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ABSTRACT A growing number of new technologies are supported by a single- or multi-nanopore architecture for capture,
sensing, and delivery of polymeric biomolecules. Nanopore-based single-molecule DNA sequencing is the premier example.
This method relies on the uniform linear charge density of DNA, so that each DNA strand is overwhelmingly likely to pass through
the nanopore and across the separating membrane. For disordered peptides, folded proteins, or block copolymers with hetero-
geneous charge densities, by contrast, translocation is not assured, and additional strategies to monitor the progress of the poly-
mer molecule through a nanopore are required. Here, we demonstrate a single-molecule method for direct, model-free, real-time
monitoring of the translocation of a disordered, heterogeneously charged polypeptide through a nanopore. The crucial elements
are two ‘‘selectivity tags’’—regions of different but uniform charge density—at the ends of the polypeptide. These affect the
selectivity of the nanopore differently and enable discrimination between polypeptide translocation and retraction. Our results
demonstrate exquisite sensitivity of polypeptide translocation to applied transmembrane potential and prove the principle that
nanopore selectivity reports on biopolymer substructure. We anticipate that the selectivity tag technique will be broadly appli-
cable to nanopore-based protein detection, analysis, and separation technologies, and to the elucidation of protein translocation
processes in normal cellular function and in disease.
A nanopore is a single nanometer-scale hole in a thin mem-
brane that separates two electrolyte-filled reservoirs. Nano-
pores can be created using both solid-state (1) and biological
(2) materials and are sensitive single-molecule probes and
manipulators of charged biopolymers (3–8). The electric
field resulting from a voltage bias applied across the
membrane creates an ionic current that can be monitored
in real time. Individual charged, polymeric biomolecules
are captured in the nanopore and eventually escape, causing
a transient disruption in the ionic current. The time-depen-
dent characteristics of each disruption, or ‘‘event,’’ contain
information about the motion and structure of the captured
polymer.

The overwhelming majority of nanopore studies have used
single-stranded or double-stranded DNA as an analyte,
mainly due to the technological importance of DNA
sequencing (9–11). The ultimate success of DNA-sequencing
technologies, in which engineered nanopores (12) are
augmented with molecular machinery to control the motion
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of the DNA strand (13,14), is due in part to the homogeneous,
sequence-independent charge density of the DNA phosphate
backbone (or the homogeneous charge density of cleavage
products in sequencing by synthesis strategies (7)). One
important consequence of this fact is that although thermal
forces may contribute to rapid backward fluctuations of the
polymer (15), the average electrical force is sequence-inde-
pendent and unidirectional, and at high enough voltages,
each strand passes through the nanopore, or ‘‘translocates,’’
with unity probability, rather than retracting to the side of
the entry. This has been demonstrated experimentally using
polymerase chain reaction (2) and a variety of nanopore-
based single-molecule trapping techniques (16–18).

For the many other synthetic and biological polymers,
such as proteins (19,20), in which monomers can be anionic,
cationic, or uncharged, the electrical force is sequence-
dependent and, in principle, bidirectional. Thus, even a
question as fundamental as whether a given biopolymer
ever translocates through a nanopore becomes difficult to
answer, particularly in the absence of amplification methods
such as those used for DNA. Previous experimental studies
of protein translocation through nanopores employed proc-
essive enzymes (21), overrode the native charge density
with surfactant (22), or used homogenously charged pep-
tides (23) to provide unidirectional motion.
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Here, we study translocation of a heterogeneously
charged polypeptide using model-free detection of the ef-
fect of the polymer charge on the electrical environment in-
side the nanopore to monitor the translocation process of
single polypeptides in real time. This is accomplished using
‘‘selectivity tags’’—regions of different but uniform charge
density at the ends of a polypeptide that produce different
selectivity of the nanopore to cations and anions, and hence
ionic current levels, in a voltage-biased nanopore under a
salt concentration gradient. We use the natural, disordered
‘‘diblock copolymer’’-like 140-amino-acid polypeptide
a-synuclein (a-syn), which comprises two such tags, a
highly negatively charged C-terminal region (CT; 43 amino
acids, total charge –15e) and a largely neutral N-terminal
region (NT; 97 amino acids, total charge þ3e). The CT is
responsible for capture of a-syn into the voltage-biased
nanopore, whereas the NT is responsible for binding to
lipid membrane surfaces and ensures that the a-syn mole-
cule remains in the pore long enough for its dynamics to
be extensively studied (24). The boundary between the
CT and NT fluctuates across the membrane, exposing the
pore to the differing charge densities of the CT and NT
and modulating the selectivity of the pore, which is moni-
tored in real time using an electrolyte concentration
gradient. The selectivity at the end of each a-syn capture
event depends on whether the last residues in the pore
were charged (a ‘‘retraction event,’’ in which the CT with-
draws from the nanopore) or uncharged (a ‘‘translocation
event,’’ in which the NT is observed last). The voltage-
dependent translocation probability derived in this way cor-
responds well to, but does not require, the drift-diffusion
models previously developed for the a-syn/nanopore and
DNA/nanopore systems (20,25).

The experimental setup is shown in Fig. 1 a. The nano-
pore is a single mitochondrial passive ATP/ADP-transport
voltage-dependent anion channel (VDAC) reconstituted
into a diphytanoylphosphatidylcholine lipid bilayer mem-
brane separating 1.0 M (trans) and 0.2 M (cis) aqueous so-
lutions of potassium chloride (M ¼ mol/L). When a-syn is
added to the trans side of the membrane (see the Materials
and Methods), large current blockages are observed. At
concentrations sufficiently small to suppress simultaneous
interaction of multiple a-syn molecules with the VDAC,
fluctuations between two well-defined levels, or substates,
within these large current blockages are further detected
(Fig. 1, b and c). A current-voltage plot (Fig. 1 b) of the sub-
states (averaged over the thousands of blockages observed
over multiple voltages in a single experiment) shows that
the selectivity of the pore, as reported by its reversal poten-
tial (vertical arrows), differs by 20 mV between the two sub-
states and reverses from anionic to cationic. In previous
work this splitting was hypothesized, based on electrostatic
considerations, to correspond to the presence of the charged
or uncharged regions (within the 5- to 10-residue resolution
of VDAC) of the a-syn molecule in the pore (20). Here, we
2 Biophysical Journal 114, 1–5, February 27, 2018
directly observe the relationship between the states by
analyzing the fine structure of each event.

For all blockages, the event begins in the lower-conducting
substate, allowing us to identify this state as the one corre-
sponding to the presence of the CT in the pore, that is, to
the capture of the C-terminal region of a-syn by the VDAC
nanopore (Fig. 1 d). We label this substate SC and, by
elimination, the higher-conducting substate SN. This identi-
fication allows us to classify each event in a model-free
(i.e., independent of prior knowledge of the nanopore elec-
trostatic properties) way as a retraction or translocation event
based on the substate observed at the end of the event. Fig. 1 e
shows a retraction event, in which the final substate ðSCÞ is
the same as the initial one and corresponds to the withdrawal
of the CT from the pore. Fig. 1 f, by contrast, shows a trans-
location event, in which the final substate ðSNÞ is different
from the initial one and corresponds to the passage of the
NT—and hence the whole a-syn molecule—through the
pore.

Importantly, the fraction of translocation events, i.e., the
translocation probability, is determined from this character-
ization of events on the single-molecule level. The observed
translocation probability depends strongly on voltage and is
shown in Fig. 2 a as red circles. The blue diamonds depict
the result of applying a simple correction that takes into ac-
count the limited temporal resolution of the instrumentation,
as described in the Supporting Material. Fig. 2 b gives the
average event duration hti as a function of voltage. The
solid lines are fits to a drift-diffusion model for this system
described elsewhere (20) and modified with an additional
constant-force term corresponding to hydrodynamic drag
from an osmotically driven flow of water from the low-
salt to the high-salt side of the channel (see the Supporting
Material). The model is optimized to the event duration dis-
tributions, but not to the translocation probability data; the
solid line in Fig. 2 a is the prediction of the translocation
probability from the model with no additional optimization.
The agreement is good to within 1 mV, particularly for the
resolution-corrected data.

The average properties of retraction and translocation
events are explored separately in Fig. 3. The vertical axis
is the average CT occupancy as a function of time from
the beginning (Fig. 3 a) or end (Fig. 3 b) of the event.
Fig. 3 a shows that the probabilistic average event shape
at the beginning of the event does not depend on its identi-
fication as a retraction or translocation. The initial capture
process is too fast to be reliably observed given the noise
level and temporal resolution of the system and instrumen-
tation, resulting in an average CT occupancy less than unity
at the beginning of events. The capture process only
becomes shorter at higher voltages, resulting in further de-
viations from unity. Fig. 3 b shows that the dynamics of
the final states are significantly different: the final transloca-
tion process takes almost 10 times longer than the retraction
process.
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FIGURE 1 Salt-concentration-gradient-enhanced observation of a-syn dynamics in a VDAC nanopore. (a) Experimental setup (not to

scale). The ‘‘diblock-copolymer’’-like structure of a-syn is represented in color and consists of two ‘‘selectivity tags’’ of differing

charge density (light yellow and dark red) that differently modulate the electrical properties of the VDAC nanopore under a salt con-

centration gradient. (b) Current-voltage curves of the open pore high-conducting (dark green circles) and the two low-conducting

substates when a-syn is inside the pore (yellow triangles and red inverted triangles). Selectivities were calculated from the reversal

potentials (vertical arrows); 68% confidence intervals are smaller than the size of the data points. (c) Sample current record.

As-recorded data are shown in light gray and software-filtered data in dark blue. The total event duration, t, was defined as shown.

(d) Identification of the substates by noting that the capture of the CT in the nanopore corresponds to the lower-conducting substate.

(e and f) Details of a retraction (e) and a translocation (f) event. The smooth overlay curve depicts PCðtÞ using the scaled representa-

tion iCðV ÞDð1� PCðtÞÞðiNðV Þ � iCðV ÞÞ and a color scale between PCðtÞ ¼ 0 (light yellow) and 1 (dark red). To see this figure in color,

go online.
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The selectivity-tag method is quite general. With suffi-
cient time resolution and current sensitivity, the technique
can be performed by simply comparing the selectivity of
the pore (manifested as distinctly different current levels
under the salt-gradient conditions) during the capture and
release processes of individual polypeptides, with no
requirement of prior knowledge of the molecule’s sequence
and no need to average over large populations of molecules.
It can thus be used to identify minor components of complex
mixtures. Although routine use would benefit from a well-
characterized pore, the method does not have specific
requirements for the nanopore type. Selectivity tags can
be incorporated into folded proteins and polypeptides
using standard biotechnology techniques, or into block co-
polymers using standard synthesis methods. In these exper-
iments, selectivity tags were used to determine which events
corresponded to a-syn translocations. In principle, however,
a selectivity tag can be integrated into the interior of a mole-
cule, to track its progress through the pore; at both ends of a
molecule, to signal that one or the other end is about to leave
Biophysical Journal 114, 1–5, February 27, 2018 3
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the nanopore, with the possibility of employing active feed-
back to retain or discard the molecule; or at various points
along a molecule, to study fluctuations and translocation dy-
namics. For these applications, careful validation of labeled
protein function would be required. The sensitivity of the
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translocation probability to voltage also suggests that the
use of selectivity tags may be a powerful separation method
for complex mixtures of biomolecules that yield otherwise
indistinguishable or overlapping resistive pulse signals.
Selectivity tags provide an additional recognition dimension
for direct protein sequencing or for techniques like
sequencing by synthesis (7), which require discrimination
of cleavage products. Finally, this work opens an avenue
to solving long-standing, medically relevant questions
regarding protein translocation, such as bacterial toxicity
mechanisms (26,27) and the operation of cellular protein
transport machinery (28).
Materials and methods

Protein purification protocols are described in the Support-
ing Material. Single VDAC channel recordings were ob-
tained as described previously (24). Lipid bilayers were
formed from diphytanoylphosphatidylcholine. The side of
the lipid bilayer to which VDAC was added during the
reconstitution is the cis side; the opposite side is referred
to as the trans side (Fig. 1 a). Voltage polarities are defined
as positive when the cis side has the higher potential. To
create the salt concentration gradient, the cis side was filled
with a 0.2 M KCl solution (M ¼ mol/L) and the trans side
with a 1.0 M KCl solution, both buffered with 5 mMHEPES
at pH 7.4. Junction potentials with the Ag/AgCl electrodes
were minimized by connecting the electrodes with 2 M
KCl/2% agarose bridges. Recombinant a-syn was added
to the trans side at 5–10 nM concentrations. The low
a-syn concentration was chosen to minimize the incidence
of simultaneous pore blockage by multiple molecules.
Current recordings at each voltage were collected by an
Axopatch 200B amplifier (Molecular Devices, Sunnydale,
CA) with a 4 ms sampling interval, hardware filtered by a
30 kHz inline eight-pole Bessel filter (9002; Frequency
Devices, Ottawa, IL), and directly saved into computer
memory with Clampex 10 software (Molecular Devices).
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All experiments were performed at room temperature (225
2�C). The experiment was replicated four times. Analysis
and modeling procedures are detailed in the Supporting
Material.
SUPPORTING MATERIAL

SupportingMaterials andMethods, twofigures, and one table are available at

http://www.biophysj.org/biophysj/supplemental/S0006-3495(17)35099-3.
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