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We provide a quantum information description of a proposed five-blade neutron interferometer

geometry and show that it is robust against low-frequency mechanical vibrations and dephasing

due to the dynamical phase. The extent to which the dynamical phase affects the contrast in a neu-

tron interferometer is experimentally shown. In our model, we consider the coherent evolution of a

neutron wavepacket in an interferometer crystal blade and simulate the effect of mechanical vibra-

tions and momentum spread of the neutron through the interferometer. The standard three-blade

neutron interferometer is shown to be immune to dynamical phase noise but prone to noise from

mechanical vibrations, and the decoherence free subspace four-blade neutron interferometer is

shown to be immune to mechanical vibration noise but prone to noise from the dynamical phase.

Here, we propose a five-blade neutron interferometer and show that it is immune to both

low-frequency mechanical vibration noise and dynamical phase noise. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4996866]

I. INTRODUCTION

Matter wave interferometry is a powerful and extremely

sensitive tool to probe effects ranging from material proper-

ties to foundational physics.1–5 For instance, neutron inter-

ferometry has been used to probe gravity, test quantum

mechanics, perform phase imaging, and measure isotope-

dependent nuclear scattering cross sections which are critical

for interpreting material science scattering experiments.6–10

Although high sensitivity and accuracy are achieved due to

matter waves’ small deBroglie wavelength and statistical

inference, these massive particles couple to external degrees

of freedom (DOF), leading to a loss of coherence. The loss

of coherence as a result of non-refocused phases has been a

subject of study in matter wave interferometry.1,11–13 In this

work, we specifically discuss concepts applied to a neutron

interferometer (NI). However, they could easily applied to

other matter wave interferometers. Isolation and control

techniques have been developed to deal with some classes of

noise,14–17 but low-frequency vibrational noise still persists

in these setups. The quest for noise-immune neutron interfer-

ometry motivated the design of the four-blade neutron inter-

ferometer with a decoherence free subspace (DFS),18,19

which is robust to noise originating from mechanical

vibration. Although the four-blade NI is robust against low-

frequency vibrations, we will show that it is prone to dynam-

ical phase noise.

During dynamical diffraction (DD) from a perfect crys-

tal, a phase shift is introduced due to diffraction in the vicin-

ity of the Bragg condition.20–23 The so-called dynamical

phase has tremendous angular sensitivity, which a recent

experiment has measured to be about 30p rads per arcsec

deviation from the Bragg angle in a silicon [220] crystal.24

This sensitivity may offer a possibility of extracting funda-

mental quantities such as the neutron-electron scattering

length, short-range gravitational interactions, and the Debye-

Waller factor.25–27

The presence of the dynamical phase can lead to a

reduction in the interferometry fringe visibility via a loss of

coherence from a phase variation across the neutron

beam.1,28–30 As a result, it is desirable to remove the dynami-

cal phase gradients. Such phases are naturally refocused in a

three-blade NI but not the four-blade NI. Here, we propose a

five-blade NI geometry that is robust to dynamical phase

noise and also refocuses low frequency mechanical vibra-

tional noise like the four-blade DFS NI.

This article is structured as follows: Sec. II gives a brief

overview of the NI geometries considered including the pro-

posed five-blade NI. In Sec. III, we give an analysis of the

effect of the dynamical phase on the three-blade, four-blade,

and five-blade neutron interferometers. The effect of external

vibrations on each of the interferometer geometries is pre-

sented in Sec. IV, including a description of the noise in

terms of the coherence function1,31–33 to demonstrate the

robustness of the five blade geometry to noise.

II. PERFECT CRYSTAL NEUTRON
INTERFEROMETERS

A common NI geometry is the symmetric Laue-type

which is machined from a perfect single crystal ingot of sili-

con and composed of several identical separate blades. A

neutron incident on a blade in the NI is Bragg diffracted intoa)Electronic mail: jnsofini@uwaterloo.ca
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two coherent beam paths. In this paper, we adopt the quan-

tum operator formalism of Bragg diffraction from a perfect

crystal.34 The path degree of freedom (DOF) is a two-level

system that is defined by the sign of the momentum in the

y-direction (see Fig. 1 for the coordinate system); the path

with þky is labeled as path I and the path with –ky is labeled

as path II. This two level system is isomorphic to a Bloch

sphere.35 The sign of the momentum is also used to label the

detectors at the output such that IO is identified withþky and

IH is identified with –ky. The labels are conventional.

The three-blade NI considered [see Fig. 1(a)] consists of

three blades separated by the same distance (2L) in the Laue

geometry. The second blade redirects the two paths to the

third blade where they recombine and interfere. Each of the

blades of the NI acts as a beam splitter. However, due to post

selection on only those neutrons that reach the detector, the

second blade actually implements a perfect p pulse. This

enables a very simple and robust picture of the physics.

In the four-blade NI [Fig. 1(b)], the situation is similar to

the three-blade NI with the difference that the two paths are

redirected twice (with no mixing of states in the center of the

interferometer) before reaching the last blade. This four-blade

NI possess a DFS for low-frequency mechanical vibrational

noise which significantly affects the three-blade NI.18,19

The proposed five-blade NI [Fig. 1(c)] can be thought of as

two coupled Mach-Zehnder NIs. It is similar to the four-blade

NI in that the neutrons are redirected twice but differs since the

neutrons interfere on the additional blade in the middle.

One figure of merit quantifying the quality of the inter-

ferometry setup is the fringe visibility or contrast. By intro-

ducing a phase difference between the two paths, the

intensity at the exit oscillates between the intensities at the

O-beam (IO) and H-beam (IH). From the intensity oscilla-

tions, the contrast is defined by

V ¼ Imax � Imin

Imax þ Imin

; (1)

where Imax and Imin are the maximum and minimum intensi-

ties. Contrast is related to the coherence in the path DOF in

an NI. Coherence refers to the ability of the two paths to

interfere. It has been extensively studied in matter waves and

photon optics.32,33,36

III. EFFECT OF THE DYNAMICAL PHASE

The beam splitting in each of the blades of the NI is gov-

erned by the theory of dynamical diffraction.37 The theory of

DD describes the interaction of matter waves and x-rays

with a perfect crystal lattice when incident at the Bragg con-

dition.38–43 Perfect crystals coherently split a neutron beam

into two components with properties defined by the periodic-

ity of the crystal lattice and the energy of the neutron.23,37

The mathematical formulation of the theory of DD is quite

cumbersome, and we have shown recently that we may use a

simplified quantum information approach.34 Denoting the

states corresponding to paths I and II as jIi and jIIi and the

operator of the blade as UB, the states after the first blade of

an NI is

UBjIi ¼ tjIi þ rjIIi; UBjIIi ¼ �rjIi þ �tjIIi; (2)

where the transmission and reflection coefficients satisfy

jtj2 þ jrj2 ¼ 1, and �r ¼ �r�; �t ¼ t�.
Due to symmetry, the Bragg diffraction is required to

take the same form if the crystal is rotated by 180�. The crys-

tal blade operator can be expressed as a composite sequence

of rotations

UB ¼ Rzð/tÞRxyð/r; aÞRzð/tÞ; (3)

with the standard definitions of Bloch sphere rotations

Rzð/tÞ ¼ exp ði/trz=2Þ; (4)

Rxyð/r; aÞ ¼ exp ðiaðcos ð/rÞrx þ sin ð/rÞryÞ=2Þ; (5)

where rx¼ jIihIIjþ jIIihIj; ry¼�ijIihIIjþ ijIIihIj; rz¼ jIihIj
�jIIihIIj are the Pauli operators, /t¼ arg½t�, and /r ¼ arg½r�.
By definition, the dynamical phase is /t¼ arg½t�, while the

phase between the two paths in an interferometer is

b¼/t�/r. Without the loss of generality, we will limit the

Rxy rotation to be along rx, thereby effectively setting /r¼0.

This is justified because /r is a small linear contribution.

This makes us to hypothesize a composite crystal blade

operator:34

UB ¼ RzðbÞRxðaÞRzðbÞ: (6)

FIG. 1. Sketch of different NI geometries with phase flags producing phases

/ and v. The two detectors are the O-detector (IO) and the H-detector (IH).

(a) A symmetric three-blade NI with phase flag / and inter-blade distance

2L. (b) Four-blade (DFS) NI with inter-blade distances: L, 2L, L. (c) Five-

blade (double loop Mach-Zehnder) NI with inter-blade distances L. The

noise along the y-axis y(t), and around the z-axis hz(t), is modeled as sinusoi-

dal. Iout/Iinc is the ratio of the neutrons at the output Iout ¼ IO þ IH to those at

incidence Iinc when the beam splitters are assumed to be 50:50. jcMVj and

jcDDj are the absolute values of the coherence function with z-noise

(x¼ 4.4 Hz, see Fig. 8) and dynamical phase noise, each simulated for an

interferometer with a blade thickness 0.9 mm and L¼ 5 cm. These dimen-

sions are similar to those of the neutron interferometer in Ref. 19. In an ideal

case, the absolute value of the coherence function is 1.
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From these relations, one can identify the relation to the

dynamical diffraction variables as

b ¼ arg t½ �; t ¼ cos ða=2Þ; and r ¼ sin ða=2Þ; (7)

with a 2 [0, p]. When a¼p/2, the blade acts as a 50:50

beam splitter.

We will now apply the Bloch sphere rotation formalism

described above to the three NI geometries to analyse the rel-

evance of the dynamical phase in each case.

A. Three-blade Mach-Zehnder neutron interferometer

In the three-blade NI, the first and last blades each act as

a composite rotation UB ¼ RzðbÞRxðaÞRzðbÞ. The middle

blade serves as a mirror to redirect the two paths onto the

third blade and hence is properly represented by UM ¼ RzðbÞ
RxðpÞRzðbÞ ¼ RxðpÞ. With a phase difference / (due to the

phase flag) between path I and path II of the three-blade NI

[Fig. 1(a)], the overall operation sequence is

R3 ¼ UBUMRzð/ÞUB;

¼ RzðbÞRxðaÞRzðbÞRxðpÞRzð/ÞRzðbÞRxðaÞRzðbÞ;
¼ RzðbÞRxðaÞRxðpÞRzð/ÞRxðaÞRzðbÞ; (8)

where the identity RxðpÞ ¼ RzðbÞRxðpÞRzðbÞ was used in the

second line. The first and last Rz(b) rotations can be ignored

since the incoming beam is an eigenstate of rz and the mea-

surement is done along the z-basis. With an initial state jIi,
the intensities of neutrons at the O-detector and H-detector

for a¼ p/2 are

IO3 /ð Þ ¼ 1

2
1þ cos /ð Þ; (9)

IH3 /ð Þ ¼ 1

2
1� cos /ð Þ: (10)

The three-blade NI is therefore immune to dynamical noise

as b is refocused. It is worth noting that the resulting opera-

tion of the three-blade NI is analogous to the Hahn echo

sequence.44

B. Four-blade neutron interferometer

In the four-blade NI, the operator of the first and fourth

blades is UB and that of the second and third blades is UM.

With the initial state jIi and a phase difference / between

paths I and II [see Fig. 1(b)], the overall operator sequence

for the four-blade NI is

R4 ¼ UBRxðpÞRxðpÞRzð/ÞUB

¼ RzðbÞRxðaÞRzð2bÞRzð/ÞRxðaÞRzðbÞ: (11)

The identity I ¼ RxðpÞxRðpÞ was used in the second line. In

the case where a¼ p/2, the intensities at the O-beam and H-

beam are given by

IO4 /ð Þ ¼ 1

2
1� cos /þ 2bð Þ½ �;

IH4 /ð Þ ¼ 1

2
1þ cos /þ 2bð Þ½ �:

The presence of b in the intensity implies that the dynamical

phase is not refocused in the four-blade NI. Upon averaging

over neutrons with different momenta arriving at the detec-

tor, dephasing occurs in a four-blade NI. The dephasing

causes a reduction in the coherence and hence the contrast.

The loss in contrast depends on the noise spectrum of b. The

average neutron intensity at the detectors is

IO4 /ð Þ ¼ 1

2
1�

ð
dbp bð Þcos /þ 2bð Þ

� �
; (12)

IH4 /ð Þ ¼ 1

2
1þ

ð
dbp bð Þcos /þ 2bð Þ

� �
; (13)

where p(b) is the probability density function. The effect of

this dynamical phase was pointed out in early works on neu-

tron interferometry,29,45 but the extent to which it affects the

coherence in a four-blade NI is not well quantified experi-

mentally. The intensity can be re-written as

IO4 /ð Þ ¼ 1

2
1� jcj cos /þ arg c½ �

� �� �
; (14)

IH4 /ð Þ ¼ 1

2
1þ jcj cos /þ arg c½ �

� �� �
; (15)

where

c ¼
ð

db pðbÞei2b (16)

is the coherence function. The presence of a phase distribu-

tion leads to a reduction in coherence and hence the contrast.

This loss of contrast is usually small since the width of the

distribution accepted by the NI crystal (Darwin width) is

very narrow (�10�6 rad), thereby limiting the strength of the

noise.

In an experiment to measure the neutron charge radius,

the dynamical phase was measured as the extent to which the

contrast is affected by the dynamical phase. In the experi-

ment, a perfect Si crystal blade of thickness 2 mm and the

crystallographic orientation [111] was added after the first

blade of a three-blade NI.26,46 When the crystal is aligned to

the Bragg angle of the interferometer and the Bragg reflected

beams are blocked, it replicates the dynamical phase that

manifests itself in a four-blade NI. Using a¼p/2, the nor-

malized output intensity at the O-beam in this case is similar

to Eq. (14) and can be expressed as follows:

IOð/Þ ¼ AO � jBOj cos ð/þ arg BO½ �Þ; (17)

where as shown in23

AO ¼
ð

ddh gðdhÞ; BO ¼
ð

ddh gðdhÞeib; (18)

g dhð Þ ¼ rh=p

r2
h þ dh� dh0ð Þ2

: (19)

The average here is taken over dh¼ h – hB since b¼b(dh) is

a function of the angular deviation, where hB is the Bragg

angle. The measured contrast and phase against dh are shown

054501-3 Nsofini et al. J. Appl. Phys. 122, 054501 (2017)



in Figs. 2(a) and 2(b), respectively. Also shown is the simu-

lated momentum distribution g(dh) accepted by a single

crystal, where the full width at half maximum (FWHM) is

given by the Darwin width of the crystal rh¼ 4.26 lrad. The

addition of an extra blade breaks the blade separation sym-

metry (equal separation between all the blades). The result

of this is that the measured phase depicted in Fig. 2(b) is

composed of the dynamical phase and the phase due to defo-

cussing. By separating these two phases, we extract a purely

dynamical phase given by Fig. 3. This is achieved by using

the FWHM extracted from the experiments and assuming

that that momentum distribution only changes when the ori-

entation of the crystal changes and not due to defocussing. A

similar experiment has been done with the extra crystal blade

oriented in the Bragg geometry.23 By accounting for this

dynamical phase, we can estimate the maximum contrast of

the four-blade NI. If the four-blade NI is made from 1 mm

thick Si blades in the (111) crystallographic orientation (as

per Ref. 19) and illuminated with neutrons of k¼ 2.71 Å, the

estimated maximum contrast is �85%.

C. Five-blade double loop neutron interferometer

The five-blade NI is similar to the four-blade NI but

with an additional middle blade UB. With a phase / in the

first loop and v in the second loop [see Fig. 1(c)], the com-

bined operation of the interferometer is

R5 ¼ UBRxðpÞUBRxðpÞRzð/ÞUB

¼ RzðbÞRxðaÞRzðvÞRxðaÞRzð/ÞRxðaÞRzðbÞ:

With an incident state of jIi onto the NI, the intensity at the

O- and H-beams is

IO5 /; vð Þ ¼ 1

4
2þ cos v� /ð Þ � cos vþ /ð Þ½ �; (20)

IH5 /; vð Þ ¼ 1

4
2� cos v� /ð Þ þ cos vþ /ð Þ½ �: (21)

Notice that there is no dependence on b and so the dynamical

phase is refocused. The refocusing of the dynamical phase

can also be understood in the sense of chirping, as the wave-

vectors that were travelling faster than the mean wavevector

before the second blade (which acts as a mirror) tend to

travel slower than the mean wavevector after the mirror

blade (and vice-versa). This is the same principle of noise

refocusing, which is employed in nuclear magnetic

resonance.44,47,48

We conclude that the three-blade and five-blade NIs are

immune to dynamical phase noise originating from the

momentum spread of the incoming neutrons, while the four-

blade NI is not. Next, we will analyse and compare the

performance of these interferometers against external vibra-

tional noise.

IV. EFFECTS OF MECHANICAL VIBRATION

The effect of mechanical vibrations on matter wave

interferometry has been studied for specific implementa-

tions.49 In neutron interferometry, mechanical vibrations are

commonly reduced by using vibration isolation systems

although the effect of low-frequency vibration still persists.

The four-blade NI has the experimentally demonstrated

advantage over the three-blade NI of being robust against

slow varying external mechanical vibrational noise.19 In this

article, we adopt the vibration model in Ref. 18, which treats

vibrations as sinusoidal oscillations in the form fðtÞ
¼ f0 sin ðxtþ uÞ, where f0 is the amplitude of the noise, x
is the frequency, and u 2 [0, 2p] is a random phase that con-

siders different arrival times of the neutrons at the first blade.

Mechanical vibrations may change the momentum of the

neutron, which leads to a phase difference around any closed

interferometry loop

DU ¼ 1

�h

ð
path I

~pI � d~s �
1

�h

ð
path II

~pII � d~s ¼
1

�h

þ
D~p � d~s;

FIG. 2. Measured effect of the dynamical phase on contrast.46 A 2 mm thick

(111) Si crystal is added after the first blade of a three-blade neutron interfer-

ometer and rotated around the Bragg angle. (a) The contrast and momentum

distribution g(dh) plotted against the Si blade rotation dh. (b) The dynamical

phase and the simulated momentum distribution g(dh) plotted against the Si

blade rotation dh. The full width at half maximum of the momentum distri-

bution is equal to the Darwin width of the crystal rD¼ 4.26 lrad.

FIG. 3. The dynamical phase separated from the total phase shown in Fig.

2(b).
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where ~pI and ~pII are associated momentum changes for path

I and path II, respectively, and D~p ¼ ~pI �~pII. The main con-

tributions to the decrease in coherence come from the trans-

lational vibration noise along the y-axis (y-noise) and

rotation vibration around the z-axis (hz referred to simply as

z-noise). The y-noise comes from the interferometer vibra-

tions along the reciprocal lattice vector and the z-noise from

rotations around the axis perpendicular to the plane of inter-

ference. Using the form of the noise stated above, the y-

noise is modelled as yðtÞ ¼ y0 sin ðxtþ uÞ and the z-noise

as hðtÞ ¼ h0 sin ðxtþ uÞ. The frequency of the noise along

the y-axis and the z-axis is not necessarily the same.

A. Y-noise

Let the velocity of the incidence neutron be decomposed

into two components, perpendicular and parallel to the recip-

rocal lattice vector v ¼ v?êx þ vkêy. If the interaction of the

neutron with the blade is modelled as a bouncing ball from a

hard surface, the velocity along the x-axis is not affected

while that along the y-axis is vy ¼ �vk þ 2uyðtÞ, where

uyðtÞ ¼ dyðtÞ=dt is the time derivative. Assuming the neutron

enters the interferometer at t¼ 0, the phase shift between

path I and path II caused by y-noise vibrations in a three

blade NI is

DU uð Þ ¼
32m

�h
s2 vk � uy 0ð Þ
� �

_uy 0ð Þ; (22)

where m is the mass of the neutron, s¼L/v?, and L is the

distance between the first and second blades of the interfer-

ometer. For low-frequency noise where xs� 1,

DU uð Þ ¼
32mvyy0s2

�h
x2 sin u; (23)

since vy	 uy(0). The probability of detecting a single neu-

tron at the O- and H-detectors in the three-blade NI is

IO3 /ð Þ ¼ 1

2
1þ cos /þ DU uð Þ

� �� �
; (24)

IH3 /ð Þ ¼ 1

2
1� cos /þ DU uð Þ

� �� �
: (25)

Each neutron arrives at the first blade at different instances

and picks a different initial phase u. Integrating over a uni-

form probability distribution p(u)¼ 1/2p, the average inten-

sity at the O-beam is

IO3 /ð Þ ¼ 1

2
1þ jcj cos /þ arg c½ �

� �� �
; (26)

where c is the coherence function which is defined as for sta-

tistically stable noise33,50

c ¼ 1

2p

ð2p

0

exp iDU uð Þ
� �

du: (27)

The absolute value of the coherence function, jcj, for the

three-blade NI is equal to the contrast V defined in Eq. (1).

We consider an interferometer with L¼ 5 cm, a wavelength

of 4.4 Å, and a y-noise with an amplitude of y0¼ 0.1 lm.

Using these values, the coherence function for the y-noise in

the three-blade NI reduces to

c ¼ J0 Xx2ð Þ; with X ¼ 32mvyy0s2

�h
; (28)

where J0 is the Bessel function of the first kind. Shown in

Fig. 4 is V ¼ jcj vs the noise strength x, where it can be

compared to the four-blade and five-blade NIs.

In the four-blade NI, the phase difference in the first

loop DU1 and the phase differences in the second loop DU2

(see 1b for the loop labels) are

DU1 ¼ �
4ms2

�h
vk � uy 0ð Þ
� �

2 _uy 0ð Þ þ s€uy 0ð Þ
� �

; (29)

DU2 ¼
4ms2

�h
vk � uy 0ð Þ
� �

2 _uy 0ð Þ þ 7s€uy 0ð Þ
� �

: (30)

The phase difference is effectively the sum of the phases in

loops 1 and 2, and for low-frequency noise where xs� 1,

the phase difference is given by

DU uð Þ ¼
24mvyy0s3

�h
x3 cos u: (31)

The probability of detecting a single neutron at the O- and

H- detectors in the four-blade NI is

IO4 /ð Þ ¼ 1

2
1� cos /þ DU uð Þ

� �� �
; (32)

IH4 /ð Þ ¼ 1

2
1þ cos /þ DU uð Þ

� �� �
: (33)

Taking the average over the uniform phase distribution of u
and considering the H-beam in the DFS as it carries the same

phase information as the O-beam in the three-blade NI, the

intensity of the DFS is

IH4 /ð Þ ¼ 1

2
1þ c cos /ð Þ: (34)

where the coherence similar to the one for the three-blade NI

is

FIG. 4. Simulations of the variation of the absolute value of the coherence

function c versus strength x for each of the three-, four-, and five-blade neu-

tron interferometers. The coherence of the four- and five-blade NI is not

affected for low frequencies although they are affected at frequencies of

x> 250 Hz. Note that the decoherence free condition from the configuration

where /¼ –vþp is used.
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c ¼ J0 Xx3ð Þ; with X ¼ 24mvyy0s3

�h
: (35)

The coherence function jcj ¼ V for the four-blade NI under

the influence of y-noise is compared to the three-blade and

five-blade NIs in Fig. 4.

In the five-blade NI, we first resolve the path taken by

the neutron to the last blade into four trajectories. For sim-

plicity, we split the four trajectories into two categories, the

symmetric case and the antisymmetric case. The symmetric

case contains the two paths corresponding to the middle blade

acting as a perfect transmitter [jIi ! jIi and jIIi ! jIIi, see

Fig. 5(a)], and the antisymmetric case is where the middle

blade acts as a perfect reflector [jIi ! jIIi and jIIi ! jIi, see

Fig. 5(b)]. The symmetric case is identical to the four-blade

NI. In a similar way, we split the total phase into two compo-

nents. In the symmetric case, the phases denoted by DU1 and

DU2 for loop 1 and loop 2, respectively, are

DU1 ¼ �
4ms2

�h
vk � uy 0ð Þ
� �

2 _uy 0ð Þ þ s€uy 0ð Þ
� �

; (36)

DU2 ¼
4ms2

�h
vk � uy 0ð Þ
� �

2 _uy 0ð Þ þ 7s€uy 0ð Þ
� �

: (37)

In the antisymmetric case, the phases in loop 1 and 2 denoted

by DU01 and DU02 respectively are

DU01 ¼ DU1; (38)

DU02 ¼ �
4ms2

�h
vk � uy 0ð Þ
� �

2uy 0ð Þ þ 3s€uy 0ð Þ
� �

: (39)

In the low-frequency noise regime where sx� 1, the result-

ing phase difference in the symmetric case and the antisym-

metric case is

DU uð Þ ¼
24mvky0s3

�h
x3 cos u; symmetric; (40)

DU0 uð Þ ¼
16mvky0s2

�h
x2 sin u; antisymmetric: (41)

The phase difference from external vibrations along the y-

axis cancels out in the symmetric case but effectively dou-

bles in the anti-symmetric loop. The effect of this noise and

conditions under which it can be removed will be discussed

later. Prior to this, we examine the effect of y-noise.

With a phase / in the first loop and v in the second loop

[see Fig. 1(c)], the probability of detecting a single neutron

at the O- and H- detectors of the five-blade NI is

IO5 /; vð Þ ¼ 1

4
2þ cos v� /þ DU uð Þ

� ��
�cos vþ /þ DU0 uð Þ

� ��
; (42)

IH5 /; vð Þ ¼ 1

4
2� cos v� /þ DU uð Þ

� ��
þ cos vþ /þ DU0 uð Þ

� ��
; (43)

where the symmetric DU(u) and the antisymmetric phase

differences are defined in Eqs. (40) and (41). The average

H-beam intensity over the uniform distribution of u of the

H-beam is

IH5 /; vð Þ ¼ 1

4
2� jcj cos v� /þ argcð Þð

þjc0j cos vþ /þ argc0
� �

Þ: (44)

With the coherence function of the symmetric and anti-

symmetric cases, we get

c ¼ 1

2p

ð2p

0

exp iDU uð Þ
� �

du;

c0 ¼ 1

2p

ð2p

0

exp iDU0 uð Þ
� �

du:
(45)

For y-noise, it can be shown that

c ¼ J0 Xx3ð Þ; with X ¼
24mvky0s3

�h
; (46)

c0 ¼ J0 X0x2ð Þ; with X0 ¼
16mvky0s2

�h
: (47)

Consider an interferometer where the amplitude of y-

noise is y0¼ 0.1 lm. The H-beam intensity without noise

(x¼ 0) is presented in Fig. 6(a). In Figs. 6(b), 6(c), and 6(d),

the same intensity is plotted for y-noise with x¼ 150 Hz,

x¼ 200 Hz, and x¼ 250, respectively. The region through

the density plots where the oscillations are dampened illus-

trates the effect of noise. It is clearly visible in the plot that

there are some combinations of the phase on the first and

second loops for which the effect of noise is minimal. One

obvious choice from Fig. 6(b) is the vertical line /¼ p; how-

ever, this line is only unique for x¼ 200 Hz. For a different

x, a different vertical line would be required. On the other

hand, the set of conditions which include the lines

/¼ –vþl, where l is a constant, is capable of refocusing

any low-frequency mechanical vibrational noise. Along

these lines, the effect of noise results in a phase independent

shift of the intensity profile, which has no effect on the

coherence.

By choosing l¼ p to get v¼p – /, the intensity in the

presence of y-noise can be expressed as

IH5 /; p� /ð Þ ¼ 1

4
2� c0 � jcj sin 2/þ arg cð Þ

� �h i
: (48)

In the five-blade NI, noise acts as a phase independent shift

or an additional background contribution of 1� c0. As shown

FIG. 5. The five-blade interferometer

split into to four paths which constitute

two cases. (a) Symmetric case: jIi !
jIi and jIIi ! jIIi. (b) Anti-symmetric

case: jIi ! jIIi and jIIi ! jIi.
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in Fig. 7, the interference pattern is displaced along the verti-

cal axis as the noise frequency, x, is increased. Even though,

the coherence, or the depth of the modulation, jcj remains

the same, the contrast as defined by Eq. (1) reduces. For a y-

noise of 100 Hz, the interferogram is offset by 0.2 which

results in a relative contrast of about 82%. In Fig. 4, a plot of

jcj for the five-blade NI is compared with that for the three

and four blade NIs. Therefore, the five-blade NI is capable of

refocusing low-frequency noise just as the four-blade DFS

NI. The coherence of the four-blade and five-blade NIs is not

noticeably affected at low frequencies although they start to

get affected at frequencies above 250 Hz.

B. Z-noise

The noise around the z-axis is modeled as

hðtÞ ¼ h0 sin ðxtþ uÞ. Again assuming an incident neutron

on the first blade at t¼ 0 and using small angle approxima-

tions, the phase difference for a three-blade NI is

DU uð Þ ¼
32ms

�h
vk � 2L _h 0ð Þ
h i

L _h 0ð Þ; (49)

¼
32mv?vkh0s2

�h
x cos u: (50)

In the four-blade NI, the phase differences, DU1, in loop 1

and, DU2, in loop 2 are given by

DU1 ¼
8ms

�h
vk � 2L _h 0ð Þ
h i

L _h 0ð Þ � Ls€h 0ð Þ
� �

; (51)

DU2 ¼ �
8ms

�h
vk � 2L _h 0ð Þ
h i

L _h 0ð Þ þ 5Ls€h 0ð Þ
� �

; (52)

such that the low-frequency phase difference is

Du ¼ �
48mv?vkh0s3

�h
x2 sin u: (53)

The phase difference for the five-blade NI is again split

into two components. The symmetric phase differences

acquired in loop one DU1 and loop two DU2 are

DU1 ¼
8ms

�h
vk � 2L _h 0ð Þ
h i

L _h 0ð Þ � Ls€h 0ð Þ
� �

; (54)

FIG. 6. Density plot of the intensity at

the H-beam for a five blade-neutron

neutron interferometer as a function of

the phase, /, in loop 1, and phase, v, in

loop 2. (a) The intensity without noise.

In this plot, the oscillations are clearly

visible along any line in the 2D plane

(/, v). The intensity in the presence of

y-noise is shown in (b) with

x¼ 100 Hz, in (c) with x¼ 200 Hz,

and in (d) for x¼ 250 Hz. The interfer-

ence pattern is dampened along some

configurations of / and v; for example,

v¼/þ constant. In the simulation, the

interferometer separation between

blades is L¼ 5 cm and the neutron

wavelength is 4.4 Å.

FIG. 7. The H-beam intensity as a function of the correlated phase / for

low-frequency y-noise with x¼ 0, 100, 150, and 200 Hz. When the noise

refocusing condition /þ v¼p is used, the effect of noise is simply an addi-

tional background term, with a magnitude of 1� c0.
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DU2 ¼ �
8ms

�h
vk � 2L _h 0ð Þ
h i

L _h 0ð Þ þ 5Ls€h 0ð Þ
� �

; (55)

and the phases of loop 1 and loop 2 in the antisymmetric

case are

DU01 ¼ DU1; (56)

DU02 ¼
8ms

�h
vk � 2L _h 0ð Þ
h i

L _h 0ð Þ þ Ls€h 0ð Þ
� �

: (57)

For low-frequency noise where sx� 1, the phase differ-

ences in the symmetric case and the antisymmetric case are

DU uð Þ ¼ �
48mv?vkh0s3

�h
x2 sin u; symmetric; (58)

DU0 uð Þ ¼
16mv?vkh0s2

�h
x sin u; antisymmetric: (59)

Just like the y-noise, the phase difference from external

vibrations along the z-axis cancels out in the symmetric but

effectively doubles in the anti-symmetric case. The effect of

this noise and conditions under which it can be removed is

similar that of the y-noise.

The coherence function can be calculated for the z-noise

just as was done for the y-noise. The absolute value of the

coherence function c with frequency x for vibrations around

the z-axis is show in Fig. 8. The vibration amplitude is

h0¼ 0.1 lrad, with other conditions maintained as for the y-

noise. The coherence function of the four-blade and five-

blade interferometers remains unchanged at higher frequen-

cies where the three-blade NI is significantly affected for

noise with frequencies greater than 4 Hz.

It is worth noting here that the noise refocusing strength

of the five-blade NI goes beyond the symmetric noise that is

refocused by the four blade neutron interferometer. If the

noise is antisymmetric, the five-blade NI still retains the abil-

ity to refocus but with the configuration changed to

/¼ vþl. The four-blade DFS NI does not have the ability

to refocus this class of noise.

V. CONCLUSION

We formulated the action of the NI blade as a composite

unitary operator and used it to study how the dynamical

phase affects the performance of different neutron interfer-

ometer geometries. We showed that this noise is refocused in

a proposed five-blade neutron interferometer, which is also

insensitive to both dynamical and low frequency vibration

noises. The power of the five-blade neutron interferometer

includes that it can also refocus antisymmetric noise. This

class of noise could originate from various gradients (i.e.,

magnetic and temperature). From the analyses, we have a

theory that can be generalized to any interferometer geome-

try to understand noise effects. The concepts presented here

can be adapted to other matter-wave interferometers. Similar

quantities related to the coherence can be extracted from var-

ious quantum systems in order to characterize noise.51 Our

future plan is to test these concepts experimentally.
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