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Abstract: Database driven web applications are some of the 

most widely developed systems today. In this paper, we 

demonstrate use of combinatorial testing for testing database 

supported web applications, especially where full-text search 

is provided or many combinations of search options are 

utilized. We develop test-case selection techniques, where test 

strings are synthesized using characters or string fragments 

that may lead to system failure. We have applied our approach 

to the National Vulnerability Database (NVD) application and 

have discovered a number of "corner-cases" that had not been 

identified previously. We also present simple heuristics for 

isolating the fault causing factors that can lead to such system 

failures.  The test method and input model described in this 

paper have immediate application to other systems that 

provide complex full text search.    

 

I. INTRODUCTION 

Web-based applications, especially ones driven by a back-

end database, continue to be some of the most common 

custom software being developed in today's world. Many 

applications store their data in an SQL database or in a no-

SQL data store at the back-end servers and query and 

update them to provide information searched by the users 

and other transaction-oriented service. The architecture of 

these applications is usually layered, utilizing many 

different, often loosely connected components. Testing 

these applications effectively remains a challenge for the 

software engineering community. High profile web 

application failures have resulted in cases where testing was 

insufficient [2][3]. A wide variety of general-purpose 

strategies and techniques for systematically testing 

applications are well established and widely practiced [1].  

 

In this paper we focus on a highly specific test procedure 

for full-text search in the National Vulnerability Database 

(NVD), a large, heavily used public internet database. Text 

search is one of the fundamental components of web 

applications used in every industry. Thus, strong testing of 

this component is essential for high assurance, but it is often 

handled as simply one aspect of overall system testing. The 

test procedure documented in this paper seeks to provide 

stronger testing for this fundamental component.  

  

After implementing a new feature in the NVD, developers 

discovered that certain special characters resulted in 

"Server Error" responses. However it was not clear which 

specific combinations of special characters triggered this 

response, or how many such problematic cases existed. 

Some of these were corrected, but it was decided to apply 

combinatorial methods to attempt to identify all inputs that 

caused the server error response.  

 
Decision makers in industry and government rely on testing 

to determine readiness of systems for deployment, so 

defensible measures of test completeness are essential. 

Testing any reasonable application exhaustively is nearly 

always impractical. The two crucial questions testing 

researchers aim to study are how to select the test cases, and 

how many to select; i.e., when to stop testing. These 

questions become especially challenging for integration and 

system testing of any large application. The goal is to select 

test cases at the integration and system testing level such 

that the fault finding probability is maximized. One can try 

to achieve this goal by systematically covering a large 

section of the input space including many corner cases or 

unexpected values that may potentially cause failures.  

 
Combinatorial Testing [4] has been shown to be an effective 

approach. In this paper, we demonstrate use of 

combinatorial approaches to develop test cases that 

systematically test important components of database-

backed web applications. Our case study reveals that such 

systematic exploration of input space using covering arrays 

can be a very useful way of identifying failure scenarios that 

are otherwise not discovered.  

 

Web applications are typically developed in a multi-tiered 

fashion. Fig. 1 shows a high level generic architecture of 

most of these applications. The outermost layer is the 

presentation layer, which provides the interface for client 

interaction. Application developers use HTML, CSS, and 

client side scripting languages to make the user interface 

intuitive and useful. The Middle layer is often served by an 

Application Server framework such as JBoss, WebSphere 

or Netweaver. These application servers are often built 

around common web servers such as Apache and IIS. 

Programmers develop their business logic and run their 

programs on these Application Server environments. At the 

innermost layer sits a DBMS such as mySQL, MS SQL, 

Oracle, DB2 etc. The application servers provide support 

for interacting with the DBMS through standard protocols 

like Java Database Connectivity (JDBC), Common Object 

Request Broker Architecture (CORBA) etc. 

 

While developing a web application, there are 

programming modules that are developed at each level. 

Programmers often write stored procedures, which are 



groups of SQL statements stored and executed in the 

RDBMS, i.e., at the innermost layer, to reduce server-client  

 

 
Fig. 1. A Typical Multi-Layered Web Application  

 

network traffic, and to make the system more secure by 

hiding many of database-level details. The middle layer, 

where most of the business logic is implemented, often 

includes integration of other already developed modules or 

service calls to independent web services. Similarly, for 

receiving and reacting to user interaction and presenting the 

output of the application to the client, program modules are 

developed and deployed to interact with the middle layer 

directly. All these component interactions, both at the same 

layer and across layers, require systematic and thorough 

testing. Programmers and managers are usually good at 

making sure that unit tests are developed and run regularly 

while different programming units are being developed. 

However, testing unit interactions during integration, and 

testing the overall system systematically once it has been 

developed, often receive relatively little attention. 

Anecdotal evidence suggests that the primary reason for 

this relative lack of integration and system testing is often 

deadline pressure and not allowing enough time for testing 

during project estimation and planning phase. A second 

factor that makes this scenario more challenging is the fact 

that a systematic process of testing these types of 

application is not yet well established. A third challenge 

comes from the often dynamic nature of the underlying 

data, which makes it more difficult to develop test oracles 

to support test cases that can be automated.  

 

In this study, we explore a systematic way of testing certain 

system level testing of database backed web applications 

and report the effectiveness of our approach.  

 

II. RELATED WORK 

Because of their practical importance, database applications 

have been the subject of a variety of investigations of 

combinatorial test methods. In particular, combinatorial 

testing is especially appropriate because database systems 

must parse and interpret complex queries structured as 

regular expressions or predicates [15]. In addition to the 

complexity of the inputs, database applications are also 

characterized by the need to test both the database functions 

and the database system interaction with the application that 

accesses the database [20]. The test problem is further 

complicated by dependence on the initial database state, 

which may influence structural coverage metrics, i.e., the 

degree to which the code can be exercised [8] The 

complexity of database queries has led to the need for 

specialized coverage metrics that include the evaluation of 

conditions in search predicates [7].   

 

Some research has shown that the distribution of t-way 

faults in MySQL database applications is similar to many 

other application domains, following the interaction rule 

that most faults are caused by a single factor or two factors 

interacting, with progressively fewer by 3-way or higher 

strength interactions [19].  The empirical data showed that 

a significant proportion of SQL faults involved 3-way or 

higher strength interactions, suggesting the need for 

combinatorial methods. Pairwise testing was shown to be 

effective [15] for discovering many bugs not detected by 

conventional test methods. It was shown that CT detected a 

wide range of previously undiscovered faults in a web based 

database using 2-way through 4-way testing [16].  These 

methods were also shown to be effective for testing security 

of database applications [17][18]. 

 

Also relevant to our work are investigations comparing the 

effectiveness of covering arrays with random test 

generation. This question has been studied in a variety of 

contexts. In many cases the comparison between 

combinatorial and random methods has considered only 

pairwise test arrays, with an equal number of randomly 

generated tests. Schroeder et al.[22] compared randomly 

generated tests with t-way arrays for t = 2, 3, 4. Covering 

arrays were generated using a tool called TVG, and 

applications tested had input model configurations of 

2165181 and 2731042. Because the covering arrays were large, 

random test sets of the same size covered 95% to 99.99% 

of the t-way combinations, and there was no significant 

difference between t-way testing and random testing. This 

example illustrates the point that coverage of combinations 

is a key consideration, whether this is achieved by covering 

arrays or other test generation methods. Another study [23] 

found than manually constructed tests could be more 

effective than 2-way test arrays, but at higher strengths 

there was no difference, and results from randomly 

generated tests were not consistent. A number of studies 

have consistently found covering arrays to be more 

effective than random tests, including [24][25][26], which 

investigated the testing of logical expressions.  

 

Others showing significantly better results for t-way testing 

include [27][28][29]. Two key considerations must be 

evaluated in comparing the two approaches to testing:  

combinatorial coverage of test sets, and input model design. 

It is easy to show that a large enough randomly generated 



test set will cover a high proportion of t-way combinations, 

so the comparison between covering arrays and random test 

generation is largely a question of efficiency, at least at 

lower interaction strengths.  For t-way testing of 4-way and 

above, a random test set covering the same proportion of 

combinations may be prohibitively large.  The importance 

of the input model can be seen in research that demonstrates 

significant differences in structural coverage and fault-

detection effectiveness as the input model is changed.  

Examples include [30], where branch coverage was 

increased from roughly 70% to 100% only through input 

model changes, and [31], which demonstrated improved 

fault detection results for both covering arrays and random 

tests depending on the input model used.  

 

III. APPROACH 

Our approach is to search for failure scenarios through 

systematic coverage of the input space and user interactions 

at the system testing level. For database backed web 

applications, especially the ones that primarily render some 

subset of data for information purposes, one of the major 

components is some sort of query functionality. Users are 

provided an interface to query the underlying information 

in many different ways. Consider the case of searching the 

catalogs of any library or the flight search in a travel 

application on the web. An important testing aspect in these 

scenarios is to verify that the search functionality behaves 

as expected under all circumstances.  

 

In addition to testing for expected functional behavior, any 

application, especially the ones available over the web, also 

needs to be tested for potential failure scenarios against 

unexpected input. If there are unintentionally mistyped or 

maliciously created inputs that can cause system failure or 

unexpected behavior, then it also becomes a security issue, 

which demands attention. Developers and testers often test 

only the most common expected interaction from users, 

which is also commonly known as `Happy Path Testing'. 

This testing practice leaves out the necessary aspect of 

searching for system failures under unexpected user inputs 

or interactions.    

 

We use a combinatorial approach and come up with 

covering array of a wide range of input combinations. We 

utilize these covering arrays to create test cases. For this 

particular study, we focus on primarily two types of test-

scenarios: a) user inputted strings that may cause failures, 

and b) user selected options in a web form.  

 

IV. CASE STUDY 

To apply our approach of developing effective test cases 

using combinatorial coverage for systematically testing 

database-backed web application, we selected the National 

Vulnerability Database or NVD [12] project. NVD is a 

project under the Computer Security Division of the 

National Institute of Standards and Technology (NIST). It 

maintains a repository of publicly known hardware and 

software vulnerabilities in a standardized fashion. Every 

vulnerability is uniquely identified by a CVE-ID (Common 

Vulnerability and Exposure Id), which is primarily assigned 

by the MITRE corporation and, to a limited degree, by some 

other CVE Numbering Authorities (CNAs) [13]. Once a 

reported vulnerability has been assigned a CVE-ID, it finds 

its way to the NVD group at NIST. Here the submitted CVE 

is thoroughly analyzed for standardization and is placed 

under one or more CWE (Common Weakness 

Enumeration) categories. Additionally, NVD analysts 

checks all the references, standardizes different aspects of 

the vulnerability description, and assign a severity score to 

the vulnerability following Common Vulnerability Scoring 

System or CVSS [14]. Once a new vulnerability has been 

standardized, categorized, and reference-checked, they are 

made available for public use through the NVD web site. 

This NVD data provides support for many valuable services 

such as enabling automation of vulnerability management, 

security measurement, and compliance (e.g. FISMA). 

 

 
Fig. 2. Advanced Search Option of NVD Data 

  

The NVD website provides a user interface for looking up 

information about all the CVEs and their corresponding 

information stored in its data set. In the base search form, 

there is only an option to perform keyword search. The 

NVD application looks for whatever the user has inputted 

in its database and shows results for entries with the search 

string in them. NVD also provides an advanced search 

option. In this web form, it allows users to search for any 

keyword, CWE category, CVE-Id as well as a large number 

of different options such as date-range (month and year) and 

CVSS scores. Fig. 2 shows an image of the web form for 

the advanced search page. In both the basic and advanced 

search options, there is an option for keyword search in this 

search function. The user can type in search phrases like 

“buffer overflow”, “X 509”, “Android”, or “2.3”, to look up 

vulnerabilities that match these keywords. In the advanced 

search page, a user can choose a CWE category from a 



drop-down list and search for all the CVEs that have been 

categorized under that CWE. There are also a number of 

fine grained search options related to the different fields of 

a CVSS 2.0 or 3.0. When the user chooses these additional 

search criteria, the search functionality queries its database 

and returns the number of CVEs that met the criteria. If 

there are hits, the CVEs are listed as shown in Fig. 3.  

 

 
Fig. 3. Search Result Page of NVD 

  

A. Combinatorial Input Model for Search Strings 

 

One of our objectives for this study has been to 

systematically discover if there are search strings that may 

result in unexpected behavior from the NVD system. For 

any web application, coming up with an effective set of 

search strings to test the search functionality (e.g., 

keywords search) of the system is one of the common 

challenges for any test designer.  

 

Instead of focusing only on likely keywords that users may 

use in a search, we approached the problem with a goal of 

creating keywords that are a combination of expected inputs 

such as simple strings and potentially unexpected symbols. 

Our hypothesis is that how the system responds to such 

rarely used search strings may not have thoroughly been 

tested for many web applications.  

 

 
Fig. 4. Input Model for Generating Test Search Strings 

 

We have taken the combinatorial approach to synthesize the 

search strings. Fig. 4 shows the five parameters, whose 

values are combined to create the test strings. Each 

parameter is comprised of a set of strings or special 

characters. There are 10, 4, 10, 4, and 10 enumerated values 

in the respective five parameters. All possible combinations 

of these values create 16,000 possible test strings. In 

addition to the generic term “string” to represent any string, 

there are two special strings:  “and” and “or”. The term “sp” 

represents space and “NUL” represents an empty string. 

The use of “NUL” allows us to synthesize strings that can 

have different special characters at different positions of the 

synthesized strings including at the beginning and at the end 

of the strings. Other special characters include different 

types of left ( (,{,[ ) and right ( ),},] ) brackets, single (`, ‘) 

and double (“) quotes, dot (.), ampersand (&), pipe (|), 

exclamation sign (!), hyphen (-), percent sign (%), slash (/), 

backslash (\), and tilde (~). These special characters are not 

chosen completely randomly. Since NVD allows searching 

for any string in CVE descriptions and other associated 

information within the vulnerability database (full-text 

search), it is conceivable that some users may construct 

search strings with special characters that they are looking 

for within the descriptions.  

 

B. Test Set Generation 

 

Using the input model described above, 2-way, 3-way, and 

4-way covering arrays were constructed using the ACTS 

tool.  Test set sizes and failures are shown in Table I. 

 
TABLE I. t-WAY TESTS AND RESULTS, t=2,3,4 

t 
Number 

of tests  

Number of 

failed tests 

% of 

failures 

2 100 12 12.0 

3 999 129 12.9 

4 3125 473 15.1 

 
TABLE II.  RANDOM TESTS AND RESULTS 

Test set Number of 

Tests  

Number of 

failed tests 

% of 

failures 

random 1 100 13 13.0 

random 2 100 17 17 .0 

random 3 100 13 13 .0 

random 4 100 12 12 .0 

random 5 100 7 07 .0 

random 6 100 7 07 .0 

random 7 100 7 07 .0 

random 8 100 11 11 .0 

random 9 100 12 12 .0 

random 10 100 12 12.0 

 

Because random or "fuzz" testing is often used in database 

testing, we generated random test sets of the same size as 

each of the t-way test sets, with results as shown in Table II 

for t = 2. Tests were generated by randomly selecting a 

value from each of the five factors detailed above. Results 

varied significantly and in three cases of the 10 runs, more 

failures were found in the random tests than with 2-way 

covering arrays.  This occurred because with random 

generation, multiple occurrences of a fault-triggering 

combination would appear in some test sets more than 

others. Following the test runs, we used the fault location 

tool described in [34] to locate combinations that occurred 



in failing tests that were not also in passing tests, as 

described in the next section.  

 

V. RESULTS AND DISCUSSIONS 

The NVD is a heavily used database, averaging 

approximately 7.3 million accesses per month. It was tested 

extensively in development, and has been in continuous 

use, in some form, since 1998.  Its usage profile is not unlike 

many other large, widely used information systems. While 

faults have been discovered occasionally, the system 

continues to perform adequately for the users who rely on 

it. Whenever faults have been found, they have been 

repaired quickly and have not disrupted service. The NVD 

group implemented a new version of full-text search in 

Spring 2016 and became aware of some new issues. They 

fixed some of the problems with special characters. Faced 

with the classic SE constraints of inadequate time and 

resources as well as tools and techniques to easily identify 

all failure scenarios with the new implementation, they 

approached us for a systematic and thorough testing of their 

search functionality.  

 

The faults identified in this paper show that even long-term 

operation does not guarantee eventual discovery of all 

failures. Moreover, any new feature implementation may 

cause a number of new failures, which is unlikely to be 

discovered by a traditionally designed test suite. The 

failure-triggering combinations found in this study are 

clearly "corner cases", very unusual combinations of 

character strings that are unlikely to occur in practical use. 

From a 42103 input configuration, we identified 49 input 

string combinations that result in non-timeout related 

failures, or roughly 0.3% of the 16,000 possible 

combinations in the input space as modeled.  It is notable 

that all of these are 2-way combinations containing at least 

one special character.   

 

Fault-triggering combinations can be determined using 

simple heuristics described in [34]. More sophisticated 

methods exist for fault location, e.g. [32][33], but the 

simple heuristics below are quick and easy to apply for this 

test problem. For a deterministic system, in which a given 

set of input values always produces the same result 

independent of the order of variable values, let P = 

{combinations in passing tests} and F = {combinations in 

failing tests}. The following rules were applied:   

 

 Elimination:  For a deterministic system, PF \  

must contain the fault-triggering combinations 

because if any of those in were in P, then the test 

would have failed.   

 Interaction level lower bound:  If all t-way tests 

pass, then clearly a t-way or lower strength 

combination did not cause the failure.  

 Interaction continuity: For each level of t, we 

compute St = Ft\Pt, the suspicious t-way 

combinations that may have triggered a failure. 

Because t-way tests cover all combinations of t-

way or lower strength, a combination that 

triggered the failure in Ft must also occur in Ft+1, 

Ft+2, etc. So we remove any combination in St from 

Sk for any k > t.   

 

Initially, F\P, combinations in failed tests not also in passed 

tests, were as shown in Table III.  These sets were reduced 

by testing each individually, resulting in 49 2-way 

combinations, 144 3-way combinations, and 373 4-way 

combinations that all triggered failures. However, a lower 

strength combination that triggers a failure would also 

produce a failure if it is contained in any higher strength 

combination. For example, if the 2-way combination &% 

triggers a failure, it will also do so in a 3-way combination 

&%{. Therefore, suspect 3-way combinations were 

removed from the 4-way suspect set and suspect 2-way 

combinations were removed from the 3-way and 4-way 

sets. As shown in Table 1, it was then possible to conclude 

that only 2-way combinations were responsible for all 

failures discovered. The complete set of failure-triggering 

combinations is shown in Table IV.  

 
TABLE III. INTERACTION IDENTIFICATION 

 2-way 3-way 4-way 

Initial 49 144 373 

removing (t-1)-way  0 124 

removing (t-2)-way   0 

 

It is important to note that if the test goal is strong assurance 

that all faults have been discovered, then 3-way and 4-way 

testing are necessary, even though they do not discover any 

additional failing combinations. Without running these 

stronger interaction tests, we would not have been able to 

conclude that the 2-way combinations likely represented 

the complete set of faults for this input model. Any 

reasonable testing scheme will require that we continue 

testing as long as errors are being discovered. High strength 

covering arrays provide a stopping criterion. If no new 

failures are discovered after increasing t-way coverage to 

(t+2)-way, it is unlikely that any new faults will be found. 

  
TABLE IV. FAILURE TRIGGERING COMBINATIONS 

&% .~ or~ |4 ~3 

&' /~ str& |str ~4 

&. 2& str| |} ~\ 

&4 2| str~ |~ ~and 

&str 2~ {& ~% ~or 

&} 3~ {| ~& ~str 

&~ \~ {~ ~' ~| 

-~ `& |% ~- ~} 

.& `| |' ~. ~~ 

.| `~ |. ~/ 
 



Text searches are among the most common tasks in 

information systems. Although the test procedure described 

in this paper addresses only this narrow problem, it is 

designed to be usable across the broad range of systems that 

require text search.  

 

Covering arrays vs. random tests:  Because fuzz testing is 

commonly used in many test situations, we compared the 

combinations covered by t-way arrays with coverage for an 

equal number of randomly generated tests.  Fig. 5 shows a 

representative example for a random test set of the same 

size as a 3-way test set developed for the input model 

described in Sect. IV. The area under a curve represents the 

total combination coverage [35] for a given level of t, and 

the right-hand Y intercept represents the minimal coverage. 

For example, if variables are binary and there are one or 

more 2-way combinations where only 00 and 10 are 

covered (out of 00, 01, 10, 11), then the minimal coverage 

is 50%.  The example test set in Fig. 5 shows approximately 

95% 2-way, 84% 3-way, and 42% 4-way coverage. All 2-

way combinations have at least 90% of settings covered, 3-

way at least 65%, and 4-way at least 30% coverage.  

 

 
Fig. 5. Combinatorial coverage of random tests 

 

Now consider what these coverage levels mean for 

assurance.  With roughly 95% of 2-way combinations 

covered, we could expect to detect 46 or 47 of the 49 faults.  

So the fault detection capability of random tests, in this 

case, compares relatively well with covering arrays - if we 

are not seeking high assurance.  Random testing falls short 

in two aspects for high assurance: 1) inadequate 

combination coverage for fault detection; and 2) inadequate 

coverage for a stopping criterion. For safety or mission-

critical systems, finding only 95% of faults is unacceptable. 

Moreover, we would have no way of estimating the degree 

to which faults have been discovered without extending 

testing until the relevant input space has been covered.  

 

Fuzz testing or other random test generation can be an 

efficient and appropriate means of fault discovery, but 

sound engineering requires a defensible method for 

measuring test thoroughness. Structural coverage metrics 

provide one set of reasonable measures - full branch or 

condition coverage indicates a degree to which executable 

code has been exercised. Measuring combinatorial 

coverage of tests can provide a complementary measure to 

structural coverage, because it shows what proportion of the 

input space has been included in tests. Any combination not 

covered by the test set is to some degree unknown territory 

- even with full structural coverage we do not know what 

the code will do with a particular combination of inputs. 

Similarly, extended use of a system does not guarantee that 

some inputs will not produce a failure, as shown by the 

NVD testing described in this paper.  Using covering arrays 

makes it easy to check system response to rare inputs, to a 

degree that is unlikely and difficult to achieve with 

conventional test methods or through continuous use for 

many years.  

 

VI. FUTURE WORK 

Database-backed web applications usually also allow users 

to select advanced search options to select a subset of 

entries from the database that match multiple criteria. Our 

case study, NVD, is no exception. There is an advanced 

search option users can choose to narrow down their search 

results using many different criteria. Fig. 2. Shows an image 

of the NVD advanced search page. In addition to providing 

support for the keyword search, users can search for a 

specific CVE-Identifier such as CVE-2016-1234. There is 

option to select for a particular CWE category (e.g., CWE-

94: Code Injection). Users can also choose a specific vendor 

or product to search for vulnerabilities associated with that 

vendor or product. There are two sets of date-ranges: 

published-date and last-modified-date that users can use to 

narrow their search. Additionally, there is a way to select 

options for different factors that define the CVSS scores of 

the known vulnerabilities stored in the database.  

 

Like the keywords search, CVE-Identifier, vendor, and 

product search option allows the use of any string in the 

search fields. The other options are drop-down lists that 

users will have to choose an option from. There are 106 

different CWE categories to select from in the NVD 

advanced search page. Similarly for CVSS version 2, users 

can choose from multiple options for Severity Score Range 

(SSR) of Any, Low (0-3), Medium (4-6), High and Medium 

(4-10), and High (7-10). For Attack Vector of CVSS 2, there 

are options of Any, Network (N), Adjacent (A), and Local 

(L). There are other options available for selection for each 

of the other components of CVSS, which is comprised of 

Access Complexity (AC), Authentication (Au), 

Confidentiality (C), Integrity (I) and Availability (A). Even 

if we leave out the free-string search options for keywords, 

CVE Identifier, vendor, and product names, there are 

1.45x1016 combinations of values for exhaustively testing 

the advanced search page of NVD application.  

 

Since our goal is to look for search values and options that 

may lead to unexpected behavior or system failure, we 



designed another input model with a selected subset of the 

parameter values for each of the search options. Fig. 6 

shows the model we used to synthesize search strings to 

query the NVD database. In addition to utilizing the 

expected values for each of the advanced search options, we 

added an unexpected value such as “off” or “X”. 

 

 
Fig. 6. Input Model for Advanced Search Options 

 

NVD allows direct querying of their database through the 

construction of search URLs. The designers left this option 

open for allowing programmatic search of different aspects 

of the information stored in the database. We utilized this 

feature to synthesize web search URLs combining 

parameter values shown in Fig. 6 and tested the NVD search 

engine responses. In our preliminary results, a large fraction 

of test cases resulted in a “Server Error” response. For 

example, 30 out of 33 test cases from 2-way and 767 out of 

820 test cases from 4-way covering array produced an error 

response. The NVD developers indicate that these server 

errors are not necessarily bugs; rather a non-descriptive 

response to the end-user while processing invalid input. 

 

It does appear that most of the unexpected parameter values 

result in server error response. However, not all unexpected 

values resulted in the error response. For example, a “-1” 

for starting month parameter results in a regular response 

from the application. Clearly there are some anomalies in 

how unexpected or invalid inputs are treated by the 

application. As future work, we plan to more deeply 

investigate the resiliency of NVD system against 

unexpected parameter values for advanced search options.  

We also plan to research the coverage we can gain from 

applying combinatorial testing approach over the 

‘Advanced Search’s parameter input space. It would be 

interesting and useful to determine the combination factors 

that can cause ‘Advanced Search’ to fail. Initial test results 

have already revealed that certain valid CWE-category 

search can also cause failures while combined with other 

valid parameter values, which is something the application 

developers did not anticipate.  

 

VII. CONCLUSIONS 

We investigated the application of combinatorial testing to 

string text searches in the US National Vulnerability 

Database, a system that is accessed more than 70 million 

times a year.  The current software build is operational 24 

hours a day. Our testing and analysis revealed 49 inputs that 

produced server errors in the current build. These inputs 

were 2-way combinations of special characters and strings, 

and test cases built from 2-way through 4-way covering 

arrays demonstrated that no other combinations beyond 

these 49 resulted in the server error response. This result 

demonstrates the effectiveness of combinatorial methods 

for detecting and determining the full extent of rare faults. 

 

The test procedure described in this paper addresses a 

specific test problem. It can be applied with little or no 

change to many systems that incorporate text searches. Text 

search is an essential component in systems within nearly 

all industries, and some are safety or mission-critical. 

Applying test methods such as those described in this paper 

can help to remove rare faults that could result in significant 

failures in operation.  

 

Equally important, the methods described here provide a 

defensible criterion for test completion.  Because covering 

arrays include all t-way factor combinations, we can show 

that the entire input space has been covered up to whatever 

t-way combinations are used. In contrast, "fuzz testing" or 

other conventional methods do not include measures of the 

input space that has been tested, and often rely on a "more 

is better" heuristic without an ability to measure 

completeness. Using covering arrays, or measuring 

combinatorial coverage of random tests, provides a sound 

test engineering method with defensible, quantitative 

measures of test completeness.    
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