �ac 

F (θ, �) = (A35)
ab + �ac �2c2 − ac + 2b2 

and � 
a − �2G(θ, �) = c, 2�b . (A36) 

The function a : R → R is a sinusoidal function with period 2π. There are two values of θ ∈ [0, 2π) at which a = 0. 
By changing of coordinates if necessary, we can assume that these two values are θ0 and θ0 + π, where θ0 ∈ (0, π). 
Then, using Proposition 24, �� ��R π R πd ρB (θ)dθ dθ [F (θ0, �)/ |G(θ, �)|]dθ 

ln(1/�) 
0 D� 0lim lim (A37)= 

ln(1/�)�→0 �→0 

F (θ0, 0) 
(A38)= � 

� 
� ∂ |G(θ, �)|(θ0, 0)∂θ 

0 0 
0 2(b(θ0))2 

= (A39)0(θ0)a� 
0 0 2(b(θ0))

2 

(A40)= 
0 1 a0(θ0) 

, 

and similarly, �� ��R 2π ��d ρB (θ)dθ dθ 2(b(θ0))
20 0π D�lim 

�→0 
(A41)= . 

ln(1/�) 0 1 a0(θ0) 

We thus have the following: 

Proposition 25. Let ρAB denote a real two-qubit state whose steering ellipse has tilt < 1, and define a, b, c by (A34). 
Then, �� �� dθ 

R 2π ��d ρB (θ)dθ 4(b(θ0))
20 00 D�lim (A42)= 

ln(1/�) 0 1 a0(θ0)�→0 
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The following corollary is immediate by change of basis. 

Corollary 26. Let ρAB denote a real two-qubit state whose steering ellipse has tilt < 1. Let {v, w} be an orthonormal 
basis for R2, and let D�,v = |vihv| + �|wihw|. Then, the limit R 2π � �� d � 

0 dθ ρB (θ) dθ
D�,vlim (A43)

�→0 ln(1/�) 

converges and is equal to a positive scalar multiple of |wihw|. 
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