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Abstract—The use of wireless communications in industrial

environments is motivated by the flexibility that wireless net-

works provide and their cost-efficient setup and maintenance.

Various wireless technologies have been introduced to satisfy

the strict industrial requirements. Time division multiple access

(TDMA) protocols have been widely exploited in various wireless

technologies due to the ease of implementation and packets

collision avoidance. In this work, we consider the problem of

scheduling multiple flows over a wireless network in industrial

environments. These flows represent the data coming from the

sensors to the controller and the control commands going to

the actuators from the controllers. These flows are characterized

by random strict deadlines for each packet in a flow following

a given probability distribution. Moreover, the schedule is built

over a frame of transmissions with the objective of minimizing

the total number of packets missing their deadlines. We obtain

the optimal scheduling scheme by formulating and solving

an unobservable Markov decision problem (UMDP). Then, we

obtain a sub-optimal scheduling scheme which has a near-optimal

performance for a wide range of system parameters. Finally, we

evaluate these scheduling schemes numerically to study the effects

of various system parameters on the performance.

I. INTRODUCTION

Various networking protocols have been introduced to meet

the requirements of the industrial enviornments and improve

control capabilities. Typically, wired networks have been em-

ployed based on structured cabling which is defined as cabling

infrastructure that consists of a number of standardized smaller

elements. Lately, industrial wireless technologies have been

recognized as attractive alternatives to their wired counter-

parts due to increased networking flexibility, and lower setup

and maintenance costs. These wireless technologies include

WirelessHART and ISA 100.11a. Various advantages and

disadvantages of these technologies have been considered in

the literature [1], [2].

The main challenge facing deployment of wireless networks

in industrial environments is the lack of reliability of such
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networks. The nature of wireless channel leads to considerable

bit errors and hence packets can be lost or delayed past their

intended delivery deadlines. Due to the importance of timing,

strict deadlines are commonly enforced for data packets in

industrial environments. To achieve these reliability goals,

time division multiple access (TDMA)-based medium access

control (MAC) protocols are used to eliminate the possibility

of intra-network interference and to increase the likelihood

that packets would meet their deadline requirements.

One of the major approaches to enhance wireless network

reliability is scheduling which ensures that only one network

node transmits at any given time. In addition, scheduling

makes it possible to introduce redundancy by transmitting the

same information packet over several time slots to increase

the chance of the packet reaching its destination correctly and

before its deadline. Many survey papers have been written

on scheduling in wireless sensor networks (WSN). The work

in [3] describes the network parameters that affect TDMA

scheduling and considers various performance measures in-

cluding latency, synchronization time, and energy consump-

tion, and the communication patterns supported by various

algorithms. Moreover, heuristic scheduling algorithms have

been surveyed in [4]. The scheduling algorithms that use

guaranteed time slot (GTS) in IEEE 802.15.4-based networks

have been compared in [5].

In this work, we consider the TDMA-based scheduling

problem for multiple real-time flows with strict deadlines. The

goal of the schedule is to minimize the total number of packets

missing their deadlines. The schedule is built at the beginning

of a frame to reduce the computational complexity of decision

making at every time slot. It is then updated at the beginning

of every new frame. The routing protocol is assumed to be

known. Therefore, the route for any flow from a certain source

to a certain destination is predetermined before the scheduling

problem is solved. The data flows carry either sensing data or

control commands. Hence, the packet generation process and

the deadlines are not assumed to be periodic. Instead, they are

assumed to have a stochastic nature with known probability

density functions.U.S. Government work not protected by U.S. copyright



Sensing data flows are typically periodic, but there are also

event-based signals that are aperiodic. The same is true for

control commands. This has motivated the consideration of

data flows with random deadlines in this paper. The problem

of scheduling flows with random deadline has been considered

in the literature [6]-[9]. In [6], a multi-class queuening network

is considered where the customers arrive in the network with

random deadlines. Each class has its own deadline probability

distribution. In [7], the problem of online packet scheduling is

considered in a multi-hop wired network, where each packet

has a weight indicating the importance of being delivered by

the deadline and the cumulative weights of packets delivered

before their deadlines are maximized using admission control

and scheduling. In [8], a packet scheduling algorithm is

proposed to optimize the performance in the case of having

both real-time and best effort flows concurrently. The traffic

characteristics of the flows are considered to be stochastic. The

randomness of deadlines in these works, namely [6]-[8], may

arise from the initial queueing delays and the randomnes of

data processing. In [9], the problem of providing timeliness

guarantees for multi-hop messages is considered, where the

effective deadlines of messages are determined by how long

the data is valid/operative and by what time it is needed

at the destination. The validity of the data depends on the

underlying physical processes and hence can be random and

the time it is needed at the destination is determined by the

criticality of the data and the time it takes to process the data.

In this paper, we solve the scheduling problem for frame-based

transmissions in a multi-hop network with random deadlines

where each wireless link has a certain packet transmission

success probability.

The problem of minimizing the number of packets missing

their deadlines is formulated as an unobservable Markov

decision problem (UMDP), which is a special case of partially

observable Markov decision problems (POMDPs) [10]. The

system state is not observable as we compute the schedule

at the beginning of the frame. The system state is defined

by the numbers of remaining time slots before the deadlines

and the numbers of remaining hops till the destinations. The

complexity of the obtained algorithm using the solution of

the UMDP has motivated finding a sub-optimal solution for

the problem through modifying the commonly used earliest

deadline first (EDF) algorithm to consider the randomness in

deadlines.

The rest of this paper is organized as follows. The system

model is presented in Section II. The optimal scheduling

problem is formulated and solved in Section III. The sub-

optimal scheduling is discussed in Section IV. In Section V,

numerical results are presented. Finally, Section VI presents

the concluding remarks.

II. SYSTEM MODEL

Consider a set of M wireless flows F = {F1, F2, ....FM} to

be scheduled over a single frequency band. The route for Fm

is denoted by φm. The length of φm, denoted by h∗
m, is the

total number of hops a packet in Fm has to go through before

it gets to its destination. A new packet arrives in Fm when the

deadline for the preceding packet in the same flow expires. The

schedule for the network flows is calculated every hyper-period

T , which consists of a fixed number of time slots. In the case

of an industrial environment with field devices that generate

packets in a periodic manner and the packet generation period

is a multiple of the duration of a time slot, the hyper-period

is commonly defined in the literature as the least common

multiple of the packet generation periods of the field devices

[11].

This paper does not consider the possibility of spatial

frequency reuse. Therefore, at most one node in the network

transmits in each time slot. This assumption is inline with

how WirelessHART and ISA100.11a are used. The wireless

channel between a node i and a node j, representing a single

hop in the route of Fm, is modeled as a binary erasure

channel that is independent of the packet generation process.

The quality of this channel is represented by the probability

ρi,j of successful transmission of a packet, called (packet)

success probability. The success probability is determined by

the channel impulse response for the physical channel between

nodes i and j as well as the wireless communications system’s

physical parameters such as transmission power, modulation

scheme, coding scheme, and targeted bit-error rate. Even

though the scheduling algorithms developed in this paper can

handle the possibility of having different success probabilities

for the channels between different pairs of nodes, we assume

that ρi,j = ρ, for all (i,j), for the sake of simplicity.

Each packet in Fm has a deadline that is modeled by a

positive discrete random variable Dm with probability mass

function fm(.). The discrete random variable Dm takes pos-

itive integer values denoted by dm ∈ Bm where Bm is the

space of the random deadlines and it can be be any subset of

{h∗
m, h∗

m +1, . . . , D∗
m}, where D∗

m can be infinite. The mean

and variance of Dm are denoted by µm and σ2
m, respectively.

We consider data transmission with strict deadlines, such that

each packet in Fm is discarded if it has not reached its intended

destination prior to its deadline. Regardless of whether a

packet in Fm succeeds or fails to reach its destination by its



deadline, the next packet in this flow is generated and released

at this deadline.

The network manager is responsible for generating sched-

ules for the field devices deployed in an industrial environ-

ment. The schedule for each hyper-period is generated just

before the beginning of that hyper-period. In this work, due to

the randomness of flow deadlines, we define the hyper-period

as the least common multiple of the nearest integer numbers

of time slots to the average deadlines of all the flows.

We derive an algorithm for finding the optimal scheduling

policy to be administrated by the network manager. This

algorithm is obtained by solving the UMDP formulated in

Section III.B to obtain a schedule for the next hyper-period.

We also introduce a sub-optimal scheduling strategy to reduce

the computational complexity of the scheduling process. The

sub-optimal algorithm exploits the statistical characteristics of

the flows to obtain near-optimal performance.

III. OPTIMAL SCHEDULING STRATEGY

In this section, we start by defining the system parameters

such as the states, the transition probabilities, and the cost

function for the optimization problem to be solved. Then, the

UMDP is formulated employing these parameters to introduce

the framework for obtaining the optimal scheduling strategy.

A. System Definition

The state of Fm at the beginning of a given time slot

is denoted by Sm = (tm, hm), where tm is the number

of remaining time slots before the deadline and hm is the

number of remaining hops on the route before reaching the

destination. The whole system state which is denoted by

S = (S1, S2, ...., SM ). In general, if a packet from Fm is

scheduled for transmission in a given time slot, Sm will

transition to (tm − 1, hm − 1) or (tm − 1, hm) depending on

whether the packet transmission succeeds or fails, respectively.

The value of tm is always greater than zero because a new

packet arrival occurs as soon as the previous packet deadline is

reached. Hence, tm changes directly from 1 to the the value

dm of the random deadline Dm for the next packet in Fm.

The number of remaining hops hm takes the value 0 when

a packet is successfully received at its destination and moves

directly from any value to h∗
m when the packet misses its

deadline. The state Sm = (1, 1) is a special state for any m,

because one would think the next state if a packet from Fm

is scheduled for transmission in a given time slot is (dm, h∗
m)

with dm representing the value for Dm for the next packet in

Fm, regardless of whether the packet transmission succeeds

or fails. However, this poses a challenge for computing the

total number of missed packets in the network, because such

a transition would not distinguish between packet transmission

success and failure. We solve this problem by letting the state

of the flow transition to the auxiliary state (dm, h∗
m + 1) if

the packet transmission succeeds and to the state (dm, h∗
m)

if it fails. The transitions from (dm, h∗
m + 1) will be to the

states (dm − 1, h∗
m − 1) and (dm − 1, h∗

m) depending on

whether the packet transmission succeeds or fails, respectively.

Various cases are described later during the discussion of state

transition probabilities.

The action to be chosen at any time slot is denoted by

A ∈ {1, 2, ....M}, and it determines which of the flows will

be served in this time slot.

The conditional transition probability of the system de-

scribes the transition from the state S to the state S̃ given

that an action A is chosen. It is denoted by P (S̃|S,A). The

value of this conditional probability is calculated as a function

of the conditional probabilities of individual flows as follows

P (S̃|S,A) =

M
∏

m=1

P (S̃m|Sm, A), (1)

where P (S̃m|Sm, A) is the conditional transition probability

of Sm given that the action A is chosen. In the following, we

provide expressions for these conditional transition probabili-

ties for all the flows given that action A = n is chosen. First,

we express the conditional transition probability of Sn given

that Fn is scheduled to be served in the current time slot.

P
(

S̃n|Sn, A = n
)

=















































ρ, (C1) or (C2),

ρfn(dn), (C3),

1− ρ, (C4), (C5), or (C6),

(1− ρ)fn(dn), (C7),

1, (C8) or (C9),

fn(dn), (C10) or (C11),
(2)

where, the conditions are defined as follows:

(C1) : S̃n = (tn − 1, hn − 1), Sn = (tn, hn),

min(h∗
n, tn) ≥ hn > 0, tn > 1,

(C2) : S̃n = (tn − 1, h∗
n − 1), Sn = (tn, h

∗
n + 1), tn ≥ h∗

n,

(C3) : S̃n = (dn, h
∗
n + 1), Sn = (1, 1), dn ∈ Bn,

(C4) : S̃n = (tn − 1, hn), Sn = (tn, hn), tn > hn > 0,

(C5) : S̃n = (hn − 1, h∗
n), Sn = (hn, hn), hn > 1,



(C6) : S̃n = (tn − 1, h∗
n), Sn = (tn, h

∗
n + 1), tn ≥ h∗

n,

(C7) : S̃n = (dn, h
∗
n), Sn = (1, 1), dn ∈ Bn,

(C8) : S̃n = (tn − 1, h∗
n), Sn = (tn, h

∗
n), 1 < tn < h∗

n,

(C9) : S̃n = (tn − 1, 0), Sn = (tn, 0), 1 < tn ≤ D∗
n − h∗

n,

(C10) : S̃n = (dn, h
∗
n), Sn = (1, 0), dn ∈ Bn,

(C11) : S̃n = (dn, h
∗
n), Sn = (1, h∗

n), h
∗
n > 1, dn ∈ Bn.

(C1) represents the successful transmission of the packet to

the following node on the route while the deadline has not

been reached yet, and hence the number of remaining hops is

decremented by 1. (C2) represents the successful transmission

of a packet at its first transmission from the source when the

previous packet was successfully transmitted to the destination

at the last time slot before the deadline. (C3) represents the

successful transmission of the packet to its destination at the

last time slot before the deadline, and hence the new deadline

is a random number following the distribution of fn(∗) and the

remaining number of hops is set to h∗
n+1 to indicate successful

reception. These three conditions cover all the cases where a

packet is successfully transmitted from one network node to

another.

Similarly, the conditions for transition probabilities in the

cases where the packet transmission fails are as follows. (C4)

represents the case where the transmitted packet has not been

successfully received by the following node on the route

while the deadline has not been reached yet. (C5) represents

the case where the packet transmission fails resulting in the

deadline to be missed because the number of remaining hops

is larger than the number of time slots left until the deadline.

(C6) represents the case where the first transmission of the

packet from the source fails when the previous packet was

successfully transmitted to the destination at the last time slot

before the deadline.

Moreover, (C7) represents the case where the transmission

fails and the packet does not make the last hop to the

destination and misses its deadline, and hence the new deadline

is a random number following the distribution of fn(∗) and

the remaining number of hops is set to h∗
n to indicate failed

transmission at the previous time slot for this flow.

Next we discuss the cases where no transmission is made

when the flow is chosen because either the packet has already

missed its deadline (C8) or been received at the destination

before the deadline (C9).

Furthermore, the conditions (C10) and (C11) represent

the cases in which no transmission occurs at the last time

slot before the deadline and hence the remaining number of

time slots resets to the new random deadline following the

distribution of fn(∗). While in the (C10) case the packet has

been received at the destination before the deadline, in the

(C11) case it has not. Fig. 1 shows the state transitions and

the respective probabilities for Sn when the action A = n is

chosen.

In general, if a packet from Fn is scheduled for transmission

in a given time slot, Sm = (tm, hm) for m 6= n, will

transition to (tm−1, hm) with probability 1. We now provide

the complete set of conditional transition probabilities for Sm

when Fn for n 6= m is scheduled to be served in the current

time slot.

P
(

S̃m|Sm, A = n
)

|{m 6=n}

=







1, (C12), (C13), (C14) or (C15),

fm(dm), (C16),
(3)

where, the conditions are defined as follows:

(C12) : S̃m = (tm − 1, hm), Sm = (tm, hm), tm > hm > 0,

(C13) : S̃m = (hm − 1, h∗
m), Sm = (hm, hm), hm > 1,

(C14) : S̃m = (tm − 1, 0), Sm = (tm, 0), tm > 1,

(C15) : S̃m = (tm − 1, h∗
m), Sm = (tm, h∗

m), 1 < tm < h∗
m,

(C16) : S̃m = (dm, h∗
m), Sm = (1, hm), dm ∈ Bm,

where (C12), (C13), (C14), and (C15) represent the case in

which tm > 1. (C12) represents the case in which the packet

in Fm has a remaining number of hops hm < tm, and hence

the packet will continue to be in the network after the current

time slot. (C13) represents the case where the packet in Fm has

a remaining number of hops hm = tm, and hence the packet

will miss its deadline as a result of not being scheduled for

transmission in the current time slot. While (C14) represents

the case where the packet in Fm has already successfully

arrived at the destination before its deadline. (C15) represents

the case where the packet has already missed its deadline.

Finally, (C16) represents the cases where the packet in Fm

had already been delivered to its destination, the packet had

already missed its deadline, or the packet will miss its deadline

as a result of not being scheduled for transmission in this time



Fig. 1. The Markov chain transitions of the nth flow when A = n is chosen.

slot. In all these cases, a random deadline for a new packet

from Fm will be selected following the distribution fm(∗), and

the remaining number of hops is set to h∗
m. Fig. 2 shows the

state transitions and the respective probabilities for Sm when

the action A = n, with n 6= m, is chosen.

The optimal scheduling strategy is determined by minimiz-

ing the total system cost over all possible schedules. The

system incurs a cost of one for each packet that misses its

deadline for being delivered to its destination. Suppose a

packet from Fn, for some n ∈ {1, 2, . . . ,M}, is selected

for transmission at time slot t ∈ {1, 2, . . . , T}. The system

incurs a cost of one in time slot t if Fn is in state (hn, hn),

for hn = 1, 2, . . . , h∗
n, and the packet transmission fails. In

addition, for each m ∈ {1, 2, . . . ,M}−{n}, the system incurs

a cost of one in time slot t if Fm is in state (hm, hm), for

hm = 1, 2, . . . , h∗
m. The transition cost of the system for Fm

is denoted by γ
(

S̃m|Sm, A = n
)

, where m and n can take

any values in {1, 2, . . . ,M}. It is given by:

γ
(

S̃m|Sm, A = n
)

=







1, (C17) or (C18),

0, Otherwise.
(4)

where, the conditions are defined as follows:

(C17) : S̃m = (hm − 1, h∗
m), Sm = (hm, hm), hm > 1,

(C18) : S̃m = (dm, h∗
m), Sm = (1, 1), dm ∈ Bm.

The total number of packets that miss their deadlines in

time slot t ∈ {1, 2, . . . , T} is given by:

γ
(

S̃|S,A
)

=
M
∑

m=1

γ
(

S̃m|Sm, A
)

,

∀S̃, S ∈ S, A ∈ A. (5)



Fig. 2. The Markov chain transitions of the mth flow when A = n is chosen while n 6= m.

B. Problem Formulation

In this subsection, we obtain the UMDP formulation for

the optimal scheduling problem where the system evolves

in a Markovian fashion depending on the chosen scheduling

actions at every time slot. Moreover, the schedule is computed

at the beginning of the hyper-period and the system state is

not observed during the hyper-period. Thus, the problem is

considered to be a finite horizon UMDP. The components of

the UMDP are defined as follows:

1) The state space, which is denoted by S , contains all the

system states S defined in Section III.A.

2) The actions space, which is denoted by A, is defined to

be the set of the flows indices {1, 2, . . . ,M}. The action

taken at the beginning of time slot t ∈ {1, 2, . . . , T} is

the flow from which a packet is scheduled for transmis-

sion during that time slot.

3) The transition probabilities between system states have

been defined in Section III.A.

4) The expected cost is the total number of packets missing

their deadlines in time slot t as a result if taking the

action A = n, as given by Equation (5).

In [12], the author shows that there exists a stationary

policy which is optimal for solving POMDP with the average

reward/cost criterion under two conditions: 1) the immediate

rewards are non-negative; and 2) the Markov chain which

represents the system progress is irreducible and ergodic. In

our problem, the Markov chain with the network states is

irreducible and ergodic. Thus, both conditions are satisfied

and the UMDP is a special case of the POMDP.

We define the belief vector P as a probability mass function

(pmf) on the set of all system states S , where PS denotes the

probability of a particular system state. The value of this belief

vector at the end of a time slot t ∈ {1, 2, . . . , T} is denoted by

P (t). This is the pmf for the set of system states at the end of

time slot t. The initial value of this belief vector, denoted by

P (0), is assumed to be known through the knowledge of the

network state at the beginning of the hyper-period. Moreover,

we denote the action taken at a time slot t by A(t), where



a packet from the selected flow is transmitted in time slot t.

The complete sequence of actions over the hyper-period is the

schedule, which is denoted by Asch =
(

A(1), A(2), . . . , A(T )
)

.

In UMDP, the belief update equation for a given time slot

depends on the action taken in that time slot only as no

information about the state is observed. Hence, the value of the

belief vector is updated over time for a given selected action

A(t) using the transition probabilities as follows

P
(t)

S̃
|A(t) = P

(t−1)
S P (S̃|S,A(t)), ∀S̃, S ∈ S, A(t) ∈ A, (6)

where the values of the belief vectors is calculated for all

t ∈ {1, 2, . . . , T} and for all A(t) ∈ A. We denote the set of

all the obtained belief vectors at the time t ∈ {1, 2, . . . , T} by

P(t).

As the whole schedule Asch is computed and fixed at the

beginning of the hyper-period and the network is not observed

during the hyper-period, the optimal schedule, denoted by

A∗
sch, can be evaluated directly by solving over the complete

sequence of actions as follows

A∗
sch = argmin

(A(1),A(2),...,A(T ))∈AT

T
∑

t=1

∑

S̃

∑

S

P
(t−1)
S .

γ(S̃|S,A(t))P (S̃|S,A(t)). (7)

This is a very high-dimensional optimization problem de-

pending on the hyper-period length. As a result, we will use

POMDP-solving sequential techniques in order to efficiently

solve the formulated problem.

In order to evaluate the optimal strategy, a backward tracing

is performed over the objective function where the initial value

at the last time slot of the hyper-period is evaluated as follows

V
(T )

A(T )(P
(T−1)) =

∑

S̃

∑

S

P
(T−1)
S γ(S̃|S,A(T ))P (S̃|S,A(T )),

∀A(T ) ∈ A, P (T−1) ∈ P(T−1). (8)

Then, the objective is evaluated using backward tracing

by adding the minimum cost for all future time slots to the

immediate cost at the current time slot. The recursive relation

for calculating the cost function is expressed as follows

V
(t)

A(t)(P
(t−1)) =

∑

S̃

∑

S

P
(t−1)
S γ(S̃|S,A(t))P (S̃|S,A(t))

+ min
A(t+1)∈A

V
(t+1)

A(t+1)(P
(t)),

∀A(t) ∈ A, t ∈ 1, 2, . . . , T − 1, P (t−1) ∈ P(t−1). (9)

The optimal action at time slot t is evaluated using the

obtained objective functions and belief vector at the edge of

the time slot t as follows

A∗(t)(P (t−1)) = arg min
A(t)∈A

V
(t)

A(t)(P
(t−1)), ∀P (t−1) ∈ P(t−1).

(10)

The above recursive equations can be solved sequentially

as follows: i) Solve Equation (6) for all t ∈ {1, 2, . . . , T}

and for all A(t) ∈ A, ii) evaluate Equation (8), iii) solve the

optimization problem (10) at the time slot corresponding to the

last evaluated objective function, iv) evaluate Equation (9) for

the preceding time slot, and v) go back to item iii) except when

t = 1. After running this described algorithm, the optimal

schedule can be expressed as follows

A∗
sch =

(

A∗(1)(P (0)), A∗(2)(P (1)|A∗(1)), . . .

, A∗(T )(P (T−1)|A∗(T−1))
)

. (11)

In this paper, the formulated UMDP is then solved using one

of POMDP solving techniques used by the solver in [13] to

obtain the optimal schedule of the system in a computationally

efficient way compared to implementing the backward tracing

algorithm directly.

IV. A SUB-OPTIMAL SCHEDULING POLICY

In the case of periodic flows with deterministic deadlines,

various scheduling strategies have been considered [14]. A

common real-time scheduling policy that has been found to

be effective for industrial environments is the earliest deadline

first (EDF) strategy [15]. It has been shown in [11] that

it outperforms fixed priority scheduling, where the priorities

of flows are fixed over time and do not depend on the

deadlines, while delivering competitive acceptance ratios to

the optimal dynamic priority scheduling policies, where the

priorities depend on the network status and can change with

time, at lower computational cost. Moreover, EDF has been

used in [11] for obtaining schedules over a hyper-period in

industrial environments.

In this work, we propose an extension to the EDF strategy to

work in the case of random deadlines. The proposed strategy

results in a sub-optimal schedule for a whole hyper-period

of the discussed network. We denote the proposed strategy

by earliest average deadline first (EADF). The computational

complexity of EADF is much smaller than that of the optimal

scheduling scheme. In this strategy, we take into account the

averages of the flow deadlines to choose the transmitting flow

at a time slot. At any time slot, the flow with the earliest

expected deadline is chosen for transmission. Algorithm 1

illustrates the proposed technique as follows



Algorithm 1 EADF Scheduling Strategy

Initialization: T,M, µm∀m;

Initialization: S(0);

for t = 1 : T − 1 do

Evaluate: A∗(t) = argminm t
(t−1)
m ;

for m = 1 : M do

if t
(t−1)
m > 1 then

Update: t
(t)
m = t

(t−1)
m − 1;

else

Update: t
(t)
m = round(µm);

end if

end for

end for

Output: A∗
sch =

(

A∗(1), A∗(2), . . . , A∗(T )
)

;

V. NUMERICAL RESULTS

In the following, we assess the performance of the proposed

scheduling algorithms when packets with random deadlines

are considered. The minimized objective function is the total

number of packets that have missed their deadlines. We will

compare the performance of the optimal strategy, the EADF

strategy, and the basic round robin benchmark in which flows

are scheduled over time in equal portions and in circular

order without prioritizing any of the flows [16]. We will refer

to these three strategies, respectively, as ’Optimal’, ’EADF’,

and ’Round Robin’. In these simulations, we have used the

POMDP solver in [13] to obtain the optimal scheduling strat-

egy. In all the following results, the deadlines are following a

uniform distribution over the range [max(µm−1, h∗
m), µm+1].
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Fig. 3. The total number of missed packets against the channel quality for
various scheduling strategies.

In Fig. 3, we consider the case of two flows with h∗
1 =

h∗
2 = 2, µ1 = 2, µ2 = 6, and T = 1000. We have chosen

a long hyper-period to capture the effect of randomness on

the performance. We show the performance as a function of

success probability in transmitting a packet. The improvement

in the performance of the optimal policy over the round

robin policy is higher in the case of better channels. EADF’s

performance is identical to the optimal policy for success

probability larger than 0.8 and only slightly worse for low

to moderate values of success probability. The EADF strategy

actions depend on the number of remaining time slots to the

deadline and not the remaining number of hops. As a result

in the case of poor channels, the EADF does not prioritize

flows with lower remaining number of hops to improve packet

delivery for the flows.
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Fig. 4. The total number of missed packets against the channel quality for
various average deadline values.

In Fig. 4, we consider the case of 2 symmetric flows with

a single hop between the respective sources and destinations.

We show the system performance for different values of the

same average deadline for both flows. As the average deadline

increases, the improvement in the performance decreases.

Also, this improvement is larger for poorer channel conditions.

This shows the importance of having good scheduling schemes

for poor conditions due to the necessity to optimize system

parameters for improved performance.

In Fig. 5, we consider two flows with h∗
1 = 1 and h∗

2 = 3

and a common average deadline µ. We compare the perfor-

mance of the optimal, EADF and round robin policies for two

values of µ, namely 3 and 5. At µ = 3, the performance of the

optimal policy almost coincides with that of the round robin

strategy at ρ = 1 because, on average at every 3 time slots, a

packet arrives at each of the flows, h∗
1 = 1, and h∗

2 = 3. As a

result, only one packet from these two flows can be delivered

before its deadline in almost all of the cases and hence both

algorithms have very similar total number of packets missing
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Fig. 5. The total number of missed packets against the channel quality for
various average deadline values and verious scheduling strategies.

their deadlines. Moreover, the EADF performance coincides

withe optimal for the whole range of ρ. At µ = 5, the optimal

strategy achieves better performance because both flows can

be scheduled within five time slots successfully, and hence

an efficient scheduling scheme improves the performance

significantly. Moreover, the EADF has a poor performance

at the high values of ρ because it does not consider channel

quality during the schedule calculation and hence it does not

benefit from the good channel quality while it has optimal

performance on the poor channel quality cases.

VI. CONCLUSIONS

In this work, we have modeled the scheduling problem for

a system with M flows with random deadlines as a UMDP.

The investigation of the case of flows with random deadlines

has been motivated by scenarios in industrial environments

where data flows carry sensing and control decision data. The

solution of the UMDP is the optimal scheduling strategy which

determines the sequence of chosen flows for transmission

over the hyper-period. We also obtained a sub-optimal EADF

strategy to lower the complexity of the scheduling process.

Numerical results suggest the use of the optimal policy in

situations where the channel quality is good and the average

deadlines for the flows are large compared to the lengths

of the routes of various flows. Also, it is beneficial to use

the optimal scheduling policy for tighter deadlines when the

channel quality is poor.

REFERENCES

[1] M. Nixon, “A comparison of WirelessHART and ISA100.11a,” Technical

Report MSU-CSE-06-2; Emerson Process Management: Round Rock,

TX, USA, 2012.

[2] W. Liang, X. Zhang, Y. Xiao, F. Wang, P. Zeng, and H. Yu, “Survey

and experiments of WIA-PA specification of industrial wireless network,”

Wirel. Commun. Mob. Comput. 2011, 11, 1197-1212.

[3] S. Kumar, and S. Chauhan, “A survey on scheduling algorithms for

wireless sensor networks.” Int. J. Comput. Appl. 2011, 20, 713.

[4] M. Chitnis, P. Pagano, G. Lipari, and Y. Liang, “A survey on bandwidth

resource allocation and scheduling in wireless sensor networks,” In Pro-

ceedings of the International Conference on Network-Based Information

Systems, Gwangju, Korea, 4 September 2009; pp. 121128.

[5] S. Rao, S. Keshri, D. Gangwar, P. Sundar, and V. Geetha, “A survey

and comparison of GTS allocation and scheduling algorithms in IEEE

802.15.4 wireless sensor networks,” In Proceedings of the IEEE Confer-

ence on Information Communication Technologies, JeJu Island, Korea,

11 April 2013; pp. 98103.

[6] L. Kruk, J. Lehoczky, S. Shreve, and S.-N. Yeung, ”Earliest- deadline-

first service in heavy-traffic acyclic networks,” The Annals of Applied

Probability, vol. 14, no. 3, pp. 1306-1352, 2004.

[7] Z. Mao, C. E. Koksal and N. B. Shroff, ”Optimal Online Scheduling

With Arbitrary Hard Deadlines in Multihop Communication Networks,”

in IEEE/ACM Transactions on Networking, vol. 24, no. 1, pp. 177-189,

Feb. 2016.

[8] H. F. Zhu, J. P. Lehoczky, J. P. Hansen and Ragunathan Rajkumar, ”Diff-

EDF: a simple mechanism for differentiated EDF service,” 11th IEEE

Real Time and Embedded Technology and Applications Symposium,

2005, pp. 268-277.

[9] H. Li, P. Shenoy and K. Ramamritham, ”Scheduling messages with

deadlines in multi-hop real-time sensor networks,” 11th IEEE Real Time

and Embedded Technology and Applications Symposium, 2005, pp. 415-

425.

[10] R. Fox, and M. Tennenholtz, “A reinforcement learning algorithm with

polynomial interaction complexity for only-costly-observable MDPs,”

Proceedings of AAAI-07, 2007.

[11] C. Wu, M. Sha, D. Gunatilaka, A. Saifullah, C. Lu, and Y. Chen,

“Analysis of EDF scheduling for wireless sensor-actuator networks,” In

IWQoS, 2014.

[12] R. Cavazos-Cadena, “Weak conditions for the existence of optimal

stationary policies in average Markov decision chains with unbounded

costs,” Kybernetika, vol. 25, no. 3, pp. 145156, 1989.

[13] POMDP Solver: Available Online: http://www.pomdp.org/

[14] M. Nobre, I. Silva, and L. Guedes, “Routing and scheduling algorithms

for WirelessHART networks: A survey,” Sensors, vol. 15, no. 5, p. 9703-

2015.

[15] A. Saifullah, Y. Xu, C. Lu, and Y. Chen, “Real-time scheduling for

WirelessHART networks, in RTSS10.

[16] M. Shreedhar, and G. Varghese, “Efficient fair queuing using deficit

round robin,” In ACM SIGCOMM 95 (1995).


