
Combinatorial Testing of Full Text Search in Web Applications

M S Raunak1 D. Richard Kuhn2 Raghu Kacker2

raunak@loyola.edu kuhn@nist.gov raghu.kacker@nist.gov
 1Loyola University of Maryland 2National Institute of Standards and Technology

Abstract: Database driven web applications are some of the

most widely developed systems today. In this paper, we

demonstrate use of combinatorial testing for testing database

supported web applications, especially where full-text search

is provided or many combinations of search options are

utilized. We develop test-case selection techniques, where test

strings are synthesized using characters or string fragments

that may lead to system failure. We have applied our approach

to the National Vulnerability Database (NVD) application and

have discovered a number of "corner-cases" that had not been

identified previously. We also present simple heuristics for

isolating the fault causing factors that can lead to such system

failures. The test method and input model described in this

paper have immediate application to other systems that

provide complex full text search.

I. INTRODUCTION

Web-based applications, especially ones driven by a back-

end database, continue to be some of the most common

custom software being developed in today's world. Many

applications store their data in an SQL database or in a no-

SQL data store at the back-end servers and query and

update them to provide information searched by the users

and other transaction-oriented service. The architecture of

these applications is usually layered, utilizing many

different, often loosely connected components. Testing

these applications effectively remains a challenge for the

software engineering community. High profile web

application failures have resulted in cases where testing was

insufficient [2][3]. A wide variety of general-purpose

strategies and techniques for systematically testing

applications are well established and widely practiced [1].

In this paper we focus on a highly specific test procedure

for full-text search in the National Vulnerability Database

(NVD), a large, heavily used public internet database. Text

search is one of the fundamental components of web

applications used in every industry. Thus, strong testing of

this component is essential for high assurance, but it is often

handled as simply one aspect of overall system testing. The

test procedure documented in this paper seeks to provide

stronger testing for this fundamental component.

After implementing a new feature in the NVD, developers

discovered that certain special characters resulted in

"Server Error" responses. However it was not clear which

specific combinations of special characters triggered this

response, or how many such problematic cases existed.

Some of these were corrected, but it was decided to apply

combinatorial methods to attempt to identify all inputs that

caused the server error response.

Decision makers in industry and government rely on testing

to determine readiness of systems for deployment, so

defensible measures of test completeness are essential.

Testing any reasonable application exhaustively is nearly

always impractical. The two crucial questions testing

researchers aim to study are how to select the test cases, and

how many to select; i.e., when to stop testing. These

questions become especially challenging for integration and

system testing of any large application. The goal is to select

test cases at the integration and system testing level such

that the fault finding probability is maximized. One can try

to achieve this goal by systematically covering a large

section of the input space including many corner cases or

unexpected values that may potentially cause failures.

Combinatorial Testing [4] has been shown to be an effective

approach. In this paper, we demonstrate use of

combinatorial approaches to develop test cases that

systematically test important components of database-

backed web applications. Our case study reveals that such

systematic exploration of input space using covering arrays

can be a very useful way of identifying failure scenarios that

are otherwise not discovered.

Web applications are typically developed in a multi-tiered

fashion. Fig. 1 shows a high level generic architecture of

most of these applications. The outermost layer is the

presentation layer, which provides the interface for client

interaction. Application developers use HTML, CSS, and

client side scripting languages to make the user interface

intuitive and useful. The Middle layer is often served by an

Application Server framework such as JBoss, WebSphere

or Netweaver. These application servers are often built

around common web servers such as Apache and IIS.

Programmers develop their business logic and run their

programs on these Application Server environments. At the

innermost layer sits a DBMS such as mySQL, MS SQL,

Oracle, DB2 etc. The application servers provide support

for interacting with the DBMS through standard protocols

like Java Database Connectivity (JDBC), Common Object

Request Broker Architecture (CORBA) etc.

While developing a web application, there are

programming modules that are developed at each level.

Programmers often write stored procedures, which are

groups of SQL statements stored and executed in the

RDBMS, i.e., at the innermost layer, to reduce server-client

Fig. 1. A Typical Multi-Layered Web Application

network traffic, and to make the system more secure by

hiding many of database-level details. The middle layer,

where most of the business logic is implemented, often

includes integration of other already developed modules or

service calls to independent web services. Similarly, for

receiving and reacting to user interaction and presenting the

output of the application to the client, program modules are

developed and deployed to interact with the middle layer

directly. All these component interactions, both at the same

layer and across layers, require systematic and thorough

testing. Programmers and managers are usually good at

making sure that unit tests are developed and run regularly

while different programming units are being developed.

However, testing unit interactions during integration, and

testing the overall system systematically once it has been

developed, often receive relatively little attention.

Anecdotal evidence suggests that the primary reason for

this relative lack of integration and system testing is often

deadline pressure and not allowing enough time for testing

during project estimation and planning phase. A second

factor that makes this scenario more challenging is the fact

that a systematic process of testing these types of

application is not yet well established. A third challenge

comes from the often dynamic nature of the underlying

data, which makes it more difficult to develop test oracles

to support test cases that can be automated.

In this study, we explore a systematic way of testing certain

system level testing of database backed web applications

and report the effectiveness of our approach.

II. RELATED WORK

Because of their practical importance, database applications

have been the subject of a variety of investigations of

combinatorial test methods. In particular, combinatorial

testing is especially appropriate because database systems

must parse and interpret complex queries structured as

regular expressions or predicates [15]. In addition to the

complexity of the inputs, database applications are also

characterized by the need to test both the database functions

and the database system interaction with the application that

accesses the database [20]. The test problem is further

complicated by dependence on the initial database state,

which may influence structural coverage metrics, i.e., the

degree to which the code can be exercised [8] The

complexity of database queries has led to the need for

specialized coverage metrics that include the evaluation of

conditions in search predicates [7].

Some research has shown that the distribution of t-way

faults in MySQL database applications is similar to many

other application domains, following the interaction rule

that most faults are caused by a single factor or two factors

interacting, with progressively fewer by 3-way or higher

strength interactions [19]. The empirical data showed that

a significant proportion of SQL faults involved 3-way or

higher strength interactions, suggesting the need for

combinatorial methods. Pairwise testing was shown to be

effective [15] for discovering many bugs not detected by

conventional test methods. It was shown that CT detected a

wide range of previously undiscovered faults in a web based

database using 2-way through 4-way testing [16]. These

methods were also shown to be effective for testing security

of database applications [17][18].

Also relevant to our work are investigations comparing the

effectiveness of covering arrays with random test

generation. This question has been studied in a variety of

contexts. In many cases the comparison between

combinatorial and random methods has considered only

pairwise test arrays, with an equal number of randomly

generated tests. Schroeder et al.[22] compared randomly

generated tests with t-way arrays for t = 2, 3, 4. Covering

arrays were generated using a tool called TVG, and

applications tested had input model configurations of

2165181 and 2731042. Because the covering arrays were large,

random test sets of the same size covered 95% to 99.99%

of the t-way combinations, and there was no significant

difference between t-way testing and random testing. This

example illustrates the point that coverage of combinations

is a key consideration, whether this is achieved by covering

arrays or other test generation methods. Another study [23]

found than manually constructed tests could be more

effective than 2-way test arrays, but at higher strengths

there was no difference, and results from randomly

generated tests were not consistent. A number of studies

have consistently found covering arrays to be more

effective than random tests, including [24][25][26], which

investigated the testing of logical expressions.

Others showing significantly better results for t-way testing

include [27][28][29]. Two key considerations must be

evaluated in comparing the two approaches to testing:

combinatorial coverage of test sets, and input model design.

It is easy to show that a large enough randomly generated

test set will cover a high proportion of t-way combinations,

so the comparison between covering arrays and random test

generation is largely a question of efficiency, at least at

lower interaction strengths. For t-way testing of 4-way and

above, a random test set covering the same proportion of

combinations may be prohibitively large. The importance

of the input model can be seen in research that demonstrates

significant differences in structural coverage and fault-

detection effectiveness as the input model is changed.

Examples include [30], where branch coverage was

increased from roughly 70% to 100% only through input

model changes, and [31], which demonstrated improved

fault detection results for both covering arrays and random

tests depending on the input model used.

III. APPROACH

Our approach is to search for failure scenarios through

systematic coverage of the input space and user interactions

at the system testing level. For database backed web

applications, especially the ones that primarily render some

subset of data for information purposes, one of the major

components is some sort of query functionality. Users are

provided an interface to query the underlying information

in many different ways. Consider the case of searching the

catalogs of any library or the flight search in a travel

application on the web. An important testing aspect in these

scenarios is to verify that the search functionality behaves

as expected under all circumstances.

In addition to testing for expected functional behavior, any

application, especially the ones available over the web, also

needs to be tested for potential failure scenarios against

unexpected input. If there are unintentionally mistyped or

maliciously created inputs that can cause system failure or

unexpected behavior, then it also becomes a security issue,

which demands attention. Developers and testers often test

only the most common expected interaction from users,

which is also commonly known as `Happy Path Testing'.

This testing practice leaves out the necessary aspect of

searching for system failures under unexpected user inputs

or interactions.

We use a combinatorial approach and come up with

covering array of a wide range of input combinations. We

utilize these covering arrays to create test cases. For this

particular study, we focus on primarily two types of test-

scenarios: a) user inputted strings that may cause failures,

and b) user selected options in a web form.

IV. CASE STUDY

To apply our approach of developing effective test cases

using combinatorial coverage for systematically testing

database-backed web application, we selected the National

Vulnerability Database or NVD [12] project. NVD is a

project under the Computer Security Division of the

National Institute of Standards and Technology (NIST). It

maintains a repository of publicly known hardware and

software vulnerabilities in a standardized fashion. Every

vulnerability is uniquely identified by a CVE-ID (Common

Vulnerability and Exposure Id), which is primarily assigned

by the MITRE corporation and, to a limited degree, by some

other CVE Numbering Authorities (CNAs) [13]. Once a

reported vulnerability has been assigned a CVE-ID, it finds

its way to the NVD group at NIST. Here the submitted CVE

is thoroughly analyzed for standardization and is placed

under one or more CWE (Common Weakness

Enumeration) categories. Additionally, NVD analysts

checks all the references, standardizes different aspects of

the vulnerability description, and assign a severity score to

the vulnerability following Common Vulnerability Scoring

System or CVSS [14]. Once a new vulnerability has been

standardized, categorized, and reference-checked, they are

made available for public use through the NVD web site.

This NVD data provides support for many valuable services

such as enabling automation of vulnerability management,

security measurement, and compliance (e.g. FISMA).

Fig. 2. Advanced Search Option of NVD Data

The NVD website provides a user interface for looking up

information about all the CVEs and their corresponding

information stored in its data set. In the base search form,

there is only an option to perform keyword search. The

NVD application looks for whatever the user has inputted

in its database and shows results for entries with the search

string in them. NVD also provides an advanced search

option. In this web form, it allows users to search for any

keyword, CWE category, CVE-Id as well as a large number

of different options such as date-range (month and year) and

CVSS scores. Fig. 2 shows an image of the web form for

the advanced search page. In both the basic and advanced

search options, there is an option for keyword search in this

search function. The user can type in search phrases like

“buffer overflow”, “X 509”, “Android”, or “2.3”, to look up

vulnerabilities that match these keywords. In the advanced

search page, a user can choose a CWE category from a

drop-down list and search for all the CVEs that have been

categorized under that CWE. There are also a number of

fine grained search options related to the different fields of

a CVSS 2.0 or 3.0. When the user chooses these additional

search criteria, the search functionality queries its database

and returns the number of CVEs that met the criteria. If

there are hits, the CVEs are listed as shown in Fig. 3.

Fig. 3. Search Result Page of NVD

A. Combinatorial Input Model for Search Strings

One of our objectives for this study has been to

systematically discover if there are search strings that may

result in unexpected behavior from the NVD system. For

any web application, coming up with an effective set of

search strings to test the search functionality (e.g.,

keywords search) of the system is one of the common

challenges for any test designer.

Instead of focusing only on likely keywords that users may

use in a search, we approached the problem with a goal of

creating keywords that are a combination of expected inputs

such as simple strings and potentially unexpected symbols.

Our hypothesis is that how the system responds to such

rarely used search strings may not have thoroughly been

tested for many web applications.

Fig. 4. Input Model for Generating Test Search Strings

We have taken the combinatorial approach to synthesize the

search strings. Fig. 4 shows the five parameters, whose

values are combined to create the test strings. Each

parameter is comprised of a set of strings or special

characters. There are 10, 4, 10, 4, and 10 enumerated values

in the respective five parameters. All possible combinations

of these values create 16,000 possible test strings. In

addition to the generic term “string” to represent any string,

there are two special strings: “and” and “or”. The term “sp”

represents space and “NUL” represents an empty string.

The use of “NUL” allows us to synthesize strings that can

have different special characters at different positions of the

synthesized strings including at the beginning and at the end

of the strings. Other special characters include different

types of left ((,{,[) and right (),},]) brackets, single (`, ‘)

and double (“) quotes, dot (.), ampersand (&), pipe (|),

exclamation sign (!), hyphen (-), percent sign (%), slash (/),

backslash (\), and tilde (~). These special characters are not

chosen completely randomly. Since NVD allows searching

for any string in CVE descriptions and other associated

information within the vulnerability database (full-text

search), it is conceivable that some users may construct

search strings with special characters that they are looking

for within the descriptions.

B. Test Set Generation

Using the input model described above, 2-way, 3-way, and

4-way covering arrays were constructed using the ACTS

tool. Test set sizes and failures are shown in Table I.

TABLE I. t-WAY TESTS AND RESULTS, t=2,3,4

t
Number

of tests

Number of

failed tests

% of

failures

2 100 12 12.0

3 999 129 12.9

4 3125 473 15.1

TABLE II. RANDOM TESTS AND RESULTS

Test set Number of

Tests

Number of

failed tests

% of

failures

random 1 100 13 13.0

random 2 100 17 17 .0

random 3 100 13 13 .0

random 4 100 12 12 .0

random 5 100 7 07 .0

random 6 100 7 07 .0

random 7 100 7 07 .0

random 8 100 11 11 .0

random 9 100 12 12 .0

random 10 100 12 12.0

Because random or "fuzz" testing is often used in database

testing, we generated random test sets of the same size as

each of the t-way test sets, with results as shown in Table II

for t = 2. Tests were generated by randomly selecting a

value from each of the five factors detailed above. Results

varied significantly and in three cases of the 10 runs, more

failures were found in the random tests than with 2-way

covering arrays. This occurred because with random

generation, multiple occurrences of a fault-triggering

combination would appear in some test sets more than

others. Following the test runs, we used the fault location

tool described in [34] to locate combinations that occurred

in failing tests that were not also in passing tests, as

described in the next section.

V. RESULTS AND DISCUSSIONS

The NVD is a heavily used database, averaging

approximately 7.3 million accesses per month. It was tested

extensively in development, and has been in continuous

use, in some form, since 1998. Its usage profile is not unlike

many other large, widely used information systems. While

faults have been discovered occasionally, the system

continues to perform adequately for the users who rely on

it. Whenever faults have been found, they have been

repaired quickly and have not disrupted service. The NVD

group implemented a new version of full-text search in

Spring 2016 and became aware of some new issues. They

fixed some of the problems with special characters. Faced

with the classic SE constraints of inadequate time and

resources as well as tools and techniques to easily identify

all failure scenarios with the new implementation, they

approached us for a systematic and thorough testing of their

search functionality.

The faults identified in this paper show that even long-term

operation does not guarantee eventual discovery of all

failures. Moreover, any new feature implementation may

cause a number of new failures, which is unlikely to be

discovered by a traditionally designed test suite. The

failure-triggering combinations found in this study are

clearly "corner cases", very unusual combinations of

character strings that are unlikely to occur in practical use.

From a 42103 input configuration, we identified 49 input

string combinations that result in non-timeout related

failures, or roughly 0.3% of the 16,000 possible

combinations in the input space as modeled. It is notable

that all of these are 2-way combinations containing at least

one special character.

Fault-triggering combinations can be determined using

simple heuristics described in [34]. More sophisticated

methods exist for fault location, e.g. [32][33], but the

simple heuristics below are quick and easy to apply for this

test problem. For a deterministic system, in which a given

set of input values always produces the same result

independent of the order of variable values, let P =

{combinations in passing tests} and F = {combinations in

failing tests}. The following rules were applied:

 Elimination: For a deterministic system, PF \

must contain the fault-triggering combinations

because if any of those in were in P, then the test

would have failed.

 Interaction level lower bound: If all t-way tests

pass, then clearly a t-way or lower strength

combination did not cause the failure.

 Interaction continuity: For each level of t, we

compute St = Ft\Pt, the suspicious t-way

combinations that may have triggered a failure.

Because t-way tests cover all combinations of t-

way or lower strength, a combination that

triggered the failure in Ft must also occur in Ft+1,

Ft+2, etc. So we remove any combination in St from

Sk for any k > t.

Initially, F\P, combinations in failed tests not also in passed

tests, were as shown in Table III. These sets were reduced

by testing each individually, resulting in 49 2-way

combinations, 144 3-way combinations, and 373 4-way

combinations that all triggered failures. However, a lower

strength combination that triggers a failure would also

produce a failure if it is contained in any higher strength

combination. For example, if the 2-way combination &%

triggers a failure, it will also do so in a 3-way combination

&%{. Therefore, suspect 3-way combinations were

removed from the 4-way suspect set and suspect 2-way

combinations were removed from the 3-way and 4-way

sets. As shown in Table 1, it was then possible to conclude

that only 2-way combinations were responsible for all

failures discovered. The complete set of failure-triggering

combinations is shown in Table IV.

TABLE III. INTERACTION IDENTIFICATION

 2-way 3-way 4-way

Initial 49 144 373

removing (t-1)-way 0 124

removing (t-2)-way 0

It is important to note that if the test goal is strong assurance

that all faults have been discovered, then 3-way and 4-way

testing are necessary, even though they do not discover any

additional failing combinations. Without running these

stronger interaction tests, we would not have been able to

conclude that the 2-way combinations likely represented

the complete set of faults for this input model. Any

reasonable testing scheme will require that we continue

testing as long as errors are being discovered. High strength

covering arrays provide a stopping criterion. If no new

failures are discovered after increasing t-way coverage to

(t+2)-way, it is unlikely that any new faults will be found.

TABLE IV. FAILURE TRIGGERING COMBINATIONS

&% .~ or~ |4 ~3

&' /~ str& |str ~4

&. 2& str| |} ~\

&4 2| str~ |~ ~and

&str 2~ {& ~% ~or

&} 3~ {| ~& ~str

&~ \~ {~ ~' ~|

-~ `& |% ~- ~}

.& `| |' ~. ~~

.| `~ |. ~/

Text searches are among the most common tasks in

information systems. Although the test procedure described

in this paper addresses only this narrow problem, it is

designed to be usable across the broad range of systems that

require text search.

Covering arrays vs. random tests: Because fuzz testing is

commonly used in many test situations, we compared the

combinations covered by t-way arrays with coverage for an

equal number of randomly generated tests. Fig. 5 shows a

representative example for a random test set of the same

size as a 3-way test set developed for the input model

described in Sect. IV. The area under a curve represents the

total combination coverage [35] for a given level of t, and

the right-hand Y intercept represents the minimal coverage.

For example, if variables are binary and there are one or

more 2-way combinations where only 00 and 10 are

covered (out of 00, 01, 10, 11), then the minimal coverage

is 50%. The example test set in Fig. 5 shows approximately

95% 2-way, 84% 3-way, and 42% 4-way coverage. All 2-

way combinations have at least 90% of settings covered, 3-

way at least 65%, and 4-way at least 30% coverage.

Fig. 5. Combinatorial coverage of random tests

Now consider what these coverage levels mean for

assurance. With roughly 95% of 2-way combinations

covered, we could expect to detect 46 or 47 of the 49 faults.

So the fault detection capability of random tests, in this

case, compares relatively well with covering arrays - if we

are not seeking high assurance. Random testing falls short

in two aspects for high assurance: 1) inadequate

combination coverage for fault detection; and 2) inadequate

coverage for a stopping criterion. For safety or mission-

critical systems, finding only 95% of faults is unacceptable.

Moreover, we would have no way of estimating the degree

to which faults have been discovered without extending

testing until the relevant input space has been covered.

Fuzz testing or other random test generation can be an

efficient and appropriate means of fault discovery, but

sound engineering requires a defensible method for

measuring test thoroughness. Structural coverage metrics

provide one set of reasonable measures - full branch or

condition coverage indicates a degree to which executable

code has been exercised. Measuring combinatorial

coverage of tests can provide a complementary measure to

structural coverage, because it shows what proportion of the

input space has been included in tests. Any combination not

covered by the test set is to some degree unknown territory

- even with full structural coverage we do not know what

the code will do with a particular combination of inputs.

Similarly, extended use of a system does not guarantee that

some inputs will not produce a failure, as shown by the

NVD testing described in this paper. Using covering arrays

makes it easy to check system response to rare inputs, to a

degree that is unlikely and difficult to achieve with

conventional test methods or through continuous use for

many years.

VI. FUTURE WORK

Database-backed web applications usually also allow users

to select advanced search options to select a subset of

entries from the database that match multiple criteria. Our

case study, NVD, is no exception. There is an advanced

search option users can choose to narrow down their search

results using many different criteria. Fig. 2. Shows an image

of the NVD advanced search page. In addition to providing

support for the keyword search, users can search for a

specific CVE-Identifier such as CVE-2016-1234. There is

option to select for a particular CWE category (e.g., CWE-

94: Code Injection). Users can also choose a specific vendor

or product to search for vulnerabilities associated with that

vendor or product. There are two sets of date-ranges:

published-date and last-modified-date that users can use to

narrow their search. Additionally, there is a way to select

options for different factors that define the CVSS scores of

the known vulnerabilities stored in the database.

Like the keywords search, CVE-Identifier, vendor, and

product search option allows the use of any string in the

search fields. The other options are drop-down lists that

users will have to choose an option from. There are 106

different CWE categories to select from in the NVD

advanced search page. Similarly for CVSS version 2, users

can choose from multiple options for Severity Score Range

(SSR) of Any, Low (0-3), Medium (4-6), High and Medium

(4-10), and High (7-10). For Attack Vector of CVSS 2, there

are options of Any, Network (N), Adjacent (A), and Local

(L). There are other options available for selection for each

of the other components of CVSS, which is comprised of

Access Complexity (AC), Authentication (Au),

Confidentiality (C), Integrity (I) and Availability (A). Even

if we leave out the free-string search options for keywords,

CVE Identifier, vendor, and product names, there are

1.45x1016 combinations of values for exhaustively testing

the advanced search page of NVD application.

Since our goal is to look for search values and options that

may lead to unexpected behavior or system failure, we

designed another input model with a selected subset of the

parameter values for each of the search options. Fig. 6

shows the model we used to synthesize search strings to

query the NVD database. In addition to utilizing the

expected values for each of the advanced search options, we

added an unexpected value such as “off” or “X”.

Fig. 6. Input Model for Advanced Search Options

NVD allows direct querying of their database through the

construction of search URLs. The designers left this option

open for allowing programmatic search of different aspects

of the information stored in the database. We utilized this

feature to synthesize web search URLs combining

parameter values shown in Fig. 6 and tested the NVD search

engine responses. In our preliminary results, a large fraction

of test cases resulted in a “Server Error” response. For

example, 30 out of 33 test cases from 2-way and 767 out of

820 test cases from 4-way covering array produced an error

response. The NVD developers indicate that these server

errors are not necessarily bugs; rather a non-descriptive

response to the end-user while processing invalid input.

It does appear that most of the unexpected parameter values

result in server error response. However, not all unexpected

values resulted in the error response. For example, a “-1”

for starting month parameter results in a regular response

from the application. Clearly there are some anomalies in

how unexpected or invalid inputs are treated by the

application. As future work, we plan to more deeply

investigate the resiliency of NVD system against

unexpected parameter values for advanced search options.

We also plan to research the coverage we can gain from

applying combinatorial testing approach over the

‘Advanced Search’s parameter input space. It would be

interesting and useful to determine the combination factors

that can cause ‘Advanced Search’ to fail. Initial test results

have already revealed that certain valid CWE-category

search can also cause failures while combined with other

valid parameter values, which is something the application

developers did not anticipate.

VII. CONCLUSIONS

We investigated the application of combinatorial testing to

string text searches in the US National Vulnerability

Database, a system that is accessed more than 70 million

times a year. The current software build is operational 24

hours a day. Our testing and analysis revealed 49 inputs that

produced server errors in the current build. These inputs

were 2-way combinations of special characters and strings,

and test cases built from 2-way through 4-way covering

arrays demonstrated that no other combinations beyond

these 49 resulted in the server error response. This result

demonstrates the effectiveness of combinatorial methods

for detecting and determining the full extent of rare faults.

The test procedure described in this paper addresses a

specific test problem. It can be applied with little or no

change to many systems that incorporate text searches. Text

search is an essential component in systems within nearly

all industries, and some are safety or mission-critical.

Applying test methods such as those described in this paper

can help to remove rare faults that could result in significant

failures in operation.

Equally important, the methods described here provide a

defensible criterion for test completion. Because covering

arrays include all t-way factor combinations, we can show

that the entire input space has been covered up to whatever

t-way combinations are used. In contrast, "fuzz testing" or

other conventional methods do not include measures of the

input space that has been tested, and often rely on a "more

is better" heuristic without an ability to measure

completeness. Using covering arrays, or measuring

combinatorial coverage of random tests, provides a sound

test engineering method with defensible, quantitative

measures of test completeness.

ACKNOWLEDGEMENTS

The authors would like to thank the NIST NVD group at

for their assistance with this work. This study was

supported by NIST ITL Grant 70NANB17H035.

Disclaimer: Products may be identified in this document, but identification
does not imply recommendation or endorsement by NIST, nor that the

products identified are necessarily the best available for the purpose

REFERENCES
[1] H. Zhu, P. A. V. Hall, and J. H. R. May, “Software unit

test coverage and adequacy,” ACM Computing

Surveys, vol. 29, no. 4, pp. 366–427, 1997.

[2] M. Heusser, “6 software development lessons from

healthcare.gov’s failed launch,” CIO, November 2013.

[3] D. Doherty, “Team obama never finished testing

healthcare.gov before launching it,” CBS News,

November 2013.

[4] R. Kuhn, R. Kacker, Y. Lei, and J. Hunter,

“Combinatorial software testing,” Computer, vol. 42,

no. 8, pp. 94–96, Aug 2009.

[5] L. S. Ghandehari, J. Czerwonka, Y. Lei, S. Shafiee, R.

Kacker, and R. Kuhn, “An empirical comparison of

combinatorial and random testing,” 2014 IEEE Seventh

Intl Conf on Software Testing, Verification and

Validation Workshops, March 2014, pp. 68–77.

[6] K. Haller, “The test data challenge for database-driven

applications,” Third Intl Workshop on Testing Database

Systems, ACM, 2010, pp. 6:1– 6:6.

[7] M. J. Su´arez-Cabal and J. Tuya, “Using an sql coverage

measurement for testing database applica-tions,”

SIGSOFT Softw. Eng. Notes, vol. 29, no. 6, pp. 253–

262,2004.http://doi.acm.org/10.1145/1041685.1029929

[8] M. Emmi, R. Majumdar, and K. Sen, “Dynamic test

input generation for database applications,” in

Proceedings of the 2007 Intl Symp on Software Testing

and Analysis, ser. ISSTA ’07. New York, NY, USA:

ACM, 2007, pp. 151–162.

[9] K. Taneja, Y. Zhang, and T. Xie, “Moda: Automated

test generation for database applications via mock

objects,” IEEE/ACM Intl Conf on Automated Software

Eng., New York, NY, USA: ACM, 2010, pp. 289–292.

[10] A. Bertolino, “Software testing research: Achievements,

challenges, dreams,” in Proc. of ICSE Future of

Software Engineering (FOSE), 2007, pp. 85–103.

[11] D. Willmor and S. M. Embury, “An intensional

approach to the specification of test cases for database

applications,” 28th Intl Conf on Software Engineering,

New York, NY, USA: ACM, 2006, pp. 102–111

[12] NIST. (2007) National vulnerability database (nvd).

[Online]. Available: https://nvd.nist.gov/

[13] MITRE/CVE. (2003) https://cve.mitre.org

[14] NIST/ CVSS. (2012) https://nvd.nist.gov/cvss.cfm

[15] Tsumura, K., et al., April. Pairwise coverage-based

testing with selected elements in a query for database

applications. Software Testing, Verification and

Validation Workshops (ICSTW), 2016 IEEE Ninth Intl

Conf on (pp. 92-101). IEEE.

[16] Bozic, J., Simos, D.E. and Wotawa, F., 2014, May.

Attack pattern-based combinatorial testing. 9th Intl

Wrkshp on Automation of Software Test (pp. 1-7). ACM.

[17] Garn, B., Kapsalis, I., Simos, D.E. and Winkler, S., On

the applicability of combinatorial testing to web

application security testing: a case study. 2014 Workshp

Joining AcadeMiA and Industry Contributions to Test

Automation and Model-Based Testing (pp. 16-21).

[18] Bozic, J., Garn, B., Simos, D.E. and Wotawa, F., April.

Evaluation of the IPO-family algorithms for test case

generation in web security testing. In Software Testing,

Verification and Validation Workshops (ICSTW), 2015

IEEE Eighth Intl Conf on (pp. 1-10). IEEE.

[19] Ratliff, Z.B., Kuhn, D.R., Kacker, R.N., Lei, Y. and

Trivedi, K.S., The Relationship between Software Bug

Type and Number of Factors Involved in Failures. In

Software Reliability Engineering Workshops (ISSREW),

2016 IEEE Intl Symp on (pp. 119-124). IEEE.

[20] K. Haller, “The test data challenge for database-driven

applications,” Third Intl Workshop on Testing

DatabaseSystems, ser. DBTest ’10. New York, NY,

USA: ACM, 2010, pp. 6:1– 6:6.

[21] Ghandehari, L.S., Czerwonka, J., Lei, Y., Shafiee, S.,

Kacker, R. and Kuhn, R., 2014, March. An empirical

comparison of combinatorial and random testing. In

Software Testing, Verification and Validation

Workshops (ICSTW), 2014 IEEE Seventh Intl Conf on

(pp. 68-77). IEEE.

[22] Schroeder, P. J., Bolaki, P., & Gopu, V. (2004, August).

Comparing the fault detection effectiveness of n-way

and random test suites. In Empirical Software

Engineering, 2004. ISESE'04. Proceedings. 2004 Intl

Symp on (pp. 49-59). IEEE.

[23] Ellims, M., Ince, D. and Petre, M., 2008, September.

The effectiveness of t-way test data generation. In Intl

Conf on Computer Safety, Reliability, and Security (pp.

16-29). Springer Berlin Heidelberg.

[24] Vilkomir, S., Starov, O. and Bhambroo, R., 2013,

March. Evaluation of t-wise approach for testing logical

expressions in software. In Software Testing,

Verification and Validation Workshops (ICSTW), 2013

IEEE Sixth Intl Conf on (pp. 249-256). IEEE.

[25] Ballance, W.A., Vilkomir, S. and Jenkins, W., April.

Effectiveness of pair-wise testing for software with

boolean inputs. Software Testing, Verification and

Validation, 2012 IEEE Fifth Intl Conf (pp. 580-586)

[26] Kobayashi, N., Tsuchiya, T. and Kikuno, T., 2001, July.

Applicability of non-specification-based approaches to

logic testing for software. In Dependable Systems and

Networks, 2001. DSN 2001. (pp. 337-346). IEEE.

[27] Bell, K.Z. and Vouk, M.A., 2005, December. On

effectiveness of pairwise methodology for testing

network-centric software. In Information and

Communications Technology, 2005. Enabling

Technologies for the New Knowledge Society: ITI 3rd

Intl Conf on (pp. 221-235). IEEE.

[28] Bryce, R.C. and Colbourn, C.J., 2006. Prioritized

interaction testing for pair-wise coverage with seeding

and constraints Inf.Software Tech., 48(10), pp.960-970.

[29] Ghandehari, L.S., Czerwonka, J., Lei, Y., Shafiee, S.,

Kacker, R. and Kuhn, R., An empirical comparison of

combinatorial and random testing. Software Testing,

Verification and Validation Workshops (ICSTW), 2014

IEEE Seventh Intl Conf on (pp. 68-77). IEEE.

[30] Bartholomew, R. (2013, May). An industry proof-of-

concept demonstration of automated combinatorial test.

In Automation of Software Test (AST), 2013 8th Intl

Workshop on (pp. 118-124). IEEE.

[31] Borazjany, Mehra N., et al. "An input space modeling

methodology for combinatorial testing." Software

Testing, Verification and Validation Workshops

(ICSTW), 2013 IEEE Sixth Intl Conf on. IEEE, 2013.

[32] Colbourn, C. J., & McClary, D. W. (2008). Locating and

detecting arrays for interaction faults. Journal of

combinatorial optimization, 15(1), 17-48.

[33] Wang, Z., Xu, B., Chen, L., & Xu, L. (2010, July).

Adaptive interaction fault location based on

combinatorial testing. In Quality Software (QSIC), 2010

10th Intl Conf on (pp. 495-502). IEEE.

[34] Kuhn, D. R., Kacker, R. N., & Lei, Y. (2010). SP 800-

142. Practical Combinatorial Testing.

[35] Kuhn, D. R., Kacker, R. N., & Lei, Y. (2016).

Measuring and specifying combinatorial coverage of

test input configurations. Innovations in Systems and

Software Engineering, 12(4), 249-261.

