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Lieb-Robinson bounds on n-partite connected correlation functions
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Lieb and Robinson provided bounds on how fast bipartite connected correlations can arise in systems with only
short-range interactions. We generalize Lieb-Robinson bounds on bipartite connected correlators to multipartite
connected correlators. The bounds imply that an n-partite connected correlator can reach unit value in constant
time. Remarkably, the bounds also allow for an n-partite connected correlator to reach a value that is exponentially
large with system size in constant time, a feature which stands in contrast to bipartite connected correlations. We
provide explicit examples of such systems.
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I. INTRODUCTION

Nonrelativistic quantum mechanics is not explicitly causal.
Long-range interactions in many physical systems allow
spatially separated subsystems to become correlated at ar-
bitrarily high speed [1–3]. They enable superior quantum
applications such as fast quantum state transfer [4]. However,
in finite-dimensional systems with only bounded, short-range
interactions, there is a maximum speed at which correlations
may grow [5]. If a bipartite system is initially in a product
state, Lieb-Robinson bounds [6] imply that its bipartite
connected correlation function 〈AXAY〉 − 〈AX 〉 〈AY〉 at time
t is upper bounded by ∝ exp(vLRt − r) [7,8], where r is the
distance between the two subsystems X and Y , and vLR is
the time-independent Lieb-Robinson velocity. The bounds
generate an effective light cone vLRt = r , outside which
any bipartite connected correlation function is exponentially
small.

The bounds of Lieb and Robinson are useful in many
contexts [9–13]. Recent experiments have measured the
precise shape of the light cone in many-body systems [14,15].
In one case, a faster-than-linear light cone was observed in an
effective spin chain, thus indicating the presence of long-range
interactions [15]. The bounds also have implications for quan-
tum state preparation, as preparation of a quantum state implies
successful generation of all of its correlations. The Lieb-
Robinson bound on bipartite connected correlations therefore
imposes a lower limit for the time one needs to prepare bipartite
quantum states when only bounded, short-range interactions
are available. This statement can be directly generalized for
multipartite quantum states. Lower limits for preparation time
can be obtained by applying Lieb-Robinson bounds on every
connected correlator between all pairs of sites in a system.
However, such two-point connected correlators do not fully
characterize multipartite systems, the collective properties of
which are better captured by multipartite connected corre-
lators. For example, in pure states, multipartite correlations
reveal the presence of genuine multipartite entanglement [16].
Therefore, it is natural to ask whether one may achieve
better understanding of multipartite systems by examining
Lieb-Robinson-like bounds on multipartite correlators. Such
a study is timely, given the recent successful measurement of
multipartite connected correlators in atomic superfluids [17].

In this paper, we generalize Lieb-Robinson bounds on
bipartite connected correlators to multipartite connected corre-
lators. We then show that there exist systems where the bounds
are saturated. We argue that the bounds on multipartite corre-
lations provide practical advantages over bipartite bounds. In
addition, our Lieb-Robinson bounds on multipartite connected
correlators imply that exponentially large correlations can be
created in fixed time, independent of a system’s size. We
provide explicit examples of systems with this feature.

II. CONNECTED CORRELATIONS

Let us first define bipartite connected correlators. Consider a
set of n sites � and two distinct, nonoverlapping subsetsX ⊂ �

and Y ⊂ �. Denote by S(X ) the set of observables for which
support lies entirely inX . The bipartite disconnected correlator
between observables AX ∈ S(X ) and AY ∈ S(Y) is simply the
expectation value of their joint measurement outcomes at equal
time, i.e., 〈AXAY〉. Often in experiments only single sites are
directly accessible. Observables are then supported by single
sites, i.e., |X | = |Y| = 1. In the following discussions we refer
to such correlators as two-point disconnected correlators.

We note that disconnected correlators contain both quantum
and classical correlations. For example in two-qubit systems,
the disconnected correlator 〈Z1Z2〉 (where Z is the Pauli
matrix) achieves maximal value in both the fully classical
state |00〉 and the maximally entangled state 1√

2
(|00〉 + |11〉)

[18]. Their difference lies in the local expectation values 〈Z1〉,
〈Z2〉, which are maximal for the product state and vanish for
the maximally entangled state. These local expectation values,
therefore, can be said to carry classical information of the
systems (in pure states). The bipartite connected correlator
is constructed by subtracting this “classicalness” from the
disconnected correlator:

u2 (AX ,AY ) ≡ 〈AXAY〉 − 〈AX 〉 〈AY〉 . (1)

In general for mixed systems, if the joint state of X ∪ Y is a
product state, i.e., ρX∪Y = ρX ⊗ ρY , its disconnected corre-
lators 〈AXAY〉 are factorizable into 〈AX 〉 〈AY〉 and therefore
all bipartite connected correlators vanish. The opposite is also
true [16]:
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Lemma 1. A density matrix ρ is a product state, i.e., there
exist complementary subsets X ,X̃ such that ρ = ρX ⊗ ρX̃ , if
and only if

u2(AX ,AX̃ ) = 0, (2)

for all observables AX ∈ S(X ) and AX̃ ∈ S(X̃ ).
In particular, a nonzero bipartite connected correlator

implies bipartite entanglement in pure states. Lemma 1 is a
consequence of Ref. [16]. We also present a simple proof in
Appendix A.

A natural generalization of the bipartite connected corre-
lator to multipartite systems is the Ursell function [19,20].
The n-partite connected correlator between n observables
A1, . . . ,An, which are supported by n distinct subsets of sites
X1, . . . ,Xn, respectively, is defined as

un (A1, . . . ,An) =
∑
P

g (|P |)
∏
p∈P

〈∏
j∈p

Aj

〉
, (3)

where g(x) = (−1)x−1(x − 1)! and the sum is taken over all
partitions P of the set {1,2, . . . ,n}. The n-partite connected
correlators can be equivalently defined via either recursive
relations or generating functions (see Appendix B for details).

Multipartite connected correlators also arise naturally in
many other contexts. In quantum field theory, connected
Green’s functions are multipartite connected correlators of
field operators [21]. Mean-field theory is an approximation in
which it is assumed that all connected correlators vanish [22];
in fact, mean-field theory fails when there exist significant
connected correlations, and one must then seek higher-
order approximations. The cumulant expansion technique is
similar to mean-field theory, but only multipartite connected
correlators of high enough order are ignored. Therefore,
understanding when connected correlations are negligible is
important for validating mean-field theory and the cumulant
expansion.

The relation mentioned above between connected corre-
lators and entanglement holds for n-partite connected cor-
relators as well. It also follows from Ref. [16] that n-partite
connected correlators vanish in product states. In particular, for
pure states, a nonzero n-partite connected correlator implies
genuine n-partite entanglement [23,24]:

Lemma 2. If an n-partite system is in a product state, i.e.,
there exist complementary subsystems X ,X̄ ⊂ Sn such that

ρ = ρX ⊗ ρX̄ , (4)

then all k-body connected correlators (2 � k � n) between
some observables A1, . . . ,Ak1 , for which support lies entirely
on X , and observables B1, . . . ,Bk2 , for which support lies
entirely on X̄ (k1,k2 � 1,k1 + k2 = k), vanish:

uk(A1, . . . ,Ak1 ,B1, . . . ,Bk2 ) = 0. (5)

Corollary 1. If an n-partite pure state |ψ〉 has a nonzero
n-partite connected correlator, then it is genuinely n-partite
entangled; i.e., there exist no subsystems X and X̃ such that
|ψ〉 = |ψX 〉 ⊗ |ψX̄ 〉.

A direct proof of Lemma 2 is presented in Appendix C.
The combination of Lemma 1 and Lemma 2 tells us that if the
bipartite connected correlators are all zero between two regions
then all higher-order connected correlators are guaranteed

to be zero except for the scenario where all observables
are supported on one region, or there exists an observable
supported on both regions.

Multipartite connected correlations also provide a practical
advantage over bipartite correlations, even though the latter are
sufficient to characterize a quantum system. Consider a three-
body system, for example. The collection of local expectation
values and connected correlators,

U = {〈A1〉 , 〈A2〉 , 〈A3〉 ,u2(A1,A2),u2(A1,A3),

u2(A2,A3),u3(A1,A2,A3)}, (6)

where each Aj runs over a complete single site basis (e.g., the
Pauli matrices X,Y,Z), defines a unique tripartite quantum
state. Another equivalent collection Ũ can be constructed
from U by replacing u3(A1,A2,A3) with a bipartite con-
nected correlator between one subsystem and the rest, e.g.,
u2(A1,A2A3). Although the two collections U and Ũ are
equivalent, u3(A1,A2,A3) and u2(A1,A2A3) carry different
information about the system. The three-point connected
correlators u3(A1,A2,A3) characterize global properties while
u2(A1,A2A3) only tell us about local properties across the
cut between subsystem 1 and the rest. If global properties,
such as genuine three-body entanglement, are of concern,
then tripartite connected correlators are superior. To have
a chance at detecting genuine tripartite entanglement using
only bipartite connected correlators, one must consider all
possible bipartitions of the system. There are only three such
partitions for a tripartite system, namely, 1|23, 2|13, and
3|12. But for n-partite systems, the number of bipartitions
scales exponentially with n. Computing all of them would be
impractical. Even then there is no guarantee they would detect
genuine multipartite entanglement. Consider, for example, the
following pure state of three qubits:

|ψ〉 =
√

5

24
|000〉 +

√
1

8
|001〉 +

√
1

12
|010〉 +

√
1

12
|011〉

+
√

1

4
|100〉 +

√
1

8
|101〉 +

√
1

12
|110〉 +

√
1

24
|111〉 .

(7)

Its three-point connected correlator u3(Z1,Z2,Z3) = 1
18 im-

plies genuine tripartite entanglement in |ψ〉. Meanwhile,
nonzero bipartite connected correlators across the cuts 2|13
and 3|12, u2(Z2,Z1Z3) and u2(Z3,Z1Z2), only tell us that there
is entanglement between qubits 2 and 3. Because the bipartite
connected correlator across 1|23, u2(Z1,Z2Z3), is zero, it is
inconclusive whether the first qubit is entangled with the others
without considering higher-order correlators.

This example demonstrates why multipartite connected
correlators are better candidates than bipartite counterparts
in multipartite entanglement detection schemes. It is therefore
important to understand how these multipartite correlations
evolve in physical systems.

III. MULTIPARTITE LIEB-ROBINSON BOUNDS

Our main result is Lieb-Robinson-like bounds on n-partite
connected correlators in systems evolving from fully product
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FIG. 1. A typical three-body system. Each dot represents one site.
There are three relevant length scales r12, r23, and r31. Which length
scale will define the three-body Lieb-Robinson bound?

states under short-range interactions, e.g.,

H =
∑
〈i,j〉

JijViVj , (8)

where Vi is the spin operator of the ith site, |Jij | � 1 is the
interaction strength between the ith and the j th sites, and
the sum is over all neighboring i,j . But before we present the
bounds, let us discuss general features we expect from such
bounds. These bounds are of the form

un � Cn exp(vLRt − r), (9)

where Cn is a constant, r is a relevant length scale, and
vLR is the same Lieb-Robinson velocity as in the bipartite
bounds. Let us now examine the scaling of Cn with n. If all
observables have unit norm, bipartite connected correlators are
upper bounded by 1 regardless of a system’s size. However,
multipartite connected correlators can increase in value with
the number of subsystems. For example, in the n-qubit
Greenberger-Horne-Zeilinger (GHZ) state,

|GHZ〉 = |0〉⊗n + |1〉⊗n

√
2

, (10)

the n-point connected correlator un(Z1, . . . ,Zn) = O(nn) (de-
tails in Appendix E). Therefore, we expect Cn to grow with
n as well: Cn = O(nn). Another constant we would like to
understand is the critical distance r . In the Lieb-Robinson
bound on a bipartite connected correlator, the critical distance
is simply the distance between the two involved parties.
However, in a multipartite system there are many relevant
length scales which could possibly serve as the critical
distance. As an example, let us consider a three-qubit system
(Fig. 1). Without loss of generality we assume r12 < r23 < r31,
where rij denotes the distance between the ith and j th qubits.
We argue that a bound of the form (9) with r = r12 is valid but
trivial. Intuitively an observable initially localized at the first
qubit will need time to spread a distance r12 before “seeing”
another qubit. Is there a stronger bound, i.e., inequality (9)
with a larger value for r? The largest distance r31 would
make the most sense, since at t = r31/v, an observable initially
localized at one qubit has enough time to spread to all others.
We show below that the critical distance for the tightest bound
is neither the smallest (r12) nor the largest distance (r31), but
actually the intermediate length scale r23. This surprising result
leads to unexpected consequences, including the creation of
exponentially large connected correlations in unit time.

Theorem 1. Given n nonoverlapping subsystems
{X1, . . . ,Xn} = S initialized to a fully product state

∣∣ψX1

〉⊗
· · · ⊗ ∣∣ψXn

〉
and evolved under short-range interactions, the n-

partite connected correlator between observables Ai ∈ S(Xi)

(i = 1, . . . ,n) is bounded,

|un (A1, . . . ,An)| � Cn exp(vLRt − R), (11)

where vLR is the same velocity as in the bipartite Lieb-
Robinson bounds, Cn = nn

4 C2 with C2 being the constant in
bipartite Lieb-Robinson bounds [25], and

R = max
S1⊂S

d(S1,S̄1) (12)

is the largest distance between any subset S1 ⊂ S and its
complementary subset S̄1. Here the distance d between two
sets of sites is the shortest distance between a site in one set
and a site in the other set.

Proof. We explain our proof in the simplest case of n = 3.
We use the following identity (given in Appendix B) to write
disconnected correlators in terms of connected correlators:

〈A1A2A3〉 = u3(A1,A2,A3) + u2(A2,A3) 〈A1〉
+u2(A1,A3) 〈A2〉 + u2(A1,A2) 〈A3〉
+ 〈A1〉 〈A2〉 〈A3〉 . (13)

Notice that the last two terms on the right-hand side sum up
to 〈A1A2〉 〈A3〉. If we move this term to the left-hand side, we
obtain an expression of u3 in terms of only bipartite connected
correlators (and local expectation values),

u3(A1,A2,A3) = u2(A1A2,A3) − u2(A1,A3) 〈A2〉
−u2(A2,A3) 〈A3〉 , (14)

where the local expectation values 〈A2〉, 〈A3〉 are between −1
and 1. Therefore, we may bound the three-body connected
correlator using the bipartite Lieb-Robinson bound as follows:

|u3(A1,A2,A3)|
� |u2(A1A2,A3)| + |u2(A1,A3)| + |u2(A2,A3)|
� C2e

vLRt−r12|3 + C2e
vLRt−r13 + C2e

vLRt−r23

� 3C2e
vLRt−r12|3 , (15)

where r12|3 = min {r12,r13} is the distance from the third site
to the other two and C2 comes from bipartite Lieb-Robinson
bounds [15]. One may notice that at the beginning the three
sites play equal roles, but somehow this symmetry is broken
in Eq. (15). The reason is the choice to team up 〈A1〉 〈A2〉 〈A3〉
and u2(A1,A2) 〈A3〉 after Eq. (13). Instead, we may replace the
latter with either u2(A2,A3) 〈A1〉 or u2(A1,A3) 〈A2〉 to obtain
two different bounds in the form of Eq. (15), with either r23|1
or r13|2 in place of r12|3. The tightest bound corresponds to the
smallest distance among r23|1,r13|2,r12|3, and hence the theorem
follows. Proof for general n follows the exact same line and is
presented in full in Appendix D. �

Since the proof is inductive on the number of sites, n,
the multipartite Lieb-Robinson bounds are in general weaker
than bipartite Lieb-Robinson bounds. Violation of our bound
for a multipartite connected correlator implies violation of
at least one bipartite bound. Nevertheless, the multipartite
Lieb-Robinson bounds in Theorem 1 can be saturated. For
example, consider a geometry of n sites where they are divided
into two nonempty cliques, each of spatial size a. The two
cliques are separated by a large distance R � a (Fig. 2).
Lieb-Robinson bounds of n-partite connected correlators for
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a a

R

FIG. 2. A geometry where n sites (blue dots) are divided into two
cliques such that the clique size a is much smaller than the distance
R between cliques.

this geometry are saturated by preparing the GHZ state of n

qubits, which can be done in time t ≈ R/vLR.
Whether our n-partite Lieb-Robinson bounds are tight for

all geometries is still an open question. The geometry of
Fig. 2 resembles a bipartite system, where each clique plays
the role of one party. There are geometries which are very
different from bipartite systems and, as a consequence, they
offer some unique and interesting implications. For example,
as mentioned before, the critical distance in the multipartite
Lieb-Robinson bound is neither the largest nor the smallest
distance. In the asymptotic limit of large n, these quantities
can be very different. We now examine such examples.

IV. FAST GENERATION OF MULTIPARTITE
CORRELATION

In a bipartite system, the time needed to create bipartite
correlators of order O(1) increases proportionally to the
distance between the two subsystems. It is natural to expect
the time needed to create n-point correlators of order O(1)
in an n-partite system to increase with the spatial size of
the system. However, Theorem 1 suggests that it may not
necessarily be the case. For example, consider an equally
spaced one-dimensional chain of n qubits (see Fig. 3). If
the distance between two consecutive qubits is fixed, the
spatial length of the chain increases as O(n). Therefore,
two-point connected correlators between the end qubits can
only be created after O(n) time. Meanwhile, Theorem 1
suggests that n-point connected correlators of order O(1)
between all n qubits might be created in O(1) time using only
nearest-neighbor interactions, enabling almost instant n-partite
genuine entanglement. As we show below, systems with such
a feature do exist.

One example is the one-dimensional cluster state. Cluster
states (also called graph states) are multipartite entangled states
[26] useful for one-way quantum computation [27,28]. They
have a simple visual representation using associated graphs.
For a graph G = (V,E), the corresponding cluster state can
be constructed as follows: (i) associate each vertex in V with

FIG. 3. n-qubit cluster states represented by one-dimensional
graphs of n vertices. (a) Only consecutive vertices are connected by
edges of length 1. (b) Some edges are longer than 1 but interactions
are still local.

FIG. 4. Time evolution of the n-point connected correlator
u2(Z1,Z2, . . . ,Zn) = [

sin2(2t)
]n−1

of the state in Fig. 3(a) for
different n. Here we plot the time-dependent correlator for a few
values of n. In the limit of large n the correlator remains zero for
most of the time before briefly jumping to 1 at t = π

4 .

one qubit initialized in state |+〉 = |0〉+|1〉√
2

and (ii) apply a
controlled-Z gate to every pair of qubits connected by an
edge in E. A controlled-Z gate on two qubits i and j can be
implemented by evolving the system for a time π

4 under the
Hamiltonian

H
(i,j )
cZ = I + Zi + Zj − ZiZj , (16)

where Z is the diagonal Pauli matrix. Some cluster states,
e.g., Fig. 3, only require application of finite-range controlled-
Zs. Meanwhile, the generating Hamiltonians (16) com-
mute with each other and therefore they can be applied
simultaneously. Therefore, such cluster states as well as
their correlations can be created in constant time O(1). In
particular, within an n-independent time π

4 we can create
|un(Y1,X2,X3 . . . ,Xn−1,Yn)| = 1 in a cluster state with only
nearest-neighbor interactions [Fig. 3(a)]. This example shows
that n-point connected correlators of order O(1) can be created
in unit time O(1), independent of a system’s size. Yet, we
can do better; i.e., we can create exponentially large n-point
connected correlators in unit time. For example, in the cluster
state of Fig. 3(b), we allow each site to interact within a larger
neighborhood. It still takes 3π

4 = O(1) unit time to prepare the
state, while direct calculation shows that one of its correlators
grows exponentially as 2

n−1
3 (Appendix E).

In the above examples we have discussed how much time it
takes to grow connected correlations from fully uncorrelated
states. A relevant question is whether it can be expedited
by some initial correlations [29]. To answer this question,
we look at the time dependence of connected correlators
in an n-qubit system initialized to |00 · · · 0〉 and evolved
under the Hamiltonian

∑
〈i,j〉 XiXj . If this system has the

geometry of Fig. 3(a), we find the n-point connected correlator
un(Z1, . . . ,Zn) = [

sin2(2t)
]n−1

(Appendix E). We plot this
function for a few values of n in Fig. 4. For large n the correlator
remains negligible for most of the time and rapidly grows to
1 near t = π

4 . In other words, the connected correlator only
needs a very small time δt  1 to grow from almost zero to a
significant value. It gives evidence that creation of multipartite
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states can be expedited by small initial correlations. We remark
that while the exact correlator un(Z1, . . . ,Zn) is negligible at
any time before π

4 , there may exist other sets of observables
for which n-point connected correlators are non-negligible.

V. OUTLOOK

Although the relation between genuine multipartite en-
tanglement and multipartite connected correlations is simple
for pure states, whether one can infer any information about
genuine multipartite entanglement of a mixed state from its
multipartite correlations is still an open question.

In our model, only short-range interactions between two
sites are present. An immediate question is how the Lieb-
Robinson bounds generalize to other models with long-range
interactions or interaction terms which involve more than two
sites.

Current techniques to measure multipartite connected cor-
relators require statistics of all measurement outcomes that
factor into Eq. (3). Connected correlators up to tenth order
have been measured using this approach [17]. However, such
a method is infeasible for connected correlators of very high
order, as the number of disconnected correlators that must
be measured grows exponentially with n. It is therefore an
open question whether there exist experimentally accessible
observables, e.g., magnetization [30], which manifest multi-
partite connected correlators directly.
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APPENDIX A: PROOF OF LEMMA 1

In this section we provide a proof of Lemma 1. One
direction of the lemma is straightforward. If the joint state
is a product, i.e., ρ = ρX ⊗ ρX̃ , then all bipartite disconnected
correlators between AX ∈ S(X ) and AX̃ ∈ S(X̃ ) are factoriz-
able,

〈
AXAX̃

〉 = 〈AX 〉 〈AX̃
〉
. Therefore, all bipartite connected

correlators vanish. To prove the opposite direction, that is,
vanishing of all bipartite connected correlators implies ρ is a
product state, let

{
�X

μ

}
denote a complete normalized basis for

density matrices of X , and likewise for {�X̃
μ }. Any joint state

of X and X̃ may be written as

ρ = 1

N

(
IX∪X̃ +

∑
μ

〈
�X

μ

〉
�X

μ ⊗ IX̃ +
∑

ν

〈
�X̃

ν

〉
IX ⊗ �X̃

ν

+
∑
μ,ν

〈
�X

μ ⊗ �X̃
ν

〉
�X

μ ⊗ �X̃
ν

)
, (A1)

where N = |HX ⊗ HX̃ | is the dimension of the joint Hilbert
space. Since all bipartite connected correlators vanish,〈

�X
μ ⊗ �X̃

ν

〉 = 〈
�X

μ

〉〈
�X̃

ν

〉
(A2)

for all μ,ν. Therefore, ρ is also factorizable,

ρ = 1

N

(
IX +

∑
μ

〈
�X

μ

〉
�X

μ

)
⊗
(
IX̃ +

∑
ν

〈
�X̃

ν

〉
�X̃

ν

)
. (A3)

Thus the lemma follows.

APPENDIX B: EQUIVALENT DEFINITIONS OF
MULTIPARTITE CONNECTED CORRELATOR

In this section we present some definitions of the multi-
partite connected correlation function which are equivalent
to Eq. (3). The multipartite connected correlator can also be
generated by [20]

un(A1, . . . ,An) =
[

∂n

∂λ1 . . . ∂λn

ln
〈
e
∑n

i=1 λiAi
〉]

�λ=0

, (B1)

where the partial derivative is evaluated at �λ = (λ1, . . . ,λn) =
0. This generating form is used in Appendix E to evaluate
multipartite connected correlators of the GHZ state. An
equivalent way to define multipartite connected correlators
is via lower-order correlators,

un (A1, . . . ,An) = 〈A1 . . . An〉 −
∑
P

′ ∏
p∈P

u|p|(Ãp), (B2)

where the sum
∑′

P is taken over all partitions of {X1, . . . ,Xn}
except for the trivial partition P = {X1, . . . ,Xn}, and Ãp =
{Ai : i ∈ p} denotes the set of all observables with indices in
set p. We find this definition useful for the inductive proof of
Theorem 1 and in Appendix E.

APPENDIX C: PROOF OF LEMMA 2

In this section we prove the connection between factoriz-
ability and vanishing connected correlators in Lemma 2. We
prove this lemma inductively using generating functions of
multipartite connected correlators (B1),

ln

˝
exp

⎛
⎝ k1∑

i=1

λiAi +
k2∑

j=1

λ′
jBj

⎞
⎠
˛

= ln

*
exp

(
k1∑

i=1

λiAi

)+
+ ln

˝
exp

⎛
⎝ k2∑

j=1

λ′
jBj

⎞
⎠
˛
. (C1)

The first term on the right-hand side is independent of any λ′
j .

Therefore, partial derivatives with respect to λ′
j s will make

the first term vanish. Similarly, the second term will also
vanish after partial derivatives with respect to λis. Therefore,
multipartite connected correlators, which are nth-order partial
derivatives of the left-hand side with respect to both λis and
λ′

j s, will vanish. The lemma follows.

APPENDIX D: PROOF OF THEOREM 1

In this section we prove Theorem 1 by induction on n. When
n = 2, the inequalities reduce to bipartite Lieb-Robinson
bounds. Assuming that it holds for any 2 � n � k − 1, we
prove that it holds for n = k. We start with the recursive
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definition of connected correlators (Appendix B):

〈A1 · · · Ak〉 =
∑

P∈P(S)

∏
p∈P

u|p|(Ãp), (D1)

where P(S) denotes the set of all partitions of S = 1, . . . ,k,
and Ãp = {Ai : i ∈ p} denotes the set of all observables with
indices in set p. Consider one particular bipartition of S, e.g.,
S = S1 ∪ S2 such that S1 ∩ S2 = ∅. The partitions of S can
then be divided into two types. Partitions of the first type have
elements that lie entirely on either S1 or S2. They therefore
belong to the set P(S1) ⊕ P(S2). The sum over these partitions
in Eq. (D1) can then be factored into a product of two sums
over P(S1) and P(S2),⎡

⎣ ∑
P1∈P(S1)

∏
p1∈P1

u|p1|
(
Ãp1

)⎤⎦
⎡
⎣ ∑

P2∈P(S2)

∏
p2∈P2

u|p2|
(
Ãp2

)⎤⎦

=
〈∏

i∈S1

Ai

〉 〈∏
i∈S2

Ai

〉
, (D2)

where we have used definition (D1) for the sets S1 and S2. The
terms in Eq. (D1) we have not yet summed over are partitions
in which some elements overlap with both S1 and S2, namely,
P(S) \ P(S1) ⊕ P(S2) ≡ P12. We can then rewrite Eq. (D1)
as

〈A1 · · · Ak〉 = uk(A1, . . . ,Ak) +
〈∏

i∈S1

Ai

〉 〈∏
i∈S2

Ai

〉

+
∑

P3∈P12

∏
p3∈P3

u|p3|
(
Ãp3

)
. (D3)

Rearranging Eq. (D3) in terms of bipartite connected correla-
tors, we have

uk(A1, . . . ,Ak) = u2

(∏
i∈S1

Ai,
∏
i∈S2

Ai

)

−
∑

P3∈P12

∏
p3∈P3

u|p3|
({

Ai∈p3

})
. (D4)

Therefore,

|uk(A1, . . . ,Ak)| �
∣∣∣∣∣u2

(∏
i∈S1

Ai,
∏
i∈S2

Ai

)∣∣∣∣∣
+

∑
P3∈P12

∏
p3∈P3

∣∣u|p3|
({

Ai∈p3

})∣∣ . (D5)

The first term is bounded by ∝ exp(vt − d(S1,S2)), where
the distance between subsystems S1 and S2, i.e., d(S1,S2),
is defined as the smallest separation distance between a site
in S1 and a site in S2. To bound the second term, we first
realize that the connected correlators here are between at
most k − 1 points, and therefore our induction hypothesis
applies. For each connected correlator u, there can be two
possibilities. It can involve subsystems supported by both S1

and S2, or supported by either S1 or S2 alone. If we sum
over those of the second type, we again get expectation values
which are bounded by 1. For the connected correlator u that
involves qubits in both S1 and S2, by the induction hypothesis

it is bounded by exp(vt − r), where r is the largest distance
between any bipartitions of the subsystems. By dividing those
subsystems into those in S1 and those in S2, the distance r has
to be at least the one between S1 and S2, i.e., r � d(S1,S2).
Therefore, the second term in Eq. (D5) is also bounded by
exp(vt − d(S1,S2)). In the end, we get

|uk(A1, . . . ,Ak)| � Ckexp [vLRt − d(S1,S2)] (D6)

for some constant Ck to be determined. For each choice of
bipartition {S1,S2}, we get one such inequality. The tightest
bound is obtained from the bipartition with the largest distance
d, i.e.,

|uk(A1, . . . ,Ak)| � Ckexp [vLRt − R] (D7)

with R = maxS1 d(S1,S2). Thus the hypothesis is true for n =
k, and by induction it holds for any n.

We now prove the second part of the theorem, i.e., Cn �
nn C2

4 . Clearly it holds for n = 2. We prove that if the statement
holds up to n = k − 1, it must also hold for n = k. Recall that a
k-point connected correlator is bounded by Eq. (D5). The first
term of Eq. (D5) is bounded by 1. We need to find a bound
for the sum. Note that at the critical time t = R/v, the only
non-negligible contributing terms are those involving S ′

1 ⊂ S1

and S ′
2 ⊂ S2 such that the distance between S ′

1 and S ′
2 is exactly

R (by construction the distance is at least R).
Let S

(0)
1 ⊂ S1 and S

(0)
2 ⊂ S2 be such that the distance

between any s1 ∈ S
(0)
1 and s2 ∈ S

(0)
1 is always R. The point is

that only connected correlators that involve such s1 and s2 will
contribute to the sum. We now count the contribution from such
correlators. If we take k1 subsystems from S

(0)
1 , k2 subsystems

from S
(0)
2 , and k3 subsystems from S

(0)
3 = S \ S

(0)
1 ∪ S

(0)
2 , their

contribution is O
(
(k1 + k2 + k3)k1+k2+k3

)
. Note that, summing

over connected correlators of leftover subsystems, we get their
disconnected correlator, which is bounded by 1. Note also that
by counting this way, some terms will appear more than once,
so we get a loose bound. Denoting by m1,m2,m3 the size of
S

(0)
1 , S

(0)
2 , and S

(0)
3 , we can bound the constant Ck by summing

over all possible choices of k1 + k2 + k3 � k − 1,

Ck � C2

4

m1∑
k1=1

m2∑
k2=1

m3∑
k3=0

(
m1

k1

)(
m2

k2

)(
m3

k3

)

× (k1 + k2 + k3)k1+k2+k3 (D8)

� C2

4

m1∑
k1=1

m2∑
k2=1

m3∑
k3=0

(
m1

k1

)(
m2

k2

)(
m3

k3

)

× (k − 1)k1+k2+k3 (D9)

= C2

4
(km1 − 1)(km2 − 1)km3 <

C2

4
km1+m2+m3 = kk C2

4
.

(D10)

Thus Ck � kk C2
4 holds for n = k, and by induction it holds for

any n.
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APPENDIX E: CALCULATION OF CONNECTED
CORRELATORS

In this section we show how connected correlators are
calculated for the GHZ states, the cluster states, and the product
state evolved under the XX Hamiltonian.

1. The GHZ state

The generating function of un(Z1, . . . ,Zn) evaluated for the
GHZ state of n qubits is

gn ≡ ln

〈
exp

{
n∑

i=1

λiZi

}〉
GHZ

(E1)

= ln

[
1

2
exp

(
n∑

i=1

λi

)
+ 1

2
exp

(
−

n∑
i=1

λi

)]
(E2)

= ln

[
cosh

(
n∑

i=1

λi

)]
. (E3)

Let λ ≡ ∑n
i=1 λi . Then

∂gn

∂λi

= ∂gn

∂λ

∂λ

∂λi

= ∂gn

∂λ
(E4)

for all i. Therefore, the multipartite connected correlator above
is given by

un(Z1, . . . ,Zn) = ∂ngn

∂λn

∣∣∣∣
λ=0

=
[

∂n

∂λn
ln(cosh λ)

]
λ=0

. (E5)

Note that this connected correlator has the same parity as n.
Therefore, for odd n, it vanishes. For even n, the correlator is
given by

un = 2n(2n − 1)Bn

n
, (E6)

where Bn is the nth Bernoulli number. In the large-n limit, the
Bernoulli number is approximated by

|Bn| ≈ 4

√
πn

2

(
n

2πe

)n

. (E7)

Therefore, the n-point connected correlator of the GHZ state
grows as un ∝ n−1/2( 2

πe
)nnn = O(nn).

2. The cluster states

For each vertex i in a cluster state’s graph, we can associate
an operator Xi

∏
j∈N (i) Zj , where N (i) denotes the set of

vertices adjacent to i. These operators generate a stabilizer
group of which the cluster state is a simultaneous eigenstate.
Operators outside of this group have no disconnected corre-
lations. Using the stabilizer group, we can count the number
of contributing disconnected correlators in the definition of
connected correlators (3). For example, for the observables
Y1,X2,X3, . . . ,Xn−1,Yn in the cluster state in Fig. 3(a), all
low-order disconnected correlators vanish. Therefore,

un(Y1,X2,X3, . . . ,Xn−1,Yn) = 〈Y1X2X3 . . . Xn−1Yn〉 = 1.

(E8)

Similarly, by direct counting we find the n-point connected cor-
relator of the Fig. 3(b) cluster state un(

{
Tj : j = 1, . . . ,n

}
) =

2
n−1

3 , where Tj = Xj for all 1 < j < n such that j ≡ 1 (mod
3), and Tj = Yj otherwise.

3. The product state evolved under the X X Hamiltonian

The time evolution shown in Fig. 4 can be verified as
follows. The time-dependent state of n qubits evolving from
|00 · · · 0〉 under H = ∑

〈i,j〉 XiXj can be written in the form
of a matrix product state,

|ψ(t)〉 =
∑

i1,...,in∈{0,1}
ci1i2···in(t) |i1i2 · · · in〉 , (E9)

the coefficients of which are given by

ci1i2···in(t) = Li1Ai2 (t)Ai3 (t) · · ·Ain−1 (t)Rin(t), (E10)

where

L0 = (1 0), (E11)

L1 = (0 1), (E12)

A0(t) =
(

cos t 0
0 −i sin t

)
, (E13)

A1(t) =
(

0 cos t

−i sin t 0

)
, (E14)

R0(t) =
(

cos t

0

)
, (E15)

R1(t) =
(

0
−i sin t

)
. (E16)

Note that this matrix product state is in left canonical form (i.e.,∑
i L

†
i Li = ∑

i A
†
i Ai = I ) and it is normalized (

∑
i R

†
i Ri =

1). Our goal is to first determine all disconnected correlators
of the form 〈O1O2 · · ·On〉, where Oi is either I or Z. Because
all such operators are diagonal on each site, we can write
the expectation value itself as a matrix product. In the end,
we find that the disconnected correlator picks up a factor of
cos(2t) for each “boundary” between a Z operator and an I

operator. For instance, on a five-qubit system, the expectation
value 〈Z2Z3Z5〉 = 〈IZZIZ〉 = [cos(2t)]3, as there are three
relevant boundaries: between qubits 1 and 2, 3 and 4, and 4
and 5.

From this, it is already obvious that our connected
correlator un (Z1, . . . ,Zn) will be some polynomial of the
variable cos(2t). Given some partition P , we would like
to determine the power to which cos(2t) is raised. Let us,
for the sake of example, denote our partition by letters of
the alphabet. On five qubits, ABBCA corresponds to the
product of disconnected correlators 〈Z1Z5〉 〈Z2Z3〉 〈Z4〉 =
〈ZIIIZ〉 〈IZZII 〉 〈IIIZI 〉 = [cos(2t)]6. In general, the
product of disconnected correlators will be [cos(2t)]2v , where
v is the number of bonds that border two distinct subsets of the
partition. (In the case of the example ABBCA, this includes
each bond except the one between sites 2 and 3, which are
both in the same subset, B.)

Now we would like to count the number of partitions which
contribute to the term with power 2v. Because the coefficient
in the connected correlator depends on the number of subsets
in the partition |P|, we must consider separately partitions
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with different numbers of subsets. Given n qubits, there are n − 1 bonds between qubits. Thus there are
(
n − 1

v

)
different ways to

choose v bonds which connect different subsets of the partition. Given these v bonds, there are
{

v

a

}
different ways to construct

partitions with (a + 1) total subsets. (Here,
{

v

a

}
denotes a Stirling number of the second kind.) Thus, the number of partitions on

n qubits with v bonds that border two distinct subsets and with (a + 1) total subsets is
(
n − 1

v

){
v

a

}
. Note that

∑n−1
v=0

(
n − 1

v

)∑v
a=0

{
v

a

}
is equal to the nth Bell number Bn, so we have indeed accounted for all possible partitions.

As mentioned above, given a partition, two factors of cos(2t) are picked up for each bond that borders two distinct subsets. In
general, we can compute the expectation value of the connected correlator from Eq. (3) as follows:

un (Z1, . . . ,Zn) =
∑
P

(−)|P|−1(|P| − 1)!
∏
P∈P

〈∏
p∈P

Zp

〉
=

n−1∑
v=0

v∑
a=0

(−1)a a!

(
n − 1

v

){
v

a

}
[cos(2t)]2v

=
n−1∑
v=0

(
n − 1

v

)
[cos(2t)]2v

v∑
a=0

(−1)a a!

{
v

a

}
=

n−1∑
v=0

(
n − 1

v

)
[cos(2t)]2v (−)v

=
n−1∑
v=0

(
n − 1

v

)
[− cos2(2t)]v = [1 − cos2(2t)]n−1 = [sin2(2t)]n−1, (E17)

where we have used the identity
∑v

a=0(−1)a a!
{

v

a

} = (−1)v [31].
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