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Abstract 

With recent advances in sensor and computing technology, it is now possible to use 
real-time machine learning techniques to monitor the state of manufacturing machines. 
However, making accurate predictions from raw sensor data is still a difficult challenge. 
In this work, a data processing pipeline is developed to predict the condition of a milling 
machine tool using raw sensor data. Acceleration and audio time series sensor data is 
aggregated into blocks that correspond to the individual cutting operations of the 
Computer Numerical Control (CNC) milling machine. Each block of data is preprocessed 
using well-known and computationally efficient signal processing techniques. A novel 
kernel function is proposed to approximate the covariance between preprocessed blocks of 
time series data.  Several Gaussian process regression models are trained to predict tool 
condition, each with a different covariance kernel function. The model with the novel 
covariance function outperforms the models that use more common covariance functions. 
The trained models are expressed using the Predictive Model Markup Language (PMML), 
where possible, to demonstrate how the predictive model component of the pipeline can be 
represented in a standardized form. The tool condition model is shown to be accurate, 
especially when predicting the condition of lightly worn tools. 
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1 Introduction 

The adoption of predictive models within the industrial sector promises to bring substantially 
increased operational effectiveness as well as the development of new services and products [1]. 
With the increasing availability of low-cost sensors, it is possible to collect real-time vibration and 
audio data from critical locations inside automated manufacturing machines. However, converting 
raw sensor data into accurate and actionable information is still a challenge. While the adoption of 
automated manufacturing machines has led to more efficient manufacturing processes, there is still 
a need for improved monitoring solutions [2]. 

For milling and turning processes, it is common for a human operator to use sound, vibration 
or visual methods to identify whether the mechanical process is operating smoothly. Replicating 
such monitoring techniques with computer systems, however, has proven difficult because of the 
volume, sparsity and noise that is associated with sensor data [3]. With the adoption of Computer 
Numerical Control (CNC) machines and production-line manufacturing, manufacturing machines 
operate with less human input. However, many automated manufacturing machines are unable to 
detect when a process is faulty until damage has been caused to the product or the machine. There 
is a need for better automated techniques to monitor manufacturing machines and to ensure that 
they operate efficiently. 

This work presents a technique for deducing the condition of a milling machine tool, using 
acceleration and audio signals. In particular, a pipeline for mapping raw sensor data to predicted 
tool condition values is developed. This work also presents solutions to several real-time 
challenges in automated monitoring of manufacturing systems, namely: high data volume, high 
noise content, and information sparsity [3]. In particular, the data volume challenge is alleviated 
by preprocessing the data into blocks. The data sparsity challenge is overcome by using several 
well-established signal processing techniques, including the Fast Fourier Transform (FFT). 
Finally, Gaussian process regression (GPR) is used to learn a mapping between the preprocessed 
sensor data and physical condition of the machine tool, in a manner that is not sensitive to noise in 
the observed condition. 

Accurate monitoring of tool condition during machine operations may provide significant 
benefits in terms of cost and part quality. It is reported that 6.8 % [4] of the downtime in modern 
machine tools is attributed to tool failure, while one study puts the figure closer to 20 % [5]. There 
is significant theoretical study and background literature that deals with sensing, processing 
methods and reliability assessment of manufacturing systems [6–8]. A review of monitoring and 
control of manufacturing processes for increasing process efficiency, tooling life, and product 
quality is provided in [9]. Extensive research has been performed to establish methods for 
monitoring tool condition in milling operations. In these methods, various signals such as acoustic 
emission, machine vibration, cutting force, motor torque and motor current have been used to 
predict tool condition [10–16]. A detailed study of the correlation between tool wear and many of 
these signal types is presented in [17]. It has been reported that the ratio of high-band and low-
band machine vibration is correlated with tool wear in some experiments [18]. A number of 
researchers have attempted to use the skew and kurtosis coefficients of the audio and acceleration 
time series to predict the condition of the tool, but with mixed results [16, 19, 20]. However, the 
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adoption of advanced monitoring techniques in the manufacturing domain remains slow, despite 
ongoing research in the field [21]. It is reported that development of algorithms and paradigms that 
are autonomous from machine tool operators is critical to the adoption of advanced monitoring 
techniques on the shop floor [21]. These autonomous algorithms should perform signal feature 
extraction and decision making with minimal intervention from the operator, who should provide 
only simple input and information [21–23].  

In recent times, there has been increased interest in using machine learning techniques to 
develop accurate predictive models that perform well across a range of operating conditions. In 
[24], GPR is used successfully to predict tool condition, based on machine vibration and acoustic 
emission. The use of neural networks in tool condition prediction is also discussed extensively in 
the literature [23, 25–27]. It has been reported that neural networks can be used to simultaneously 
predict multiple values of interest, including tool condition, cutting force, and surface condition 
[28].  A wide range of tool condition monitoring techniques utilizing neural networks have also 
been reviewed by Dimla, Lister, and Leighton [22]. They concluded that artificial neural networks 
perform well on carefully selected experimental data, but there is a need for a multi-level system 
capable of handling unprocessed data. In particular, a useful tool condition monitoring system 
must automate the pre-processing, featurization and prediction steps, so the system can operate 
directly on raw sensor signals [22].  

The remainder of this paper is organized as follows: In Section 2, the experimental setup and 
wireless data collection hardware is introduced. In Section 3, an overview of the data processing 
pipeline and predictive model is provided. In Section 4, several signal processing techniques are 
used to reduce the dimensionality and sparsity of the data. In Section 5, a GPR model is developed 
to predict the tool condition of the CNC machine. The model is trained on the experimental data 
and the results are presented in Section 6. Section 7, discusses how the predictive model can be 
represented using the standardized Predictive Model Markup Language (PMML). The paper is 
concluded with a summary and discussion. 

2 Experimental Design and Monitoring Hardware 

This section describes how time series acceleration and acoustic data are collected from a 
CNC milling machine, namely a Mori Seiki NVD1500DCG. As shown in Fig. 1, a waterproof 
sensor unit from Infinite Uptime is attached to the vise of the milling machine. The sensor unit is 
capable of measuring both the audio and triaxial acceleration signals inside the milling machine. 
The acceleration signal is recorded in the x-, y- and z-directions. The acceleration sampling rate 
must be high enough to capture the signal from the four tool flutes as they remove material from 
the part. An acceleration sample rate of 1000 Hz is chosen to capture the 200 Hz signal generated 
by the cutting tool when the spindle speed is set to 3000 RPM. The audio signal is recorded at 
8000 Hz. Data is streamed from the sensor to a laptop computer using a Universal Serial Bus 
(USB) connection. 

The machining data, such as tool position and rotation speed, are recorded from the FANUC 
controller. An MTConnect [29] agent is used to synchronize the data from the milling machine 
and stream it to a laptop computer, along with a timestamp. A post-processing step is used to 
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convert the machining data into a set of cutting operations performed by the machine. In the post-
processing step, a simulation of the milling machine operations is used to distinguish actual 
material removal operations from other tool movements (e.g., movement above the workpiece) 
[30]. Using simulation, it is possible extract the behavior of the machine from the raw numerical 
control (NC) code. The details of the post-processing simulation step have been described in an 
earlier work [31]. 

 

Figure 1. Experimental setup in a Mori Seiki NVD1500DCG milling machine showing (1) the 
cutting tool and (2) the sensor unit from Infinite Uptime. 

 

 

Figure 2. Machining strategy for tool condition experiments. 

The milling machine was programmed to produce a number of simple parts by removing 
material from a square block of 1018 cold finish mild steel. The physical dimensions and 
mechanical properties of steel block are provided in Table 1. The trajectory path of the tool is 
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shown in Fig. 2. A total of 20 separate cutting operations were made in the production of each part. 
The milling machine was used to continuously produce parts until the cutting tool became severely 
damaged, or the cutting tool broke. The tool condition experiments were conducted using an Atrax 
solid carbide 4-flute square end mill, and a continuous supply of coolant. The properties of the end 
mill are listed in Table 2. The milling machine operating parameters and experimental statistics 
are shown in Table 3. Under standard operating conditions a feed rate of 152.1 mm/min and a 
spindle speed of 4500 RPM would be used. To accelerate tool wear, the feed rate was increased to 
304.2 mm/min and the spindle speed was reduced to 3000 RPM. A cutting depth of 0.5mm was 
used. With these operating parameters, the life of the tool was reduced to 30 – 60 minutes. The 
predominant type of tool wear was abrasive flank wear, under both the normal and accelerated-
wear operating conditions. However, rapid failure of the tool caused by chipping of the tool flank 
was occasionally observed under the accelerated-wear operating conditions. It should be noted that 
this type of failure is much more difficult to predict than gradual degradation.  

A number of different methods have been proposed to measure the condition of a machine 
tool. Several authors investigating tool condition have used quantitative measurements, such as 
the wear depth, as tool condition measures [32]. However, these measures often fail to fully 
describe the tool condition, especially when there is irregular wear or chipping in the tool flank 
[25]. The condition of the milling machine tool is defined as, 𝑦 ∈ [0,1], based on the remaining 
lifetime of the tool, as estimated after manually examining the tool with a microscope. Tool 
condition estimation is based on the most heavily worn flute. The scale is defined such that 1.0 
indicates a new tool in perfect condition, and 0.5 indicates the condition at which the tool would 
be replaced in a commercial manufacturing operation as judged by a machine operator. Fig. 3 
shows examples of different levels of tool condition. A quantitative description of the proposed 
tool condition metric is provided in Table 4. 

Table 1. Physical and mechanical properties of the 1018 cold finish mild steel block, used in the tool condition 
experiments. 

Physical or Material Property Value 

Work piece material 1018 cold finish mild steel 

Work piece dimensions 63.5mm x 63.5mm square, cut to a length of 56mm 

Tensile strength 64,000 psi 

Yield strength 54,000 psi 

Brinell hardness 126 
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Table 2. Physical and material properties of the Atrax solid carbide square end-mill, used in the tool condition 
experiments 

Physical or Material Property Value 

Tool Material Solid Carbide 

Finish/Coating Titanium Nitride 

Mill Diameter 3/16” (4.7625 mm) 

Shank Diameter 3/16” (4.7625 mm) 

Flute Type Spiral 

Number of Flutes 4 
 

Table 3. Experimental statistics and operating parameters for the Mori Seiki NVD1500DCG milling machine 

Parameter/Statistic Value 

Parts produced 79 

Machine tools used 18 

Machine feed rate 304.4 mm/minute 

Machine tool rotation rate 3000 revolutions per minute (RPM) 

Machine tool chip load 0.001 in/tooth (0.0254 mm/tooth) 
 

Table 4. Quantitative tool condition evaluation rubric. Linear interpolation is used where the tool condition falls 
between two limits. The tool condition parameter 𝑦 is directly related to maximum flank wear on the range 𝑦 ∈
	[0.5, 1.0]. For 𝑦 ∈ [0, 0.5) the evaluation of tool condition is judged on a range of possible failure modes. 

Tool Condition (𝒚) Value 

1.0 New tool 

0.5 Maximum flank wear of 50 microns on at least one of the four tool flutes. 

0.3 Maximum flank wear of 150 microns on at least one of the four tool flutes, or 
mean flank wear of 100 microns on at least one of the four tool flutes.  

0.2 
Nose, flank or crater wear exceeding 200 microns on at least one of the tool 
flutes. Chipping is commonly observed at this wear level. Milling is not 
continued if this wear level is observed after the completion of a part. 

0.1 
Flank wear or chipping exceeding 300 microns. Damage to the tool is clearly 
visible without a microscope. Milling is stopped immediately if this wear level is 
reached. 

0 Complete failure of the tool. Milling is stopped immediately if this wear level is 
reached. 
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Figure 3. Solid carbide end mill flute in different states of condition. A lower value of y indicates 
higher tool wear condition. 
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3 A Pipeline for Time Series Data Processing 

One main contribution of this work is to provide a data processing pipeline that can be used 
to generate intermittent predictions from a high-volume stream of noisy time series data. 
Standardized data processing techniques and model representations are used where possible, to 
ensure that the data processing pipeline can easily be deployed in a real manufacturing facility. In 
this section, an overview of the proposed data processing pipeline is provided. In subsequent 
sections, each component of the data processing pipeline is described in detail, using tool condition 
prediction as an example use-case.  

Fig. 4 shows the proposed data processing pipeline. Acceleration and audio time series 
signals are recorded at the milling machine. In the first component of the pipeline, information 
from the CNC machine controller is used to label the blocks of time series data according to the 
machine action. This helps to organize the large time series signals into more manageable chunks. 
In the second component, the time series data is transformed into the frequency domain. This 
transformation allows the volume of the data to be reduced without significant loss of relevant 
information. The FFT is chosen to create a frequency domain representation of the raw time series 
data, as it is computationally efficient and widely understood. In the final component, a trained 
predictive model is used to map the frequency-domain data to the output value, namely the tool 
condition.  

The predictive model is represented using the standardized Predictive Model Markup 
Language (PMML) format [33]. This allows the trained model to be easily transferred from 
research to the factory floor, in a controlled and standardized manner. A scalable and production-
ready implementation of this pipeline could be composed of a preprocessing module and a scoring 
module. The preprocessing module would reduce the time series data to feature vectors using FFT, 
and the scoring module would generate predictions using a PMML-compliant scoring engine. This 
pipeline would be relatively easy to implement in any computing environment that supports FFT 
and PMML. 
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Figure 4. Diagram showing the proposed data processing pipeline. In the pipeline, raw time series 
data from the milling machine sensors is mapped to tool condition predictions. 
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4 Time Series Data Segmentation 

In this section, the time series data is segmented into blocks and labelled using the controller 
data. The rate of data produced by the acceleration and audio sensors is such that directly learning 
from the data is difficult. Furthermore, the acceleration and audio data is delivered as a continuous 
stream of samples, while the actual manufacturing process is a series of more structured operations. 
The amplitude of the acceleration signal is related to the type of cutting operation the machine is 
performing, as can be seen in Fig 5. A human operator monitoring the manufacturing machine 
would be aware of this relationship, and use this supplementary information when analyzing the 
state of the machine. Therefore, segmenting the time series data according to machine operation is 
an important step for predicting tool condition. 

The milling machine performs a number of different operations to produce a part. The data 
from the milling machine controller is used to automatically segment and label the time series data. 
Fig. 6 shows the time series data in the production of a part that involves 10 climb-cutting 
operations and 10 conventional-cutting operations. Each cutting operation is separated by a brief 
air-cutting operation. The term “air-cutting” is used to describe the operation of running the spindle 
without removing material. The terms “climb cutting” and “conventional cutting” refer to the 
relationship between the rotation direction to the feed direction. A detailed description of these 
operations is provided in an earlier work [31]. 

 

Figure 5. Acceleration time series measured while a single part was being produced. The time 
series data shows that the machine performs a series of repetitive actions, separated by brief idle periods. 
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Figure 6. The acceleration time series after each action is labelled using data from the machine 
controller 

4.1 AGGREGATION AND NOISE REDUCTION 

As the audio and vibration signals are periodic, it seems natural to analyze the signals in the 
frequency domain. Technology involving filtering, modulation, and wave propagation often relies 
upon spectral analysis via, for example, the Fourier transform. A human machine operator relies 
on spectral analysis as well [34]. The machine operator classifies audio and vibration signals 
according to high and low pitch as well as purity, even if only subconsciously. This section 
describes how the sparse and noisy time-domain signals are transformed into intermediate 
representations which capture the sort of information required to evaluate the state of a 
manufacturing process. 

The goal of this section is to obtain the power spectrum of the acceleration and audio signals, 
whilst reducing the influence of noise. It is assumed that the frequency content of the recorded 
signals is solely dependent on the condition of the machine tool and the type of operation being 
performed by the machine. It follows from this assumption that the frequency content of the signals 
should be relatively constant over the duration of each machine operation. It is also assumed that 
the audio and acceleration signals are laden with noise.  

The discrete Fourier transform (DFT) is often used to estimate the power spectrum of a signal. 
However, the standard method of estimating the power spectrum using the Fourier transform tends 
to be susceptible to noise caused by imperfect and finite data [35]. An alternative technique, 
introduced by Welch [36] that involves averaging multiple periodograms, is used to overcome 
some of these problems. Welch's method is an improvement on the standard periodogram method, 
in that it reduces noise in the estimated power spectra in exchange for reducing the frequency 
resolution [37]. In Welch’s method, a discrete time series signal 𝑠, is divided into 𝐾 successive 
blocks 𝑠/, using a window function 𝑤: 
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𝑠/(𝑛) = 𝑤(𝑛)𝑠(𝑛 +𝑚𝑅),					𝑛 = 0…𝑀 − 1, 𝑚 = 	0…𝐾 − 1 (1) 

where 𝑀 is the length of the window and 𝑅 is the window hop size [38]. The parameters M and R 
control the number of periodograms which are averaged to give the periodogram estimate. The 
standard periodogram method uses a rectangular window, but in this work the common Hann 
window function is used to reduce the spectral leakage [34]: 

𝑤(𝑛) = : 	0.5 ;1 − cos ;	
2𝜋𝑛
𝑀 − 1	AA 				𝑖𝑓				𝑛 ≤ 𝑀 − 1;	

				0																																														𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.											
	 (2)	

The periodogram of the 𝑚KL block is calculated using the Fourier transform: 

𝒑/(𝜔O) =
1
𝑀
PQ 𝑠/(𝑛)𝑒

RSTUVOW

WRX

VYZ

P

T

.	 (3)	

where 𝜔O  is the kth point in the discretized frequency domain. The Welch estimate of the power 
spectral density is given by: 

𝒔](𝜔O) =
1
𝐾 Q 𝒑/(𝜔O).

^RX

/YZ

 		(4) 

Welch’s method essentially computes the average of periodograms across time. Each periodogram 
is obtained from a windowed segment of the time series. In this study, a window overlap of 50% 
is used. A Hann window length of 256 points is chosen for the vibration and audio signals. The 
length of the window is equal to the number of intervals in the discretized frequency domain. In 
this study, discretizing the frequency domain over 256 intervals provides a minimal but sufficient 
representation of the true periodogram. 

Alternative methods such as discrete wavelet transform (DWT) could be used to construct a 
time-frequency representation of the data in each time series block. However, the aim of this study 
is not to explore how the signal changes with time during a single machine operation. Instead, the 
aim is to explore how the average signal generated during one machine operation compares with 
the average signal generated during a previous machine operation. Therefore, applying DFT with 
Welch’s method is simpler and more suitable in this context.  

When observing a milling machine operates in a lab setting, the acceleration signal amplitude 
increases as the cutting tool wears. As shown in Fig. 7, the acceleration signal amplitude is much 
larger when the tool is worn, across most frequencies. Another interesting observation is that the 
sharp tool produces a more peaked periodogram, corresponding to pure vibration modes, while the 
worn tool produces a flatter periodogram. The audio periodogram recorded with a sharp tool also 
differs from that recorded with a worn tool, as can be seen in Fig. 8. 
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Figure 7. Comparison of the acceleration periodograms recorded with a sharp tool and a worn tool, 
while a climb-cutting operation was being performed 

 

Figure 8. Comparison of the audio periodograms recorded with a sharp tool and a worn tool, while 
a climb-cutting operation was being performed 

5 Tool Condition Prediction with Gaussian Process Regression 

In this section, a mapping between the periodograms and the tool condition is developed 
using the GPR technique. The GPR technique provides a posterior distribution over the output, by 
comparing input features using a kernel function. The regression task has a dataset 𝒟 =
a𝒙S, 𝑦ScSYX

V
	with 𝐷-dimensional inputs 𝒙S and scalar outputs 𝑦S. The goal of GPR is to learn the 

unknown function 𝑦S = 𝑓(𝒙𝒊) by incorporating prior knowledge captured in the historical data.  
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In GPR, a Gaussian process (GP) is used as a prior to describe the distribution on the target 
function value 𝑓(𝒙) at an unseen input 𝒙. A GP is a generalization of the Gaussian probability 
distribution for which any finite linear combination of samples has a joint Gaussian distribution 
[39]. A GP can be fully specified by its mean function 𝑚(𝒙) and covariance kernel function 
𝑘(𝒙, 𝒙′):  

𝑝(𝒇X:V) = 𝒢𝒫m𝑚(𝒙), 𝑘(𝒙, 𝒙n)o,	 (5)	

where 𝒇𝟏:𝒏 = m𝑓(𝑥X), 𝑓(𝑥T),… , 𝑓(𝑥V)o are latent function values. The mean function and 
covariance kernel are defined as [40]: 

𝑚(𝒙) = 𝔼[𝑓(𝒙)],	 (6)	

															𝑘(𝒙, 𝒙′) = covm𝑓(𝒙), 𝑓(𝒙n)o.				 (7)	

The mean function 𝑚(𝒙) captures the overall trend in the target function value, and a kernel 
function 𝑘(𝒙, 𝒙′) is used to approximate the covariance between the two function values 𝑓(𝒙) and 
𝑓(𝒙′). 

The acceleration and audio periodograms are used as input features to the tool condition 
model. The vibration periodogram 𝒔]wS ∈ ℝTyz	 and acoustic periodogram 𝒔]{S ∈ ℝTyz are defined 
for each milling machine operation	𝑖.  The condition of the milling tool tends to change gradually 
under normal operation. For this reason, the previous condition of the milling tool is also included 
in the feature vector. Altogether, input features for each milling operation	𝑖, are denoted as: 

𝒙S = |
𝑐S
𝒔]wS

𝒔]{S
~.	 (8)	

where 𝑐S is the best estimate of the previous tool condition. Let the data from the production of 
each part be represented as the subset 𝒟� = {𝒙O, 𝑦O}OYX/ , where 𝑚 is the number of points recorded 
over the duration of the experiment. During the training procedure, the previous tool condition is 
known, so 𝑐O can be set equal to 𝑦ORX: 

𝑐K�{SVSV�O = �	
	1												𝑓𝑜𝑟	𝑘 = 1,													
𝑦ORX							𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.													 (9)	

 

To make a new prediction using the scoring procedure, the feature vector 𝒙V�� first needs to be 
derived from the milling machine data. In a manufacturing setting, the acceleration and audio 
periodograms can be calculated immediately after each operation is performed by the milling 
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machine. However, the previous tool condition value 	𝑦ORX,	will not be known. Therefore, the 
previous tool condition prediction, 𝑦]ORX, is used the scoring procedure. That is: 

𝑐K��KSV�O = �	
	1												𝑓𝑜𝑟	𝑘 = 1,													
𝑦]ORX							𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.													 (10)	

 

This makes the prediction process recursive. The first prediction is made by assuming a new tool, 
i.e. 𝑐K��KSV�O = 1.  All subsequent predictions are made using the previous prediction as a starting 
point. 

5.1 NOISE MODEL 

Each tool condition label 𝑦S in the training and testing datasets are assigned manually, so they 
are likely to contain some random error. This error is modelled as random noise in the output value. 
Each observed value is modelled by the function 𝑦S = 𝑓(𝒙𝒊) + 𝜖 where 𝜖 is the noise term. It is 
assumed that this noise follows an independent, identically distributed Gaussian distribution with 
zero mean and variance 𝜎�T: 

𝜖~𝒩(0, 𝜎�T).	 (11)	

5.2 KERNEL FUNCTION 

The covariance kernel function provides an efficient method to estimate the correlation 
between two feature vectors. In GPR, the kernel function is used to estimate the covariance 
between two input vectors, 𝒙S and 𝒙�. The type of kernel function chosen can strongly affect the 
representability of the GPR model, and influence the accuracy of the predictions. The squared 
exponential (SE) kernel is a common choice for a GPR model: 

𝑘��m𝒙S, 𝒙�o = 𝜎Texp ;−
1
2ℓT

��𝒙S − 𝒙���
T
A,	 (12)	

 

where the kernel function is described by the hyperparameters, 𝜎 and ℓ. The hyperparameter ℓ	is 
commonly referred to as the length scale. The length scale quantifies whether two points at a 
certain distance apart in the input space are considered close together [39]. The signal variance 𝜎T 
quantifies the overall magnitude of the covariance value. While the squared exponential (SE) 
kernel function is a good choice for many applications, it does not allow the length scale to vary 
for each dimension in the feature vector. A common solution is to use an automatic relevance 
determination (ARD) kernel, which assigns a different length scale to each dimension [41]. The 
ARD SE kernel is commonly used with GPR: 

𝑘���	��m𝒙S, 𝒙�o = 𝜎Texp �−
1
2
m𝒙S − 𝒙�o

�
diag(𝓵)RTm𝒙S − 𝒙�o¢.	 (13)	
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An ARD SE kernel provides the flexibility to adjust the relevance (weight) of each parameter in 
the feature vector where the parameter vector 𝓵 = (ℓX,… ℓS,… , ℓ/) quantifies the relevance of the 
input features. The ARD SE kernel has been shown to have good performance on a number of 
tasks including robot arm control and tool condition prediction [39, 42]. However, when using the 
ARD SE kernel, the number of hyperparameters grows linearly with the dimensional size of the 
feature vector. This can make the model prone to overfitting, depending on the hyperparameter 
optimization strategy [41]. 

An ideal kernel for the tool condition model would allow the length scale of each 
periodogram to be varied independently, without introducing a large number of additional 
hyperparameters. One common way to build a kernel over multiple data types is to add the kernels 
together [43]. A new kernel is created by combining several Gaussian kernels. The resulting sum 
of square exponential (SSE) kernel is defined as follows: 

𝑘���m𝒙S, 𝒙�o = 𝜎XTexp �−
1
2ℓXT

��𝑐S − 𝑐���
T
¢ + 𝜎TTexp �−

1
2ℓTT

��𝒔]wS − 𝒔]w
� ��

T
¢

+ 𝜎£Texp �−
1
2ℓ£T

��𝒔]𝒂S − 𝒔]𝒂
� ��

T
			¢,	

(14)	

 

where	𝜎X, 𝜎T, 𝜎£, ℓX, ℓT		and	ℓ£ are the parameters to be determined for the SSE kernel function. 
The first term in the SSE kernel captures the similarity of the previous tool condition, for two 
inputs 𝒙S	and	𝒙�. The second and third terms capture the similarity of the acceleration and audio 
periodograms, respectively. It is common practice in GPR model to include the noise term 𝜎𝜖T  as 
another hyperparameter to be optimized in the training procedure.  Altogether, a model with the 
SSE kernel function is described by seven hyperparameters,	𝜽	=	[𝜎X, 𝜎T, 𝜎£, ℓX, ℓT, ℓ£, 𝜎�].		When 
compared to the ARD kernel, the SSE kernel has fewer hyperparameters, but still allows the length 
scale of the previous state and periodograms to be adjusted independently.  

5.3 TRAINING PROCEDURE 

It follows from the assumption of Gaussian noise, a posterior distribution over Gaussian 
process functions can be analytically inferred. Hence, it is possible to analytically derive the 
marginal likelihood of the observed function values	𝑦, given only hyperparameters 𝜽, and the input 
vectors. The marginal distribution of the observations can be expressed as [41]: 

𝑝(𝒚X:V|𝜽) = ¨𝑝(𝒚X:V|𝒇X:V, 𝜽) 𝑝(𝒇X:V|𝜽)	𝑑𝒇X:V.	 (15)	

 

The unknown function 𝒇 can be marginalized out of Eq 15 to obtain the marginal likelihood of the 
training observations. The hyperparameters	𝜽 are chosen to maximize the marginal likelihood of 
the observations in the training dataset 𝓓. An optimization equation is formed to maximize the 
marginal likelihood, and obtain the optimum hyperparameters 𝜽∗ [41]: 
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𝜽∗ = arg	max
θ

log𝑝 (𝐲X:°|𝜽	),	 (16)	

𝜽∗ = arg	max
±

;−
𝟏
𝟐
(𝐲X:°)³(𝐊 + 𝜎�T𝐈)R𝟏𝐲X:°	 −

1
2 log

|𝐊 + 𝜎�T𝐈| −
n
2 log2𝜋	A	

(17)	

 

Finding the optimum hyperparameters using Eq 17 requires an iterative approach, as the value of 
the kernel matrix K is inherently dependent on the hyperparameters.  The process for obtaining 
the optimum hyperparameters is well documented in the literature [41]. In this study, the 
MATLAB GPML (Gaussian Processes for Machine Learning) library [44] is chosen to optimize 
the hyperparameters.  

5.4 SCORING PROCEDURE 

In machine learning, the scoring process generally involves using a predictive model to 
estimate some output value based on a set of input features 𝒙. In GPR, the aim of the scoring 
procedure is to return a posterior distribution 𝑓V��  on the output value, based on the  unseen input 
𝒙V��. In the case where the mean function is zero, the (hidden) response value 𝑓V��and the 
observed outputs 𝒚X:V = {𝑦X,… , 𝑦V} follow the joint Gaussian distribution as: 

¶ 𝒚
X:V

𝑓V��· ~𝒩 ;𝟎, ¶
(𝐊 + 𝜎�T𝐈) 𝒌

𝒌� 𝑘(𝒙V��, 𝒙V��)
·A,	 (18)	

where 𝒌� 	= 	 m𝑘(𝒙X, 𝒙V��), . . . , 𝑘(𝒙V, 𝒙V��)o. The posterior distribution on the response 𝑓V��  for 
the newly observed input 𝒙V�� given the historical data can then be expressed as a Gaussian 
distribution: 

𝑓V��~𝒩m𝜇(𝒙V��|𝓓V), 𝜎	T(𝒙V��|𝓓V)o.	 (19)	

The posterior mean 𝜇(𝒙V��|𝓓V), and associated variance 𝜎T(𝒙V��|𝓓V), can be calculated 
directly. That is, the mean and the variance of  the posterior distribution can be expressed as [41]:  

𝜇(𝒙V��|𝓓V) = 𝒌�(𝐊 + 𝜎�T𝐈)RX𝒚X:V,	 (20)	

𝜎	T(𝒙V��|𝓓V) = 𝑘(𝒙V��, 𝒙V��) − 𝒌�(𝐊 + 𝜎�T𝐈)RX𝒌.	 (21)	

As the posterior distribution is one-dimensional Gaussian, the posterior mean and variance are 
sufficient to fully describe the posterior distribution. 

6 Results 

When evaluating machine learning models, it is common practice to divide the data set into 
a training set and a testing set. The model is trained on the training set and then tested on the 
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previously unseen data in the testing set. In applied machine learning research, it is common to 
randomly assign data points to the training and testing sets, but this method is not recommended 
for time series data [45]. Instead, 3 experiments are selected for the testing set, and data from the 
remaining 15 experiments is assigned to the training set. 

Two GP models are trained to predict tool condition; the first is trained with climb-cutting 
data from the training set, and the second is trained with conventional-cutting data from the training 
set. The two models are then used together to predict the condition of the tool for each test case. 
Predictions are made in the order that the testing data was recorded.  

In our experiments, models are trained using three different kernel functions. The prediction 
accuracy for each case is shown in Table 5. A model is said to generalize well if it achieves a 
similar performance on the training and testing set, or overfit if it fits well to the training data set 
but not to the test data set. The results demonstrate that the model with the SE kernel generalizes 
well, but it underfits the training data. The model with the ARD SE kernel however overfits the 
training data, but the model does not achieve good performance on the testing set. The model with 
the SSE kernel generalizes well and achieves reasonably good performance.  

Fig. 9 shows the model prediction results when the previous tool condition state 𝑐S is included 
in the input features.  On the other hand, Fig. 10 shows tool condition predictions made without 
the state feature. The predictions in Fig. 10 show much larger variation in time than those with the 
previous state feature, as seen in Fig. 9. This qualitatively indicates that the previous condition 
state is a useful feature in the model. 

Fig. 9 and Fig. 10 also reveal that the confidence interval on the predicted value is large when 
the tool is worn. There are several reasons for this: firstly, the tool is more likely to break or 
undergo rapid condition change at this stage; hence, there is less certainty when predicting the 
condition of a heavily worn tool. Secondly, the training set contains less data for heavily worn 
tools, as some of the tests were ended abruptly when the tool broke. The reduced amount of training 
data for heavily worn tools makes future predictions less certain. Finally, the amplitudes of the 
acceleration signal generated by heavily worn tools have a much larger variance. For example, if 
a single flute on the tool is worn heavily, the tool is no longer symmetric so the corresponding 
acceleration signal will have a very high amplitude. On the other hand, if the tool is worn evenly 
the corresponding acceleration signal may have a much smaller amplitude. Many of these 
limitations may have been exacerbated by the accelerated nature of the tool wear experiment. It is 
also important to note that tool condition would rarely be allowed to pass below 𝑦 = 0.5 in a real 
manufacturing setting. Once the tool exceeds this level of wear, the surface quality of the part is 
likely to deteriorate quickly. 
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Table 5. Model performance on training set and testing set. Performance is measured using root mean squared error 
(RMSE). A smaller value of RMSE indicates a better fit. 

Model 
RMSE 

Training Set Testing Set 

GP with squared exponential (SE) kernel 0.102 0.151 

GP with ARD squared exponential (ARD SE) kernel 0.011 0.191 

GP with sum of squared exponential (SSE) kernel 0.021 0.063 

 

 

Figure 9. Tool condition prediction for three testing data sets using the model with the SSE kernel.  
Each plot represents a test where the milling machine was run until the cutting tool became severely worn or 
broken. The shaded region represents the 90% confidence interval for each prediction. 

 

Figure 10. Tool condition prediction for three testing data sets using the model with the SSE kernel. 
For these plots, the previous state 𝑐S  was omitted from the feature vector when training and testing the model. 
The shaded region represents the 90% confidence 
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7 Standardizing Components of the Data Processing Pipeline 

When developing a predictive model for industrial use, it is highly beneficial if the trained 
model can be represented in a standardized manner [46]. The need for standardization is 
particularly high in large organizations, where the predictive models may be shared between 
people or departments. This section discusses how the proposed data processing pipeline can be 
expressed in a standardized manner, using the PMML format [47].  

The core of the proposed data processing pipeline is the GPR predictive model. The output 
of a trained GPR model is dependent on multiple factors, including the choice of mean kernel, the 
choice of covariance kernel, the model hyperparameters, and the training dataset. To transfer a 
trained GPR model between computing environments, it is also necessary to transfer this 
information. The PMML standard makes this information transfer less troublesome, by defining a 
standardized way to represent certain types of predictive models. A standardized representation 
for GPR models was introduced in the latest PMML specification, PMML 4.3 [48]. 

The GPR models developed in this work are expressed using PMML 4.3, where possible. 
The current PMML standard supports four covariance kernel types, namely the SE kernel, the 
ARD SE kernel, the absolute exponential kernel and the generalized exponential kernel [47]. 
Therefore, it is possible to represent the SE and ARD SE tool condition models with PMML 4.3. 
The PMML representation of a SE GPR model is shown in Fig. 11. The PMML representation of 
the ARD SE models is similar to that for the SE model, but it specifies a different covariance 
kernel and a different set of hyperparameters. The PMML 4.3 standard does not support composite 
covariance kernels that are created by the addition or multiplication of other standard kernel types. 
Unfortunately, the proposed SSE kernel cannot be represented using PMML 4.3. Future versions 
of PMML should consider supporting the addition and multiplication of covariance kernels, as 
addition or multiplication of kernels is commonly used to create new kernels with a range desirable 
properties [43]. A CompositeKernel element is proposed for consideration in future PMML 
releases. An example of the proposed CompositeKernel is shown in Fig. 12. The operation attribute 
of the CompositeKernel element is used to specify whether nested kernels are combined using 
addition or multiplication. The adoption of the proposed CompositeKernel would allow composite 
covariance kernels to be represented using PMML, in a fully standardized manner, with a minimal 
change to the existing specification. 
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Figure 11. Predictive model markup language (PMML) representation of the Gaussian process 
regression (GPR) model use to predict the condition of machine tools when performing climb-cutting 
operations. In this model the squared exponential (SE) covariance kernel is used. 

 

Figure 12. An example of the proposed CompositeKernel element, expressed in the predictive model 
markup language (PMML). In this example, three squared exponential kernels are added together to form a 
composite covariance kernel. 
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8 Summary and Discussion 

This study demonstrates how a data processing pipeline can be used to map raw sensor data 
to tool condition predictions. Information from the milling machine controller is used to divide the 
time series signals into discrete blocks of data. Each block of data is preprocessed using well-
known and computationally efficient signal processing techniques. A non-parametric regression 
model, namely GPR, is then used to approximate the complex relationship between the 
preprocessed data and the target value.  This pipeline-based approach is practical for use in a real 
manufacturing setting, as it allows raw sensor data to be mapped to tool condition predictions in a 
fast and robust manner.   

The GP model provides confidence bounds for the predictive estimations, which are useful 
when interpreting the reliability of a prediction at some arbitrary time. The development of a tool 
condition model that produces a distribution over the current state of the machine is relatively 
novel, as most existing approaches just aim to predict a single value. The confidence bounds would 
likely prove useful in a practical application where the tool condition predictions are used to 
determine when to change machine tools.  

The use of Welch’s method to calculate the power spectrum results in a noticeably smoother 
spectrum, with much less noise between the frequency peaks.  Welch’s method also provides a 
way to reduce the time series from an arbitrary length to specific number of points. The 
transformation from the time domain to the frequency domain results in a significant dimensional 
reduction. The acceleration time series signal for each cutting operation contains on the order of 
10,000 points and the audio time series contains on the order of 100,000 points. By applying 
Welch’s method, these signals are each reduced to 256 discrete points in the frequency domain. 
This corresponds to an order of magnitude dimension reduction in the acceleration data, and two 
orders of magnitude reduction in the acoustic data. Whilst the loss of frequency resolution is often 
undesirable in signal processing applications, it provides a convenient way to reduce the 
dimensionality of the data in this study. 

Future work could investigate how the performance of the models with SE or ARD SE 
kernels can be improved. The model with the SE kernel did not fit the dataset well, as a single 
length scale is used for all dimensions in the feature vector. It is possible that the performance of 
the SE kernel model could be improved by applying a normalization technique to the feature 
vectors. The ARD kernel over-fitted the training dataset leading to bad performance on the testing 
set. The overfitting problem could be solved in several ways, such as adjusting the hyperparameter 
optimization strategy, using cross-validation, or applying a prior to the hyperparameters [41]. 
Future work could investigate how a model with an ARD SE kernel could be used to automatically 
determine the relevance of different audio and acceleration frequencies.  

In this work, a composite covariance kernel is developed by combining a number of kernels.  
The introduction of the composite kernel allows the number of model hyperparameters to be 
reduced and improves model generalization for this application. Additionally, a CompositeKernel 
element is proposed as a potential extension of the current PMML specification. Future work could 
formalize the CompositeKernel element for adoption in the official PMML specification.  
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For the proposed data processing pipeline to have practical applications it must generalize 
well to a range of different machines and machine operations. Separate models for climb-cutting 
and conventional-cutting operations are trained in this work. However, it could be useful to train 
a single model that generalized well across multiple different machine operations. Future work 
could also investigate how to train a model which generalizes well across multiple types of milling 
machines. Another interesting research direction involves using a real-time adaptive GPR learning 
algorithm. In this case, the GPR algorithm only retains a subset of the observed data points. Using 
this technique would reduce computational demands and memory requirements, while improving 
generalizability across different parameter spaces [49]. 
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