
Evaluating the Effects of Cyber-Attacks on Cyber
Physical Systems using a Hardware-in-the-Loop

Simulation Testbed
Bradley Potteiger, William Emfinger,

Himanshu Neema, Xenofon Koutosukos
Institute for Software Integrated Systems

Vanderbilt University
Nashville, TN 37235

CheeYee Tang, Keith Stouffer
National Institute of Standards and Technology

Gaithersburg, MD 20899

ABSTRACT

Cyber-Physical Systems (CPS) consist of embedded com-
puters with sensing and actuation capability, and are integrated
into and tightly coupled with a physical system. Because
the physical and cyber components of the system are tightly
coupled, cyber-security is important for ensuring the system
functions properly and safely. However, the effects of a cyber-
attack on the whole system may be difficult to determine, an-
alyze, and therefore detect and mitigate. This work presents a
model based software development framework integrated with
a hardware-in-the-loop (HIL) testbed for rapidly deploying
CPS attack experiments. The framework provides the ability
to emulate low level attacks and obtain platform specific
performance measurements that are difficult to obtain in a
traditional simulation environment. The framework improves
the cybersecurity design process which can become more
informed and customized to the production environment of
a CPS. The developed framework is illustrated with a case
study of a railway transportation system.

Keywords

Hardware-in-the-Loop, Model Integrated Computing, Vul-
nerability Assessment, Resilience, Cyber-Physical System, Ex-
perimentation, Testbed

I. INTRODUCTION

Cyber-Physical Systems (CPS) include co-engineered inter-
acting networks of physical and computational components.
Such systems typically consist of embedded computers with
sensing and actuation capability, and are integrated into a
tightly coupled physical system. Because the physical and
cyber aspects of the system are tightly coupled, cyber-security

The work at Vanderbilt is supported by NIST (70NANB13H169). No
approval or endorsement of any commercial product by the National Institute
of Standards and Technology is intended or implied. Certain commercial
equipment, instruments, or materials are identified in this paper in order
to specify the experimental procedure adequately. Such identification is not
intended to imply recommendation or endorsement by the National Institute
of Standards and Technology, nor is it intended to imply that the materials or
equipment identified are necessarily the best available for the purpose. This
publication was prepared by United States Government employees as part of
their official duties and is, therefore, a work of the U.S. Government and not
subject to copyright.

is important for ensuring the system functions properly and
safely. Cyber-security is further becoming increasingly im-
portant as many CPS are becoming distributed and utilizing
wired or wireless networks for communications and coordina-
tion. Such distribution enables smarter systems with increased
functionality but also creates a larger attack surface.

In traditional cyber-security it can be difficult to determine
how a cyber-attack will affect the running system, especially
given that the same attack will most likely have different
effects depending on which subset of the system is being
attacked. Given how networks and communications couple
the components of a system, determining how the effects of
an attack propagate through the system can compound the
difficulty of such analysis and of predicting attack severity.
These problems are only exacerbated when such networked
systems are connected to sensors and actuators which tightly
couple the system to the physical world. In that case the
attack’s effects propagate not only through the cyber and
communications parts of the system, but also through the
embedded controllers and into the physical world [12] [5].

Our previous work focused on utilizing the Command
and Control Wind Tunnel (C2WT) environment to develop
synchronized, multi-domain CPS simulations [1]. By combin-
ing different CPS models (Network, Physics, User Interface)
into a single system of systems simulation, a vulnerability
assessment framework was developed to analyze impacts of
cyber-attacks on different levels of a CPS. Further, an attacker-
defender (Red team vs Blue team) game was implemented to
aid in developing cybersecurity strategies. However, in certain
cases such as platform dependent vulnerabilities, simulations
are limited in their ability to predict system behavior. This
is especially true for attacks such as distributed denial of
service (DDOS) and code injection attacks that have platform
dependent impacts.

To address the difficulties of performing impact analysis on
cyber-attacks in CPS solely on simulation techniques, we have
extended a hardware-in-the-loop (HIL) CPS testbed, and an
associated experimentation software development and deploy-
ment platform. The HIL testbed extends the capabilities of the
C2WT to emulate the CPS software on embedded computers
that are representative of the future production environment.



Realistic measurements of the system behavior in the presence
of cyber-attacks and defense mechanisms can be obtained,
which in turn can be fed back into the simulation environment
to provide more accurate results. The testbed and software
platform together allow rapid development and experimenta-
tion with a variety of CPS, ranging from networked satellites,
to airplanes and cars [8] [9]. In this paper we demonstrate
how the model based software development framework can
be used with the testbed for rapidly deploying cyber-attack
experiments for impact analysis in a safety-critical CPS such
as a railway transportation network. Railway presents a critical
domain in that hazardous material, shipping companies, and
the general public rely on this method of transportation for
timely, reliable and safe movement.

The paper is organized as follows: Section II discusses
our previous research and related work, Section III details
the architecture of the HIL testbed, Section IV presents a
model driven experiment development software framework,
Section V presents a case study based of a railway transporta-
tion system illustrating the testbed and software framework,
and Section VI provides concluding remarks for the paper.

II. RELATED WORK

Cyber-security for CPS is a rapidly growing field, as
researchers are demonstrating critical vulnerabilities in net-
worked CPS such as automobiles [2], implanted pacemakers
[4], [6], and home automation systems [12]. However, testing
the security of networked CPS is challenging, both with regard
to the difficulty and price of setting up a CPS on which to test
and with regard to the possible dangers associated with the
results of the experiments [12] [13] [14]. This is especially
true for larger-scale safety critical CPS, such as transportation
networks, power distribution networks, and commercial air-
lines. For such systems, a real laboratory testbed is impossible,
leading to the development of simulation or emulation testbeds
which involve a simulation of the CPS. The authors in [12]
demonstrate the need for complete testing of CPS, as even
non-networked devices such as standard lightbulbs can be
compromised and pose a threat to users if a networked home
automation controller becomes compromised. Such a threat
pathway clearly indicates that the physical characteristics of
the CPS and its environment play a critical role in threat
analysis.

Since this paper presents the uses of such a testbed and how
it can be used to analyze the behavior of a distributed CPS
under attack, we will not cover the advances in many of the
related fields associated with simulation of physical systems,
hardware in the loop simulation, software platforms for exper-
iment development, deployment and analysis, or cyber-attack
detection and mitigation. This paper addresses only the goal
of analyzing how cyber-attacks propagate through networked
CPS through the software and into the physical domain. More
details about the design of the testbed, its integration with
physics simulation, and the software platform enabling rapid
experimentation on the testbed can be found in [8] and [9],
respectively.

Security research in CPS using testbeds has been an active
area of research. A good overview of their architecture, and
their application in the Smart Grid domain is provided in [5].
The authors mention nine research applications of security
research using CPS testbeds as: 1) vulnerability research,
2) impact analysis, 3) mitigation research, 4) cyber-physical
metrics, 5) data and model development, 6) security valida-
tion, 7) interoperability, 8) cyber forensics, and 9) operator
training. Many of these applications are related, but our main
research application according to this classification scheme is
#2, viz. impact analysis, which “explores the physical system
impacts from various cyber attacks to quantify physical system
impact.”

Indeed other CPS testbeds have been built providing varying
degrees of fidelity with respect to the CPS they are trying to
analyze. Supervisory Control and Data Acquisition (SCADA)
systems have been explored most extensively [10] [3] since
they form the backbone of much of the critical infrastructure.

Many of these alternative platforms for security testing do
not incorporate the CPS (either through simulation or in the
loop), are tied to a specific system being tested, and/or are
prohibitively expensive to replicate or extend in other research
labs. The rest of the paper demonstrates how the HIL CPS
testbed can provide similar capabilities for impact analysis
without being bound to any specific CPS.

III. HIL ARCHITECTURE

To determine, measure, and analyze the effects of cyber-
attacks on networked CPS, we need a platform for developing
tests and experiments which can detect, quantify, and measure
the effects of cyber-attacks on real CPS. Such a platform needs
to have real embedded hardware that would be used in the
CPS, and this hardware must have a way to sense and actuate
a physical system. For many systems, building and deploying
the real CPS is not feasible or not possible due to financial,
logistical, or safety reasons. It is traditional and acceptable to
use physics simulators to act as the CPS, using hardware-in-
the-loop (HIL) with simulation to provide the computational
and communication capabilities of the CPS. Additionally, a
complete software development and deployment infrastructure
is required to enable rapid, iterative experiment design, deploy-
ment, and data collection.

The rest of the paper covers the procedures for developing
and deploying security experiments using our model based
software development framework. To complete the description
of the experimental environment, we first describe the archi-
tecture of both the hardware and software platforms used by
the HIL testbed.

A. Hardware Architecture

The functions of a CPS testbed for security research are
1) (re-)configurability with respect to CPS and software, 2)
accurate behavior of the software with respect to the CPS, 3)
accurate behavior of the network with respect to the CPS, and
4) accurate behavior of the sensors/actuators with respect to
the CPS. In addition to these concerns, the CPS testbed should



behave similarly to the real system in the case of failures or
attacks.

Because of these requirements, the CPS testbed was ex-
tended with a Hardware-in-the-Loop Emulation platform,
where embedded computing nodes on multiple configurable
networks are connected to one or more simulation machines.
The simulation machines provide the embedded computers the
ability to sense and control the (simulated) physical systems
in which they will be deployed. The configurable network
through which the embedded computers communicate allows
more robust and higher-fidelity emulation of the CPS’ network
as it would be deployed than if the network were simulated. An
architectural diagram of the CPS testbed is shown in Figure 1.
For more information about this testbed please see [8].

Fig. 1: Diagram showing the architecture of the CPS security
HIL testbed.

B. Software Platform

In addition to the hardware and simulation platform which
form the backbone of the HIL CPS testbed, the software plat-
form must provide functions for 1) developing the CPS code,
2) developing the attack and measurement code, 3) configuring
the experiment, 4) deploying the experiment, and 5) retrieving
the results from the experiment for analysis. To meet these
requirements, the ROSMOD software toolsuite is extended [9].
Using this software platform, we can create reusable software
components which each provide key functionality for our
experiments. We compose these software components together
into an experiment for deployment onto the HIL CPS testbed.
Further details about the software framework are detailed in
the following section.

IV. MODEL BASED SOFTWARE DEVELOPMENT FOR CPS
SECURITY ANALYSIS

For the purpose of vulnerability analysis on the HIL testbed,
a software framework is used to enhance and streamline
the cyber-attack experiment creation process. ROSMOD is a
graphical model integrated computing(MIC) tool that utilizes
component based design principles with the Robot Operating
System (ROS) middleware for representing the distributed

nature of a CPS. The ROSMOD framework is extended to
support the implementation of cyber-attacks within the com-
ponent and communication scope for the purpose of exploiting
respective vulnerabilities in a component’s software. The rest
of the section details the process of creating an experiment
and the different capabilities that can be included.

A. Experiment Development

In respect to the hardware-in-the-loop testbed, the purpose
of the software framework is to enhance and allow for rapidly
prototyping experiments for measuring the effects of cyber-
attacks on a CPS. For accomplishing this task, experiments
can be developed representing a system at baseline, as well as
under attack to identify potential vulnerabilities and analyze
the resiliency and fault tolerance of critical infrastructure.
ROSMOD provides the ability to model the specific compo-
nents of an experiment, as well as the communication network
through the ROS protocol. ROS utilizes a publish-subscriber
technique where each line of communication is assigned a
unique identifier (ROS Topic) which can be used by subscriber
nodes to filter out incoming messages. To successfully develop
an experiment in the software framework, the following needs
to be completed:

1) Development of the Software Model
2) Development of the System Model
3) Development of the Deployment Model
4) Execution of the Experiment Interpreter
The first step involves developing the generic component

libraries representing the various parts of a CPS. The compo-
nent in the software library represents a basic building block
for insertion into an experiment including timer based code
execution, publisher-subscriber functionality for communica-
tion, and variable placeholders for allowing components to
be customized after being placed into an experiment model.
Furthermore, the communication messages and their contents
are defined, as well as external libraries to link to simulator ap-
plication program interfaces(APIs). A compilation interpreter
is included to provide the ability to cross compile the library
code under the testbed node architecture(Arm V7 architecture)
and identify locations of errors within the code in the graphical
interface similar to a traditional compiler.

The next step includes defining the architecture of the hosts
that the experiment is executed on. This includes defining
attributes such as the host name, operating system architecture,
and location of a secure shell(ssh) key for accessing the host.
Additionally, the model specifies the connection of the host to
the ROSMOD server through an internet protocol(IP) address
for the purpose of transferring and executing code on the hosts
and fetching the results back to the ROSMOD server.

The third step includes taking the generic component
building blocks previously built in the software library, and
customizing them to produce an implementation model for the
experiment. This includes creating component instances and
editing the component parameters appropriately through the
variable placeholders. The deployment represents the finalized
experiment model to be executed on the testbed.



The final step involves executing the experiment interpreter
which maps the deployment components to the appropriate
host nodes declared in the system model (HIL embedded
computers), transfers each respective component binary to
the appropriate host, and starts the component processes on
the HIL testbed nodes. Additionally, this is the time where
the user starts up the physics simulator for synchronization
with the respective component processes. Furthermore, after
the simulation is complete, the results are fetched from the
respective hosts and transferred to the server where they can
be analyzed in the ROSMOD graphical environment.

B. Experiment Capabilities

The following features can be included in experiments using
the development process described above.

1) Baseline: For the purpose of measuring the effects of
attacks as well as the impact of defense mechanisms, the
first place to start is with a baseline experiment under normal
operating circumstances. In this case, the CPS is implemented
as it would operate with no external impacting factors, as in
how the operators expect the system to behave on a routine
day to day basis. This allows the operators to have data to
compare against when trying to decide whether an attack is
occurring and have a data-centric method of determining the
best course of action to mitigate the situation.

2) Attack Implementation: To effectively identify the most
critical vulnerabilities of a system, it is important to test the
system under as many circumstances as possible, including
under attack. By developing experiments with individual attack
implementations, the attack effects on system specific metrics
are measured to appropriately quantify the impact of the
attack and in turn the criticality of the system vulnerability.
This aids the risk assessment process in allowing engineers
to have an objective, quantitative metric to judge various
vulnerabilities. Various attacks are implemented to effect the
confidentiality, integrity, and availability of a CPS. Confiden-
tiality attacks that are implemented include packet sniffing,
password/authentication, session hijacking, and side channel
attacks. Integrity attacks include replay, spoofing, packet delay,
and packet dropping attacks. Availability attacks include denial
of service, distributed denial of service, and spamming attacks.
Additionally, attacks are implemented that include multiple
categories such as buffer overflow and code injection attacks.

3) Attack Linking: To make attacks more realistic, the
software framework provides the feature of staging multiple
attacks to occur in an experiment. As such, multiple attacks
can be linked together to identify propagating vulnerabilities
in a system and maximize the impact of an attacker. All of
the attacks described above can be combined into a single
experiment implementation. Attacks can be modeled both
occurring simultaneously and occurring in stages. For the
simultaneous category, attacks that are independent can be
implemented within the software model with no correspond-
ing communication with one another. For example, with an
experiment including a denial of service attack on a respective
component and spoofing attack on a separate part of the

network, the two attacks are not correlated to one another and
can be implemented in software as occurring through the entire
simulation with no communication or timer dependencies.
However, it is often the case that attacks are dependent on one
another. As such, attacks can be modeled as being dependent
on timer information, event information, or both. For example,
by accessing timer data in the case of the denial of service
and packet spoofing attack, the packet spoofing attack can
be deployed to start at the beginning of the simulation while
the denial of service attack can be programmed to start at
200 seconds into the simulation. Additionally, with a case
such as a replay attack and packet sniffing attack, the replay
attack will be dependent on the success of the packet sniffing
attack capturing a transmitted packet. As such, event based
dependencies can be programmed into the software model
by having communications between the respective attacks.
For example, once the packet sniffing attack is successful,
an event message can be transmitted to the replay attack
implementation including the captured packet information.
Once this message is received, the replay attack sequence can
be initiated and executed.

4) Defense Mechnamisms: The most important benefit to
system engineers is the ability to implement and analyze the
effects of defense mechanisms on the security and function-
ality of the CPS. The insertion of a defense mechanism often
produces a tradeoff (e.g., performance vs. security) where the
benefit has to be weighed against the cost. By measuring
the performance overhead of the defense mechanism on the
testbed while analyzing the success of preventing the targeted
attacks, engineers can make the crucial cost benefit decision
when designing their systems. Engineers can implement de-
fense mechanisms dealing with hardening communications
(AES 256 message encryption, message authentication, fire-
wall implementations, dynamically changing ip addresses),
hardening the component device software (password authent-
ciation, input buffer limits, variable scope enforcement), or
implementing monitoring algorithms for detecting abnormal-
ities (threshold detection, gaussian processes, unsafe state
detection).

5) Data Collection: After the conclusion of an experiment
simulation, it is important to analyze the results to determine
the behavior of the system. As such, the software framework
provides the ability to fetch data results to analyze through
the graphical interface. During every experiment, event times
are logged in the host repositories and transferred back to the
ROSMOD server at the end. By default these events include
the timer based execution of code, publishing of messages,
and receipt of subscribed messages. Additionally, custom log
messages can be inserted to record experiment-specific events
such as when a state is changed in a controller. In the graphical
interface, the data can be downloaded in text files, but events
can also be observed through time domain plots, allowing for
rapidly analyzing the sequence of events in the experiment.
Furthermore, the user can generate data from the physics
simulator to record the consequential behavior in the physical
environment. This allows for analyzing the cyber effects of



the experiment on the physical environment.

V. CASE STUDY

The reference case study is based on a railway transportation
system. In this example, there are many railway signals and
switches that route trains throughout the rail network. Railway
signals have a green or red state and determine whether a
train can travel to the next rail segment. In circumstances
where a junction exists that connects multiple rail segments,
rail switches are used to route trains to the appropriate adjacent
rail segment. Each rail switch or signal is controlled by
command messages sent through a communications network
by a train operator located at a central facility. The commu-
nication network is comprised of network switches, routers,
and basestations. The communications from the train operator
are first transmitted through ethernet to a network switch and
then passed to a router which transmits packets wirelessely to
basestations in the field. Basestations then filter out and relay
command packets to the appropriate associated rail signals and
switches at the location.

Fig. 2: The railway communication network

For the CPS cyber-attack experiment, a critical rail segment
is selected for attack which serves as a central hub to the rest
of the network. The corresponding rail segment as well as its
relationship in the communications network and connection
to the railway network simulated in Train Director [7] are
shown in Figure 3. This example consists of ten rail signals, six
rail switches, four basestations, two routers, a network switch
and a train operator. These components from the architecture
described in Figure 2 are mapped to individual nodes in the
HIL testbed for execution of the experiment.

A. Experiment 1: Packet Delay Attack

The method of attack on the railway network consists of
a man in the middle attack on the communications to the
Basestation 1 software component. The railway network is
comprised of actuators (railway signals and switches), as well

Fig. 3: Train Director Railway Network Configuration and
Communication Network Relationship

as communication infrastructure (basestations, routers, net-
work switches) that relay command messages from a train op-
erator located at a central facility. The wired network between
the train operator, network switch, and router is encrypted
and authenticated. Additionally, the wireless communication
between the routers and basestations has cryptographic en-
cryption but no authentication, preventing an attacker from
spoofing command packets. However, this doesn’t prevent an
attacker from inserting a malicious node to delay the routing
of command messages through the network.

In this experiment, command packets (ROS Messages) from
the train operator ROS node consist of an actuator name and
goal state string variable. The attacker creates a malicious
man in the middle node and intercepts traffic routed through
Basestation 1. As such, the attacker has the ability to delay
when command packets are transmitted to the Rail Signal 1,
Rail Signal 2, and Rail Switch 1 components. The attacker
uses this vulnerability to execute a packet delay attack, de-
laying command packets by 20 minutes to have a sufficient
effect on the railway network to keep trains from reaching
their destinations on time, but at the same time, decreasing
suspicion of a denial of service attack or faulty components
by keeping components operational. A diagram illustrating this
experiment is shown in Figure 4.

1) Experiment Configuration: Configuration of the experi-
ments entails:

1) Configuring the communications network between the
software components,

2) Mapping the software components to simulated CPS
sensors/actuators as required,

3) Configuring the parameters of the attack, e.g., amount
of time to delay command messages,

4) Mapping the CPS software components onto the pro-
cessing hardware of the testbed,

5) Mapping the attacking software components onto the



Fig. 4: The attack vector used against the railway communi-
cation network

processing hardware of the testbed, and
6) Configuring the simulator (Train Director) with the

proper rail network and communications interface

The ROSMOD software infrastructure described previously
enables all of this configuration from its graphical user inter-
face(GUI), as well as deployment, startup, and shutdown of
the experiment. For the experiment, the malicious man in the
middle node delays packets for 20 minutes from the time the
message was received. There are also rail signals, rail switches,
basestations, routers, network switches, and a train operator
component in the deployment. Each component is mapped to
its own computing node.

Further, the experiment development process using the
software framework includes developing a software model,
developing a system model, developing a deployment model,
and executing the experiment by running the experiment
interpreter. To develop the software model, component specific
code is written to serve as the basic building blocks for
designing the CPS topology. Additionally, external libraries
are linked into the framework for accessing simulator APIs.
To develop the system model, the HIL testbed architecture
is defined including the network connectivity, hostname, op-
erating system, ssh key, and IP address for each node in
the testbed. To develop the deployment model, instances
of generic component models from the software library are
customized to create the experiment implementation model.
This includes designing the the CPS topology, as well as
implementing cyber-attack instances. To run the experiment,
an interpreter is executed to map the deployment model to
associated nodes in the HIL testbed, transfer the compiled
component binaries to the appropriate hosts, start component
processes, run the simulation, and fetch results at the end of
execution.

2) Results: From the experiment configuration explained
above, we want to determine the effects that the packet delay
attack (which is a cyber-attack) has on the train arrival times
in the network. For the physical system, which is simulated
in Train Director, we directly use Train Director to measure

the effects of the attack. The attack alters the behavior of the
rail signal 1, rail signal 2, and rail switch 1 components and
we wish to determine how these changes affect the train delay
in the railway network. We directly capture the state of the
railway network from Train Director represented by the time
the train arrived late to its destination.

Determining and measuring the effects of the packet delay
attack on the software’s behavior is not difficult, given that the
behavior and structure of the software component are known.
However, given the coupling between the software and the
physical system, it is not as easy to determine what the effects
of the altered behavior will be on the overall CPS as a whole.
Clearly, the delayed reception of the train operator command
messages will cause any trains at the affected location to be
delayed. However, this alteration in behavior does not lend
itself directly to prediction of the state of the train delay since
it is difficult not only to quantify but to relate to the train
routes. With the physical simulator (Train Director) we are
able to see how the trains respond to the degraded behavior
of signal and switch actuators and measure the effects on the
train arrival times. Figure 5 shows the results of the Train
Director simulation in respect to the lateness of the respective
trains. As can be observed from the figure, the packet delay
attack caused considerable delay to a number of the trains.
Additionally, the trains that were not on the path were not
affected by the attack. Therefore, if an attacker wanted to limit
his exposure while maintaining the goal of delaying a critical
shipment on this route, this attack could suffice. Furthermore,
the delay of trains 4 and 5, which follow the path of train 2,
is compounded by the time it takes train 2 to pass through the
attacked signals and switches.

Fig. 5: Packet Delay Attack Experiment Train Delay
B. Experiment 2: Packet Delay Attack and Denial of Service

In addition to implementing a single attack in an experiment,
the software framework provides the ability to create an
experiment with multiple attacks. As such, the first experiment
in which a packet delay attack is implemented is extended to
include a second attack: a denial of service attack on a set of
railway switches. In this instance the goal of the attacker is to
not only delay trains but to prevent the trains not on a specific
path (trains coming from railway signal 1) from being able to
reach their destination. As such, the critical shipments on these
trains will not reach their customers causing a detrimental



effect on the receiving companies operating status. To execute
this attack series, the packet delay attack will consist of a
malicious man in the middle node effecting the rail signal 1,
rail signal 2, and rail switch 1 components while the denial
of service attack will focus on compromising the rail switch 2
and rail switch 4 components. Due to the fact that rail switch
2 and rail switch 4 are no longer functional, trains originating
from the top and bottom of the map will be stuck and will not
be able to travel to their adjacent rail segments.

1) Experiment Configuration: The experimental setup is
consistent with the same process followed in Experiment 1.
As such, the same software component library and system
model are used. However, when developing the deployment
model, the user configuration section of the rail switch 2 and
rail switch 4 components are customized to represent a denial
of service attack in addition to the changes already made
to the basestation 1 communications path from the previous
experiment. In this experiment the compromised components
are a malicious man in the middle node, the rail switch 2
component, and rail switch 4 component. This deployment
setup is then transferred to the HIL Testbed hosts for execution
through the experiment interpreter.

2) Results: The Experiment 2 results are similar to Exper-
iment 1 in that a set of trains are significantly delayed due to
the attacks. In the packet delay attack example, train 1 and
3 arrived on time while the rest of the trains arrived to their
destinations late. In Experiment 2, trains 1 and 6 arrived on
time while the rest of the trains appear significantly delayed.
This can be observed from Figure 6. However, it is important
to note that even though there is significant train delay in the
plot, this delay is actually unbounded. This experiment was
run under a 200 minute experiment time, and therefore the
delay is limited to that restriction. In reality, due to the fact
that trains 2, 3,4, and 5 all have to travel through paths passing
through rail switch 2 or rail switch 4, these trains will never
reach their destinations due to the denial of service attacks on
the respective rail switches. Therefore, as the execution time
for this experiment is increased, the output train delays will
subsequently increase.

Fig. 6: Multiple Attack Experiment Train Delay
VI. CONCLUSIONS

In this work we’ve shown how a HIL CPS testbed can
be used in security research for determining, measuring, and

analyzing how cyber-attacks affect CPS systems and how the
attack propagates through the software into the physical sys-
tem. We described the architecture of such a testbed, including
its hardware and software platforms and developed an example
security experiment for a railway network. By measuring both
the software behavior and the physical system behavior during
both normal operations and under attack, we showed how the
coupling between software and the CPS can be measured. This
work is part of the first steps towards modeling, analyzing,
and predicting CPS behavior during cyber-attacks, and by
providing a testbed for systematically running experiments and
collecting data for attacks, models and analysis techniques can
be developed.

REFERENCES

[1] KOUTSOUKOS, X., NEEMA, H., MARTINS, G., BHATIA, S., JANOS, S.,
STOUFFER, K., TANG C.Y., CANDELL, R. Performance Evaluation of
Secure Industrial Control System Design: A Railway Control System
Case Study. In 4th International Symposium on Resilient Cyber Systems
(2016), Chicago.

[2] CHECKOWAY, S., MCCOY, D., KANTOR, B., ANDERSON, D.,
SHACHAM, H., SAVAGE, S., KOSCHER, K., CZESKIS, A., ROESNER, F.,
KOHNO, T., ET AL. Comprehensive experimental analyses of automotive
attack surfaces. In USENIX Security Symposium (2011), San Francisco.

[3] DAVIS, C., TATE, J., OKHRAVI, H., GRIER, C., OVERBYE, T., AND
NICOL, D. Scada cyber security testbed development. In Proceedings of
the 38th North American power symposium (NAPS 2006) (2006), pp. 483–
488.

[4] GOLLAKOTA, S., HASSANIEH, H., RANSFORD, B., KATABI, D., AND
FU, K. They can hear your heartbeats: non-invasive security for
implantable medical devices. ACM SIGCOMM Computer Communication
Review 41, 4 (2011), 2–13.

[5] HAHN, A., ASHOK, A., SRIDHAR, S., AND GOVINDARASU, M. Cyber-
physical security testbeds: Architecture, application, and evaluation for
smart grid. IEEE Transactions on Smart Grid, 4.2(2013):847–855.

[6] HALPERIN, D., HEYDT-BENJAMIN, T. S., RANSFORD, B., CLARK,
S. S., DEFEND, B., MORGAN, W., FU, K., KOHNO, T., AND MAISEL,
W. H. Pacemakers and implantable cardiac defibrillators: Software radio
attacks and zero-power defenses. In Security and Privacy, 2008. SP 2008.
IEEE Symposium on (2008), IEEE, pp. 129–142.

[7] Train Director Raiload Simulation. http://www.backerstreet.com/traindir/
en/trdireng.php Accessed on April 07, 2017

[8] KUMAR, P., EMFINGER, W., AND KARSAI, G. Testbed to simulate and
analyze resilient cyber-physical systems. In Rapid System Prototyping,
2015. RSP ’15. (October 2015).

[9] KUMAR, P., EMFINGER, W., KULKARNI, A., KARSAI, G., WATKINS,
D., GASSER, B., AND ANILKUMAR, A. ROSMOD: a toolsuite for
modeling, generating, deploying, and managing distributed real-time
component-based software using ROS In Electronics 5.3(2016):53.

[10] MALLOUHI, M., AL-NASHIF, Y., COX, D., CHADAGA, T., AND
HARIRI, S. A testbed for analyzing security of scada control systems
(tasscs). In Innovative Smart Grid Technologies (ISGT), 2011 IEEE PES
(2011), IEEE, pp. 1–7.

[11] MITROPOULOS, D., KARAKOIDAS, V., LOURIDAS, P., GOUSIOS, G.,
AND SPINELLIS, D. Dismal code: Studying the evolution of security
bugs. In Proceedings of the LASER Workshop (2013), pp. 37–48.

[12] OLUWAFEMI, T., KOHNO, T., GUPTA, S., AND PATEL, S. Experimental
security analyses of non-networked compact fluorescent lamps: A case
study of home automation security. In Proceedings of the LASER 2013
(LASER 2013) (Arlington, VA, 2013), USENIX, pp. 13–24.

[13] VAN LEEUWEN, B., URIAS, V., ELDRIDGE, J., VILLAMARIN, C.,
AND OLSBERG, R. Cyber security analysis testbed: Combining real,
emulation, and simulation. In Security Technology (ICCST), 2010 IEEE
International Carnahan Conference on (2010), IEEE, pp. 121–126.

[14] VAN LEEUWEN, B., URIAS, V., ELDRIDGE, J., VILLAMARIN, C., AND
OLSBERG, R. Performing cyber security analysis using a live, virtual,
and constructive (lvc) testbed. In Military Communications Conference,
2010-MILCOM 2010 (2010), IEEE, pp. 1806–1811.


