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Two-dimensional (2D) materials such as graphene have become the focus of extensive

research efforts in condensed matter physics. They provide opportunities for both funda-

mental research and applications across a wide range of industries. Ideally, characterization

of graphene requires non-invasive techniques with single-atomic-layer thickness resolution

and nanometer lateral resolution. Moreover, commercial application of graphene requires fast

and large-area scanning capability. We demonstrate the optimized balance of image reso-

lution and acquisition time of non-invasive confocal laser scanning microscopy (CLSM),

rendering it an indispensable tool for rapid analysis of mass-produced graphene. It is powerful

for analysis of 1–5 layers of exfoliated graphene on Si/SiO2, and allows us to distinguish the

interfacial layer and 1–3 layers of epitaxial graphene on SiC substrates. Furthermore, CLSM

shows excellent correlation with conventional optical microscopy, atomic force microscopy,

Kelvin probe force microscopy, conductive atomic force microscopy, scanning electron

microscopy and Raman mapping.
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Wafer-scale graphene material is of interest for quantum
Hall resistance standards1–5 and future nanoelec-
tronics6,7, such as high frequency electronics8–15 and

photonics16,17. Single-domain epitaxial graphene (EG) grown on
the silicon face of SiC(0001)18 has several advantages, such as
removing the need to transfer the graphene onto an insulating
substrate for device processing, as is the case for chemical vapor
deposition (CVD) growth. Recent progress in CVD and EG
growth demonstrates the potential for mass production of
homogeneous graphene at the wafer-scale5,19–22, and increases
the demand for a characterization method that is fast, accurate,
and accessible. Previously, optical microscopy was demon-
strated to be a useful tool for rapid identification of layer
inhomogeneities in EG over hundreds of micrometers23.
However, low contrast and poor spatial resolution are sig-
nificant limiting factors. Currently, Raman spectroscopy and
scanning probe microscopy (SPM), including Kelvin probe
force microscopy (KPFM), are the most widely used methods
of characterizing the material quality.Q1 Raman spectroscopy is a
nondestructive tool for structural analysis of graphene, and is
furthermore sensitive to the doping level and strain in
graphene24–29. For one-layer graphene (1LG) the fingerprint in
the Raman spectrum is a symmetric 2D peak at ~2700 cm−1

that can be fitted by a single Lorentzian26,30. However, a
careful analysis of the shape of the 2D peak is required to
identify increasing number of GLs. The topography imaged by
atomic force microscopy (AFM) is the another method for
determining layer thickness of CVD or exfoliated graphene on
various substrates. However, for graphene on SiC, identifica-
tion of EG layers from the topography is far from straight-
forward using AFM alone31, due to terrace structure of the SiC
substrate, which develops concurrently with the EG and thus
has a strong influence on the layer growth and uniformity5,32.
Recently, KPFM was shown to be a more reliable method for
distinguishing the number of EG layers33. Nonetheless, Raman
and SPM methods are time consuming and typically limit the
scan size to a few tens of micrometers. Scaling up the pro-
duction process requires fast and accurate characterization of
the material quality at the wafer scale, while at the same time
retaining submicrometer spatial resolution. We believe that
confocal laser scanning microscopy (CLSM) is the tool that
meets all of the aforementioned requirements with applications
in real-time observation of graphene growth34 and nanoma-
terials in biological systems35,36.

Q2 In this report, we demonstrate that reflection mode CLSM is
a superior tool for rapid characterization of large-area gra-
phene and graphene nanostructures on Si/SiO2 and SiC,
compared to conventional optical microscopy (OM), Raman
spectroscopy, AFM, conductive AFM (C-AFM), KPFM, and
scanning electron microscope (SEM) methods. CLSM can
simultaneously produce intensity and topography images as
well as has a lateral resolution that can be pushed beyond the
optical diffraction limit. The depth-of-field is enhanced by
digitally selecting in-focus regions from multiple images at
different focal planes, enabling high resolution over larger
areas. First, we discuss CLSM results on various thicknesses of
exfoliated graphene transferred to Si/SiO2 substrate. By com-
paring the results to AFM and Raman measurements, we
present a method for assessing the CLSM intensity and height
for graphene of different thicknesses. Next, we apply CLSM
and Raman spectroscopy to CVD-grown graphene transferred
to Si/SiO2 substrate to demonstrate fast and accurate, large-
scale analysis. Finally, we apply CLSM to EG on SiC demon-
strating the speed, accuracy, and versatility of CLSM
compared to OM, SEM, AFM, KPFM, C-AFM, and Raman
microscopy.

Results
Exfoliated graphene on Si/SiO2. CLSM can simultaneously
produce intensity and topography images as well as has a lateral
resolution that can be pushed beyond the optical diffraction limit.

Q3The depth-of-field is enhanced by digitally selecting in-focus
regions from multiple images at different focal planes, enabling
high resolution over larger areas. To demonstrate the potential of
CLSM for the characterization of graphene, we studied exfoliated
graphene transferred to Si/SiO2 substrates. The OM images of the
sample was carried out on a Nikon L200N optical microscope
[see Acknowledgments] in the reflection mode using white light.
Figure 1a–c are OM, CLSM intensity, and CLSM height images,
respectively, of exfoliated graphene flakes on Si substrate covered
by 300 nm of SiO2. Both the imaging techniques are performed in
reflection mode and compared to the corresponding AFM image
in Fig. 1d. Each graphene layer absorbs 2.3% of the incident
light37. The same region imaged with the CLSM shows a signal-
to-noise ratio three times higher than OM as well as provides
in situ map of the height. Raman spectra were recorded at the
nine different regions of the sample as indicated by red dots in
Fig. 1b. For a more in-depth analysis of the layer-dependent
optical properties, please see Supplementary Note 1. Analysis of
points P1a and P1b matches the description of single LG, where
their G-peaks (Fig. 1e) and 2D-peaks can be fitted by a single
Lorentzian (FWHM of 26.8 and 28.1 cm−1, respectively) and the
height ratios of G/2D peaks are ~0.7 (Fig. 1f). Ni et al.38 also
reported that the G-peak height increases linearly with the
number of layers up to nine layers. This is in good agreement
with data shown in Fig. 1e, except for point P2b, where the
unexpected behavior may be due to an overlapping of the laser
spot with nearby multi-LG domains (P4b and P5). Using the layer
numbers determined from the Raman analysis, we found that the
CLSM relative intensity (compared to Si/SiO2 substrate) also
increases approximately linearly with the layer number (Fig. 1g).

Q4The thickness of the first graphene layer (P1b) as measured by
AFM is 1.35 ± 0.1 nm (Supplementary Table 1), with subsequent
layers being measured as 0.48 nm thick (as estimated from the
slope of the linear fitting of the raw AFM data in Supplementary
Fig. 2). The larger thickness of the first and subsequent graphene
layer(s) can be the result of contamination present between the
graphene and substrate interfaces39. Although the resolution for
CLSM height map is ~10 nm (as specified by the manufacturer),
Fig. 1c shows that CLSM is able to distinguish the height of a
single layer of graphene. The raw CLSM height values are
summarized in Supplementary Table 1 (and Supplementary
Note 1), where the first graphene layer is 4.72 ± 0.1 nm, with each
subsequent layers being 3.68 nm thick (as estimated from the
slope of the linear fitting of the raw CLSM data in Supplementary
Fig. 2). Therefore, with proper correction, CLSM can be a fast and
reliable method to identify the layer number of exfoliated
graphene flakes (Fig. 1h). This is evident by the linearity of the
CLSM and theoretical height values.

CVD graphene on Si/SiO2. Figure 2a, b shows the OM and
CLSM images, respectively, of the CVD graphene that has been
transferred to Si/SiO2 substrate. The CLSM image reveals finer
structures that are not clearly visible in the OM image, such as the
wrinkle at point labeled as P2 in Fig. 2b, which is about 400 nm
wide. Although the Raman spectra from both points P1 and P2
display the features characteristic for single LG, there is a blue
shift for the G-peak and a red shift for the 2D-peak at P2, which
can be attributed to strain from the wrinkle. The Raman spectra
of the scroll shows a more pronounced D-peak due to the cur-
vature effect40. Furthermore, the graphene layers in the scroll are
not tightly packed, which broadens the 2D-peak. The G/2D peak
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ratio is also larger due to the presence of several layers of gra-
phene within the scroll.

EG nanoribbons on SiC. We first present the EG sample with
partial coverage of graphene, as shown in Fig. 3. The sample is
comprised of dense 2D nanoribbons with brighter contrast that
are not fully resolved by OM (Fig. 3a), but are more resolved with
CLSM (Fig. 3b). Owing to the transparent nature of the SiC
substrate, OM imaging is also possible in transmission mode for
this particular type of sample (Supplementary Fig. 3), where the
contrast is inverted, and the darker regions are associated to
graphene with each layer absorbing 2.3% of the incident light39.

Q5 The darker regions in OM and CLSM intensity images are the
electrically insulating interfacial layer or bare SiC, as verified with
a several SPM and Raman techniques (Fig. 3c–g). Imaging in the
differential interference contrast (DIC) mode produces a three-
dimensional visualization of the surface morphology with some
sacrifice of the graphene contrast (for more details, see
Supplementary Note 2 and Supplementary Fig. 3). From
comparisons of CLSM, DIC, and scanning probe images such
as Fig. 3c, d, we find that the graphene nanoribbons preferentially
grow from the step edge toward the adjacent upper terrace. The
formation of parallel nanoribbons on SiC(0001) terraces has been
attributed to diffusion-limited growth25 that may accompany the
decomposition of single, SiC atomic layers.

Q6 The CLSM intensity image of Fig. 3b shows the remarkable
level of detail produced with an acquisition time of only 10 s.
Compared to the OM image in reflection mode (Fig. 3a), CLSM
provides greatly enhanced lateral resolution and contrast due to
the point illumination by a laser source (405 nm wavelength) and
by removing the out-of-focus background light with a pinhole at
the conjugate focal plane in front of the sensor (i.e., typical
confocal configuration). The CLSM intensity image not only
shows much higher spatial resolution and fully resolved graphene
nanoribbons, but also clearly reveals thin stripes (labeled by red
arrows in Fig. 3d) and patches of higher reflectivity along the step
edges, indicating two-LG (2LG). Moreover, we determine the
lateral resolution of the CLSM to be 150 nm by analyzing the edge
spread function from EG images (Supplementary Figs. 4 and
Supplementary Table 2, all of which are within Supplementary
Note 3).

We obtained additional measurements with AFM, KPFM,
SEM, C-AFM, and Raman microscopy, on EG nanoribbons for
accurate identification of their structure. The CLSM intensity
image in Fig. 3b reveals a dense row of graphene nanoribbons
formed from 1LG and 2LG. The KPFM map obtained in situ with
the topography (Fig. 3c) reveals substantial variations in the
surface potential, with five clear distinct regions (Fig. 3d). Region
1 is assigned to the 1LG nanoribbons which vary in width from
~100 to 300 nm and lengths of up to a few micrometers. Region 2
is designated as 2LG nanoribbons, which are similar in width to
1LG, but have shorter lengths. Regions 3 and 4 are designated to
IFL given that there are no topographical features between them
(Fig. 3c), however, the surface potential shows significant
differences in the charge between the two regions and is
attributed to the close proximity of region 3 to the 1LG
nanoribbons. Region 5 is designated as SiC, which is least
affected by charge from nearby IFL and graphene.

When SEM imaging is carried out with an InLens detector, the
parts of the sample with higher work function lead to a stronger
suppression of the backscattered electrons from the surface,
resulting in darker contrast in SEM image due to a lower electron
intensity sensed by the detector41. The SEM is able to clearly
distinguish graphene regions from IFL with high spatial
resolution (Fig. 3e), but the only indication of 2LG ribbons is

faint haloing of IFL regions surrounding them. Additionally,
there is no differentiation between IFL and SiC42. The C-AFM
map is consistent with the designation of regions 3, 4 and 5 where
there was no conduction for these electrically insulating regions
(Fig. 3f).

Raman spectra of the same region were also collected and fitted
to create maps of the G- and 2D-peak area (Fig. 3g, h), position,
width and intensity (Supplementary Note 4 and Supplementary
Fig. 6). Figure 3i shows the average of 64 representative Raman
spectra for each of the five regions indicated in Fig. 3d. The
signature single Lorentzian 2D-peak for 1LG is observed for
region 1, but broadens significantly and forms the signature
shoulder for ab-stacked 2LG in region 2 (see fitting of the 2D-
peak in the inset of Fig. 3i). These maps clearly show that the
coverage of graphene is in excellent agreement with CLSM, AFM,
KPFM, and C-AFM.

The 2D forest of graphene nanoribbons is formed in EG
samples produced by face-to-graphite growth with reduced
process temperatures or reduced growth times (Supplementary
Fig. 7a and Supplementary Note 5). In this case, the dense 2D
graphene nanoribbon forest along with its conspicuous optical
contrast to the IFL patches is a characteristic of incomplete EG
coverage. The graphene nanoribbons will eventually merge to
form continuous graphene in a succeeding growth (shown in
Supplementary Fig. 7b), and the CLSM contrast features will
evolve accordingly.

Next, we investigate samples with full coverage of EG using
CLSM, KPFM, C-AFM, and SEM (Fig. 4a–d, respectively). The
CLSM intensity image shows that the sample is predominantly
covered by 1LG (as conformed by Raman spectra; not shown)
and about 10% of the area is covered by narrow patches of bi-
(2LG) and tri-LG (3LG) domains (brightest contrast). The higher
intensity of the reflected light from thicker graphene layer in the
CLSM image is consistent with the linear increase of reflectivity
reported by Ivanov et al.43, where they measured the power of
reflected laser light from the surface of EG on SiC. Comparison of
Fig. 4a to the surface potential map (Fig. 4b) of the same region
confirms the designation of 1LG, 2LG, and 3LG. However, the
darkest lines and patches in Fig. 4a indicated by the red arrows
are not as clearly apparent in the KPFM image due to the
proximity effect from charging. These features are confirmed to
be insulating IFL or SiC by C-AFM, where zero current is
measured (Fig. 4c). Moreover, the work function of the sample
can be estimated from KPFM by using Φsample=Φprobe—eΔVCPD,
where Φprobe is the work function of the probe33. Thus, brighter
surface potential contrast is associated with lower work function,
i.e., work function of 3LG < 2LG < 1LG.

Figure 4d shows the SEM image obtained in a vacuum
chamber using the InLens detector to capture backscattered
electrons. The IFL/SiC regions appear brightest in the SEM
image, which is consistent with the contrast of SEM image for the
EG nanoribbon sample (as shown in Fig. 3e and Supplementary
Fig. 4b). SEM image of IFL/SiC regions with the brightest contrast
has been consistently observed in all the samples presented in this
paper and in all the other samples that we have imaged,
indicating that IFL/SiC has the lowest work function. 1LG
appears the darkest and 2LG has contrast in between the IFL/SiC
region and 1LG, indicating work function of IFL/SiC < 2LG <
1LG. Finally, during the SEM imaging, the graphene surface
becomes heavily charged by the electron beam and is also exposed
to hydrocarbon contamination, both causing deterioration of the
image resolution. The dark spots that are tens of nanometers in
size, which only appear in the SEM image that was obtained last,
are likely to be the hydrocarbon contamination. In contrast to
that, CLSM is noninvasive and thus does not influence the
imaging quality over time.

COMMUNICATIONS PHYSICS | DOI: 10.1038/s42005-018-0084-6 ARTICLE

COMMUNICATIONS PHYSICS | _#####################_ | DOI: 10.1038/s42005-018-0084-6 | www.nature.com/commsphys 3

www.nature.com/commsphys
www.nature.com/commsphys


UNCORRECTED P
ROOF

Discussion
In this paper, we demonstrate CLSM, a fast and nondestructive
characterization method for optical imaging of graphene, which
produces images of optical intensity and height in ambient air,
without any prior sample preparation. We would like to stress
that of course CLSM is not the only technique to study graphene

and should be used in conjunction with other methods for
determination of required physical properties. While CLSM
cannot determine all physical parameters for any given sample, it
can distinguish features such as thickness inhomogeneity, folds,
tearing, and nanoribbons of graphene on various substrates with
high spatial resolution (150 nm).
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For graphene on Si/SiO2 substrate, CLSM images show excel-
lent correlation to OM, Raman spectroscopy, and AFM height
mapping, where the latter two can be used to calibrate the CLSM
intensity and height to directly determine graphene layer thick-
ness. For graphene on SiC substrate, the measured reflected
intensity from 1LG is ≈3% higher than that from adjacent IFL
regions and the reflected intensity from 2LG is ≈2% higher than
the 1LG (see Supplementary Note 6). Through direct correlation
to the results from Raman spectroscopy, SEM, and scanning
probe microscope including AFM, C-AFM, KPFM, CLSM ima-
ging reveals that EG starts to form at the edges of SiC terraces as
parallel graphene nanoribbons. The nanoribbons then merge into
a continuous, uniform mono-LG under proper processing con-
ditions. Micrometer-sized, bilayer and few LG patches are found
as high contrast regions in the CLSM images of overgrown
samples. Compared to the complementary methods used in this
paper, CLSM not only has a much higher throughput for
detecting such regions, it is also insusceptible to surface con-
tamination or surface charging, which will strongly affect the
resolution and even the contrast of other imaging techniques such
as KPFM or SEM. Although Raman spectroscopy also has
advantages as a nonintrusive optical method, with the modern
micro Raman systems having laser spot sizes on the order of
hundreds of nm corresponding to the diffraction limit, CLSM can
produce a map with similar resolution, simultaneously being able
to image much larger areas in a much shorter time frame, which
is a significant advantage.

We propose that high spatial resolution CLSM images can
provide inspection of wafer-scale graphene, selection of material
and locations for more efficient fabrication (see Supplementary
Figs. 9–11 within Supplementary Note 7), as well as analysis of
device quality and failure modes (Supplementary Fig. 12 within
Supplementary Note 8).

Methods
Confocal laser scanning microscopy. CLSM was performed using an Olympus
LEXT OLS4100 system [see Acknowledgments] fitted with ×5, ×10, ×20, ×50, and
×100 objectives (numerical apertures: 0.15, 0.30, 0.60, 0.95, and 0.95, respectively)
and with up to ×8 further optical zoom. This enables the CLSM to image areas with
field of view ranging from 2560 to 16μm, which translates to total magnification
range from ×108 to ×17,280. The system employs a 405 nm wavelength violet
semiconductor laser, which is scanned in the X–Y directions by an electromagnetic
micro-electro-mechanical systems scanner and a high-precision Galvano mirror,
and a photomultiplier to capture the reflected light and generate images up to
4096 × 4096 pixels with horizontal spatial resolution of 150 nm. The confocal
optical setup only allows the reflected light that is in-focus to pass through the
circular confocal pinhole, thus eliminating flare from out-of-focus regions, but
resulting in a very shallow depth of field. To increase the focus resolving capability,
a series of images along Z-axis are taken around the median focus height, with
separations as small as 60 nm. For each pixel, an ideal Intensity-Z curve is calcu-
lated to fit the intensities in these images and extract the maximum value, which in
turn is used to create a final 2D intensity image. The system is operated in ambient
air and does not require any sample preparation for clean samples.

Atomic force microscopy. AFM was performed in tapping-mode in air using a
Bruker Dimension FastScan SPM. In this mode, the probe oscillates at its funda-
mental resonance (f0) and a feedback loop tracks the surface of the sample by
adjusting the Z-piezo height to maintain a constant amplitude of the cantilever
oscillation. The phase of the cantilever oscillation is also compared to the sine wave
driving the cantilever oscillation, and thus, AFM achieves simultaneous mapping of
the topography and tapping phase, which is a measure of the energy dissipation
between the probe and sample, thus encompassing variations in adhesion, com-
position, friction, viscoelasticity, and other mechanical properties of the sample43.

Conductive atomic force microscopy. C-AFM was performed using a Bruker
Dimension Icon SPM by raster scanning a Pt probe across the sample surface. The
C-AFM scans were performed with 250 mV bias voltage applied to the sample and
the resulting current flowing through the probe at each pixel of the scan area was
measured by a current amplifier. EG’s high electrical conductivity and good
adhesion allow precise mapping of the nanostructures by C-AFM unless they are
isolated by nonconducting SiC or interfacial layer carbon.

Kelvin probe force microscopy. KPFM was performed by means of frequency
modulation (FM) using a Bruker Dimension Icon SPM37. During FM-KPFM, the
surface of the sample is tracked and measured using the AFM feedback method
described above. Additionally, a low frequency (fmod), AC voltage (VAC) is applied
to the electrically conductive probe, which shifts the cantilever resonance due to the
electrostatic attraction/repulsion and thus produces side lobes at f0 ± fmod. When
the FM-KPFM feedback loop applies an additional DC voltage to the probe (VDC),
the amplitude of the side lobes is proportional to the difference between VDC and
the surface potential of the sample (also referred to as the contact potential dif-
ference, VCPD). The surface potential is determined by the VDC minimizing the side
lobes, i.e., when potential of the probe is equal to the potential of the sample. The
surface potential map is obtained by recording VDC pixel by pixel. The surface
potential values of the sample can be converted to a work function using, Φsample=
Φprobe− eΔVCPD, provided the work function of the probe (Φprobe) is known. For
further details see ref. 44.

Raman spectroscopy. Raman spectra of graphene on Si/SiO2 were acquired under
ambient conditions with 514.5 nm excitation (Renishaw InVia), which is focused to
an approximately 1μm spot on the sample through a ×50 objective (0.75 NA). The
Raman spectra and mapping of EG on SiC were acquired under ambient condi-
tions with 532 nm excitation (Renishaw InVia), which is focused to an approxi-
mately 0.8μm spot on the samples through a ×100 objective (0.85 NA). Raman
maps were performed by raster scanning the laser with a step size of 100 nm and
collecting the spectra with an exposure time of 1 s for each point, 1800l/mm grating
and high confocality (20μm slit opening). Raman maps of the G- and 2D-peaks
area, intensity, width and shift were generated from fitting the data.

Data availability
The datasets generated and analyzed during the current study are available from
the corresponding author on request.
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