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A B S T R A C T

Robotic manipulators are increasingly being attached to Automatic Ground Vehicles (AGVs) to aid in the effi-
ciency of assembly for manufacturing systems. However, calibrating these mobile manipulators is difficult as the
offset between the robotic manipulator and the AGV is often unknown. This paper provides a novel, simple, and
low-cost method for calibrating and measuring the performance of mobile manipulators by using data collected
from a laser retroreflector that digitally detects the horizontal two-dimensional (2D) position of reflectors on an
artifact as well as a navigation system that provides the heading angle and 2D position of the AGV. The method is
mathematically presented by providing a closed form solution to the positional component of the 2D robot-
world/hand-eye calibration problem =AX YB. The method is then applied to simulated data as well as data
collected in a laboratory setting and compared to other methods.

1. Introduction

Automatic guided vehicles (AGVs) have traditionally been used to
transport objects between workstations containing stationary robotic
manipulators. However, difficulties arise when these objects are not
accessible by the AGVs. For these situations, it may be beneficial to
attach a robotic manipulator onto an AGV to allow for much greater
capability in object access by the AGV without requiring fixed infra-
structure (e.g., conveyers). These “mobile manipulators” may also have
the ability to replace multiple stationary manipulators which can result
in actual cost savings for the manufacturer. However, the use of mobile
manipulators may present some challenges for the manufacturer. For
instance, mobile manipulators often use intelligent sensing systems,
such as vision [1], that measure the pose of a given object. These
measurements are calculated with respect to the system’s own co-
ordinate frame. Therefore, techniques are needed to transform the
measurements into a common world coordinate frame.

Consider the setup shown in Fig. 1 where a robotic manipulator is
attached to an AGV. A simple and low-cost method for calibrating and
measuring the performance of this mobile manipulator is formulated by
wielding a laser retroreflector to the robotic manipulator as an end-of-
arm-tool. The retroreflector has a binary output which turns on when it
detects a reflector (target) that is attached to a Reconfigurable Mobile
Manipulator Artifact (RMMA) [2,3]. The horizontal two-dimensional
(2D) position of the robot arm with respect to its base is recorded when

a reflector is detected. Here the reflector diameters can be selected to be
1mm or larger based on the expected uncertainty of the mobile ma-
nipulator to align with pre-taught locations on the RMMA. The dis-
tances between reflectors are within machining tolerances and the
uncertainty in position is ±0.25mm. At the same time, a navigation
system computes the 2D (x y, ) position and heading angle (θ) of the AGV
in world coordinates with a rotating laser range sensor that detects
facility-based reflectors mounted throughout the mobile manipulator
work area.

The mobile manipulator is programmed to reach different locations
around the workroom and searches for predefined target locations.
When a target is located, the x y θ, , of the AGV is recorded as well as the
x y, position of the robotic manipulator (see Table 5 in Appendix A).
Since the robotic manipulator is fixed to the non-stationary AGV, its
coordinate frame moves as the AGV moves. Therefore, each target lo-
cation is with respect to a moving coordinate frame. To allow for a
complete theoretical understanding of the mobile manipulator cali-
bration process as well as to provide a performance measurement for
the mobile manipulator, the target locations with respect to a stationary
world coordinate frame is needed. To compute these locations, the
transformation from the AGV to the robotic manipulator must be found
which is a goal of this paper.

These types of problems are often represented as a robot-world/
hand-eye calibration problem and are mathematically formulated as
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=A X YB ,i i

where Ai and Bi are homogeneous transformation matrices representing
data that are measured at time-step = …i n1,2, , , while X and Y are the
unknown homogeneous transformation matrices (see Fig. 1). It should
be noted that this setup can also be used for other problems such as
calibrating a robot base frame with the world frame [4]. For this paper

=
=
=
=

A
B
X
Y

inverse of the AGV pose in world coordinates
target pose in robotic manipulator coordinates
target pose in world coordinates
transformation from AGV to robotic manipulator.

i

i

Here homogeneous transformation matrices are of the form ( )R t
0 1

where orientation is represented by the rotation matrix R and position
is represented as the vector t. Using this representation, the robot-
world/hand-eye calibration problem can be posed as

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

= ⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

R t R t R t R t
0 1 0 1 0 1 0 1

,A A X X Y Y B Bi i i i

which can be split into its orientational component

=R R R RA X Y Bi i (1)

and positional component

+ = +R t t R t t .A X A Y B Yi i i (2)

Solutions to these problems come in two types: iterative and closed
form. Iterative solutions [5–11] are generally very accurate, but their
solutions are based on initial guesses and can be slow. In contrast,
closed form solutions are fast and can be used as initial guesses to
iterative solutions. This paper will focus on closed form solutions.
Closed form solutions come in two types: simultaneous solutions which
solve for the orientational and positional components at the same time
and separable solutions which separately solve for the orientational
component and positional component [12,8]. There have been many
closed form solutions to =AX YB which include using quaternions
[13,6], non-orthogonal matrices [14], probability density functions
[15], and Kronecker products [4,16,17]. Many of these methods are
based on solutions to the simplified =AX XB problem [18–30] and
have been generalized to the multi-robot calibration problem

=AXB YCZ [31–33]. Due to the sensors being used, the orientational
information RBi are not computed, the orientational information
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⎝−

⎞
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θ θ
θ θ

R
cos sin

sin cos
i i

i i
Ai consist of only the heading angles θi, and the

positional information t t,A Bi i are only in two-dimensions. Therefore,
most closed form solutions are not applicable as the orientational in-
formation RBi found in the orientational component of Eq. (1) are not
available. However, the methods presented in [14,4] solve for the po-
sitional component without the need of the orientational component.
For both of these papers, the unknowns are solved as minimization
problems without the additional constraint of orthogonalization of the
unknown rotation matrix RY. This orthogonalization is later applied as
an additional step. The closed form solution presented in this paper
builds upon this work but assumes the orthogonality of RY in its ori-
ginal formulation. In addition, the closed form solution presented in
this paper is generalized to the case where the location of more than
one target location tX in world coordinates is needed. The work pre-
sented in this paper extends existing calibration tools [34–36] that may
be useful for robotic systems.

It should be noted that this paper focuses on just solving the posi-
tional component of Eq. (2). This is sufficient for the setup of this paper
as just the target locations in world coordinates (tX) and the sensor
calibration (R t,Y Y) are needed. However, if the orientational informa-
tion RBi are provided then the full solution (including RX) of the robot-
world/hand-eye calibration problem could be found by solving the
orientational component of Eq. (1) as an orthogonal Procrustes pro-
blem. Motivation for the work presented in this paper comes from [37]
where a similar technique is applied to the exterior orientation problem
and from the classic Wang and Jepson method for solving the absolute
orientation problem [38].

This paper is organized as followed: Section 2 will give the meth-
odology for solving the positional component shown in Eq. (2) in closed
form for a single target. Then the methodology is extended for multiple
targets. Section 3 will describe experiments comparing the closed form
solution with the Wu and Ren closed form solution [4] and the iterative
solution presented in [39], and Section 4 will give concluding remarks.
For this paper, ‖·‖ denotes the Frobenius norm, so

= =A AA A A‖ ‖ tr( ) tr( )T T

where T denotes the transpose operator and tr(A) is the trace of the
matrix A.

Fig. 1. Experimental setup: A robotic ma-
nipulator is attached to an AGV to create a
mobile manipulator. The goals of this paper
are to (1) calculate the offset between the
robotic manipulator and the AGV and (2)
compute the target (reflectors used for re-
gistration and assembly performance mea-
surement) locations with respect to a fixed
world coordinate system. Follow the arrows
(right) from the AGV to see =A X YBi i. Here
the transformation Y from the AGV to the
robotic manipulator is unknown as well as
the transformation X from the world to the
targets.
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2. Methods

2.1. Single target

The goal of this paper is to determine the location tX of a given
target with respect to the world coordinate via the computation of the

transformation = ⎛
⎝

⎞
⎠

Y R t
0 1

Y Y between the AGV and robotic manip-

ulator. Mathematically, the equation that formulates this relationship is
the positional component, shown in Eq. (2), of the robot-world/hand-
eye calibration problem. Assuming that the data gathered is noiseless,
then each side of this equation can be multiplied by scalars ci such that

+ = +c c c cR t t R t ti i i iA X A Y B Yi i i

for all = …i n1,2, , . As a result,
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Now assume scalars ci can be chosen so that
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Such equations may be represented as

=
⎛

⎝
⎜⎜

⋯
⋯
⋯

⎞

⎠
⎟⎟

⎛

⎝

⎜
⎜ ⋮

⎞

⎠

⎟
⎟

= ×

θ θ θ
θ θ θ

c
c

c
R c 0

cos( ) cos( ) cos( )
sin( ) sin( ) sin( )

1 1 1

n

n

n

A

1 2

1 2

1
2

3 1

where θi is the angle of rotation of RAi representing the heading angle of
the AGV for = …i n1,2, , . Note that a non-trivial solution to this system of
equations is guaranteed to exist as long as >n 3, since the dimension of
the associated nullspace is at least −n 3. An orthonormal basis W for this
nullspace can be calculated using the singular value decomposition
(SVD) [40]. Note that each column of W formulates a = …c c cc ( , , , )T

n
T

1 2
such that =R c 0A . Therefore, an appropriate choice for the scalars may
be represented as a linear combination of the columns of W.

For an appropriate W, the unknown RY may be calculated by re-
formulating Eq. (3) and noting that in the ideal case

∑ − =
=

×c cR t t 0( ) .
i

n

i iY B A
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2 1i i
(4)

In the non-ideal case when Eq. (4) is not exactly equal to ×0 R, Y2 1 can be
found by solving
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However, this problem is an example of an orthogonal Procrustes
problem which reduces to solving

R T WW Tmax tr( ).T T
R

Y B A
Y

Note that this representation suggests that W does not need to be cal-
culated via the SVD. Instead, just

= −×WW I OOT
n n

T

has to be computed where O is an orthonormal basis for the space
spanned by the columns of RT

A [37]. This basis may be efficiently cal-
culated via the Gram-Schmidt or QR decomposition for large n [40].
Then RY may be computed via the SVD as

=R V VU Udiag(1,det( ))T T
Y

where

= −×USV T I OO T( ) .T
n n

T T
B A

Once RY is calculated then the other unknowns may be formulated by
solving the linear system
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In conclusion, a closed-form solution may be formulated as

1. Formulate an orthonormal basis O for RT
A.

2. Compute = −×M T I OO T( )n n
T T

B A.
3. Set =R V VU Udiag(1,det( ))T T

Y via the SVD of M.
4. Calculate t t,X Y by solving the linear system of Eq. (5).

2.2. Multiple targets

Computing multiple target locations t j
X, for = …j k1,2, , , with respect

to the world coordinate frame may aid in the accuracy of the calibration
between the AGV and the robotic manipulator (see Fig. 1 where the
four targets would be represented by t t t t, , ,X X X X

1 2 3 4 , respectively.). In this
case, a generalization of the algorithm from the previous section can be
made. Specifically, Eq. (3) can be generalized to
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Here θi
j is the angle of rotation of R j

Ai for = …i n1,2, , j and = …j k1,2, , .
Following the procedure from the previous section, the multiple target
locations t j

X as well as the transformation Y can be found by

1. Formulate an orthonormal basis O for RT
A.

2. Compute = −M T I OO T( )T T
B A.

3. Set =R V VU Udiag(1,det( ))T T
Y via the SVD of M.

4. Calculate t t,j
X Yfor = …j k1,2, , by solving
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3. Results and discussion

3.1. Simulated data

Experiments were conducted using the single target method of
Section 2.1 and the multiple target method of Section 2.2. The
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computed solutions were compared with solutions obtained from the
Wu and Ren method shown in [4] and the iterative solution shown in
[39]. It should be noted that the Wu and Ren method was only defined
for the single target method in [4]. The method was generalized for the
multiple target method using a technique similar to the one defined in
Section 2.2. As the data was simulated, the transformation from the
AGV to the robotic manipulator is known and was formulated as an
offset of 10mm in the x-position, 20mm in the y-position, and an an-
gular offset of 30 degrees. The AGV was simulated to reach eight po-
sitions as shown in Fig. 2. For the single target experiment, the robotic
manipulator is supposed to reach a target located at (3000mm,
3000mm) in world coordinates. For the multiple target experiment, the
robotic manipulator is supposed to reach four targets located at
(3000mm, 3000mm), (3300mm, 3000mm), (3300mm, 3300mm),
and (3000mm, 3300mm) in world coordinates.

Noise was added to the data to simulate high noise ( =α 1), medium
noise ( =α 0.5) and low noise ( =α 0.1), where the noisy heading angle
was defined by adding αη degrees, the noisy 2D position of the AGV was
defined by adding αη50 mm to each − −x y, component of the AGV, and
the noisy 2D position of the target in robotic manipulator coordinates
was defined by adding αη0.1 mm to each − −x y, component of the
target position. Here η is defined as a pseudorandom value drawn from
the standard normal distribution.

Results from the single target experiment are as shown in Table 1.
The errors are defined as follows:

= −
= −

= −

target error (T) ‖computed target (3000,3000) ‖
angle error (A) |computed angle 30 |
position error (P) ‖computed position (10,20) ‖.

Results between the single target closed form solution (C) and the Wu
and Ren method (W) are comparable. However, the results may vary
from the iterative solution (I).

Results from the multiple target experiment are as shown in Table 2.
The errors are defined as for the single target except now the computed
target represents four target positions – (3000mm, 3000mm),
(3300mm, 3000mm), (3300mm, 3300mm), and (3000mm,
3300mm) – and thus the target error (T) is updated accordingly. As
with the single target experiment, the multiple target closed form so-
lution (C) and the Wu and Ren method (W) are comparable, while the
iterative solution (I) may vary.

3.2. Real data

The algorithms from Section 2 were applied to data gathered in a
laboratory setting at the National Institute of Standards and Technology
(NIST) (see Table 5 in Appendix A). As test cases, two types of mobile
manipulator performance measurements have been studied in [2,3]:
static and index manipulator base configurations. The static case allows
the AGV to position the manipulator base to a single location where it
can reach all chosen assembly targets within a pattern (circle, square, or
other). The index case allows the AGV to reposition the manipulator
base as needed near the RMMA to reach all assembly targets in multiple

2600 2800 3000 3200 3400 3600
2700

2800

2900

3000

3100

3200

3300

3400

3500

3600

High Noise
Medium Noise
Low Noise
True AGV Pose
Targets

Fig. 2. Simulated setup. A mobile manip-
ulator is programmed to reach multiple po-
sitions (red stars). The actual position of the
mobile manipulator is denoted according to
noise (black dots: high noise, blue square:
medium noise, green circle: low noise).
From each position, a mobile manipulator is
to reach specific targets (red x). (For inter-
pretation of the references to color in this
figure legend, the reader is referred to the
web version of this article.)

Table 1
Comparison of the single target closed form solution (C) from Section 2.1, the
Wu and Ren solution (W) shown in [4], and the iterative solution (I) shown in
[39] on simulated data generated using one target. The errors are defined in
terms of target (T) error, angle (A) error, and position (P) error.

Low noise Medium noise High noise

T A P T A P T A P

C 1.56 0.05 0.18 9.25 0.27 1.49 18.90 1.56 9.57
W 1.72 0.10 0.17 9.74 0.04 1.61 18.19 2.36 10.00
I 1.13 0.03 0.24 7.43 0.30 3.69 24.60 1.57 9.76

Table 2
Comparison of the multiple target closed form solution (C) from Section 2.2, the
Wu and Ren solution (W) shown in [4], and the iterative solution (I) shown in
[39] on simulated data generated using four targets. The errors are defined in
terms of target (T) error, angle (A) error, and position (P) error.

Low Noise Medium Noise High Noise

T A P T A P T A P

C 1.20 0.07 0.33 11.81 0.14 2.88 17.42 0.71 6.02
W 1.20 0.05 0.31 11.85 0.18 2.85 20.22 0.77 6.12
I 2.19 0.05 0.47 12.32 0.40 3.78 8.34 0.71 3.05
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patterns on the RMMA. As manipulators have become more colla-
borative, their lengths are approximately 1m ± 0.5m. The size of the
RMMA was chosen to be 1.2m×0.6m to allow the approximately 1m
manipulator used for these tests to reach an entire approximately
457.20mm square and a 304.80mm diameter circle. The distance be-
tween the square and circle patterns of 152.40mm forces the mobile
manipulator to index between patterns as a different performance
measurement test case from the static case. The RMMA has predefined
holes with a tolerance of 0.25mm.

For this experiment, an AGV was moved to 10 stops from which a
robotic manipulator tried to reach the center of the four targets (see
Fig. 3). The 2D position of each of the targets reached by the robotic
manipulator was recorded as well as the 2D position and heading angle
of the AGV (see Table 5 in Appendix A). From this data, the location of
each of the targets in the world coordinate system was calculated by the
single target closed form solution presented in Section 2.1 as well as the
multiple target closed form solution presented in Section 2.2. These
calculations were then compared with the Wu and Ren closed form
solution [4] and the iterative solution presented in [39].

The single target closed form solution was used four times to de-
termine the target location in world coordinates. This was formulated
by first gathering the data from Table 5 in Appendix A. For example,
target 1 was reached by the robotic manipulator at Stops 2, 4, 6, 8, 9,
and 10. Then the corresponding AGV data was used to perform the
calibration which resulted in the target 1 location in the world co-
ordinate system. A similar procedure was used to determine target 2,
target 3, and target 4 positions in the world coordinate system. To
determine the accuracy of the single target closed form solution, the
distance between the successive targets was compared with the Wu and
Ren closed form solution [4] and the iterative solution presented in
[39]. The results are shown in Table 3.

The multiple targets closed form solution was used just one time to
determine all four target locations in world coordinates. This was

formulated by first gathering the data from Table 5 in Appendix A to
build the matrices of Eq. (6). For example, RA

1 is of size ×3 6 since the
robotic manipulator reached target 1 at only 6 stops. To determine the
accuracy of the multiple target closed form solution, the distance be-
tween the successive targets was compared with the Wu and Ren so-
lution shown in [4] as well as iterative solution presented in [39]. The
results are shown in Table 4. Notice that the differences between the
three solutions are less than the single target solution shown in Table 3
suggesting that multiple targets aid in the accuracy of the calibration.

4. Conclusion

This paper outlines a closed form solution for solving the positional
component of the horizontal two-dimensional robot-world/hand-eye
calibration problem in order to determine a target’s location with re-
spect to a fixed world coordinate system. This solution is then gen-
eralized to the case where multiple target locations are needed. These
solutions were applied to simulated data as well as to data gathered in a
laboratory setting at NIST to formulate the location of fixed targets with
respect to a common world coordinate frame. These target locations
were compared with locations computed from an iterative solution as
well as an existing closed form solution. The results from the closed
form solution formulated in this paper were found to be highly reliable
and accurate.

5. Role of the funding source

The first author received an Intergovernmental Personnel Act (IPA)
appointment at NIST. This work was performed under the following
financial assistance award 70NANB17H251 from U.S. Department of
Commerce, National Institute of Standards and Technology (NIST). The
problem discussed in this paper was formulated at NIST under the
Robotic Systems for Smart Manufacturing Program. Data were collected
and analyzed within this program with results appearing in this paper.

Fig. 3. Real target setup. The four targets (reflectors) lie on a straight line such that the ground truth distance between two successive targets is 457.20 mm,
152.40 mm, and 304.80 mm, respectively.

Table 3
Comparison of the single target closed form solution from Section 2.1, the Wu
and Ren solution [4], and iterative solutions [39] on data from Table 5 in
Appendix A. The ground truth distance between two successive targets is
457.20 mm, 152.40mm, and 304.80mm, respectively (see Fig. 3).

Ground truth Closed Form Wu and Ren Iterative

Dist (mm) Dist Err Dist Err Dist Err

457.20 459.84 2.64 453.35 3.85 461.40 4.20
152.40 152.66 0.26 152.22 0.18 151.50 0.90
304.80 305.23 0.43 300.94 3.86 305.32 0.52

Table 4
Comparison of the multiple targets closed form solution from Section 2.2, the
Wu and Ren solution [4], and iterative solutions [39] on data from Table 5 in
Appendix A. The ground truth distance between two successive targets is
457.20 mm, 152.40 mm, and 304.80 mm, respectively (see Fig. 3).

Ground truth Closed Form Wu and Ren Iterative

Dist (mm) Dist Err Dist Err Dist Err

457.20 456.07 1.13 456.07 1.13 457.90 0.70
152.40 152.67 0.27 152.70 0.30 151.50 0.90
304.80 303.94 0.86 303.94 0.86 302.51 2.29
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Table 5
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