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Abstract—The main focus of this work is directed towards
distributed coordination algorithms for coverage in a mobile
sensor network. The sensors are assumed to have nonidentical
sensing ranges, and it is desired to move them in such a way
that the total sensing coverage increases as much as possible.
To this end, the field is partitioned using the multiplicatively
weighted Voronoi cells, and then different geometric methods
are developed to find new locations for the sensors such that the
coverage is improved. The proposed algorithms are iterative, and
use the available local information to place the sensors properly,
aiming to reduce the size of the coverage holes in the network.
Simulations demonstrate the good performance of the proposed
algorithms.

I. INTRODUCTION

Wireless sensor networks have received a great deal of

attention in the past decade, and have found a broad range of

applications in various areas [1], [2], [3]. Examples of sensor

network applications include biomedical engineering, security

surveillance, target tracking and environmental monitoring,

to name only a few [4], [5], [6]. In particular, a mobile

sensor network (MSN) is comprised of a number of wireless

nodes, where each node is capable of moving in different

directions and communicating with a subset of sensors in

order to achieve a global objective. Typical objectives in

a mobile sensor network includes monitoring of a moving

target [7] and energy-efficient area coverage [8]. In practice, to

achieve the desired goals cooperatively, it is often preferable

to use a decentralized decision-making scheme for sensor

deployment [9]. Furthermore, the deployment strategy needs

to be independent of the initial location of the sensors, as

such information is usually unavailable [10]. In addition, the

cost-effective resource management techniques are required to

prolong the network lifetime [11].

In this paper, three distributed deployment algorithms are

presented for a network of nonidentical sensors. The multi-

plicatively weighted Voronoi (MW-Voronoi) diagram is em-

ployed to detect coverage holes, where each sensor weight

is proportional to its sensing range [12]. The algorithms

are called farthest point boundary (FPB), Maxmin-vertex and

Minmax-vertex. The main characteristic of these algorithms is
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that they are distributed and perform iteratively. Furthermore,

once each destination is computed and before the sensor

moves, its local coverage area (defined later) from the new

location is compared to the current value, based on which

the sensor either moves to the new location or stays in its

current position. In this paper, novel geometric techniques

are developed to find the optimal location of sensors for

maximizing coverage area in a mobile sensor network, where

convex optimization techniques cannot solve the problem.

The reminder of the paper is planned as follows. In Sec-

tion II, some background information as well as important

notions and definitions is presented. Section III provides new

sensor deployment algorithms to increase sensing coverage, as

the main contribution of this paper. Simulations are presented

in Section IV, and finally conclusions are summarized in

Section V.

II. PRELIMINARIES

Let S be a set of n distinct weighted nodes in the plane

denoted by (S1, w1), (S2, w2), . . . , (Sn, wn), where wi > 0
is the weighting factor associated with Si, for any i ∈ n :=
{1, 2, . . . , n}. It is desired now to partition the plane into n
regions such that:

• Each region contains only one node, called its generating

node, and

• the nearest node, in the sense of weighted distance, to

any point inside a region is the generating node of that

region.

The diagram obtained by the partitioning described above is

called the multiplicatively weighted Voronoi diagram (MW-

Voronoi diagram) [12]. Analogous to conventional Voronoi

diagram, the mathematical characterization of each region

obtained by the partitioning described above is as follows:

Πi =
{

Q ∈ R
2 | wjd(Q,Si) ≤ wid(Q,Sj), ∀j ∈ n\{i}

}

(1)

for any i ∈ n, where d(Q,Si) is the Euclidean distance

between Q and Si.

Some of the following definitions and assumptions are

borrowed from [13].

Definition 1. Sensors i and j are said to be neighbors if Πi ∩
Πj 6= ∅, i.e., their MW-Voronoi regions share some points

on their boundaries. Denote the set of neighboring sensors of

sensor i by Ni.

Definition 2. Consider the sensor Si with the sensing radius

ri and the corresponding MW-Voronoi region Πi, i ∈ n, and

let Q be an arbitrary point inside Πi. The intersection of the

region Πi and a circle of radius ri centered at Q is referred to

as the i-th coverage area w.r.t. Q, and is denoted by βQ
Πi

. The



i-th coverage area w.r.t. the location of the sensor Si is called

the i-th local coverage area of that sensor, and is denoted by

βΠi
.

Definition 3. Consider an arbitrary point Q inside the MW-

Voronoi region Πi, i ∈ n. The set of all points in Πi which

do not belong to βQ
Πi

is referred to as the i-th coverage hole

w.r.t Q, and is denoted by θQΠi
. The i-th coverage hole w.r.t.

the location of the sensor Si is called the i-th local coverage

hole of that sensor, and is denoted by θΠi
. Also, the union

of all local coverage holes, denoted by θ, is called the total

coverage hole, i.e. θ =
∑n

i=1 θΠi
.

Definition 4. [14] The Apollonian circle of the segment AB,

denoted by ΩAB,k, is the locus of all points E such that AE
BE

=
k.

The MW-Voronoi diagram is used in this work to develop

sensor deployment algorithms. Every sensor has a circular

sensing area whose size is not the same for all sensors.

Consider each sensor as a weighted node whose weight is

equal to its sensing radius, and draw the MW-Voronoi diagram.

It is a straightforward results of (1) that if a sensor cannot

detect a phenomenon in its region, there is no other sensor

that can detect it either. This implies that to find the coverage

holes in the sensing field, it would suffice to compare the MW-

Voronoi region of every node with its local coverage area.

Notation 1. Consider a circle of radius r centered at O,

denoted hereafter by Ω(O, r), and a point V in the plane. The

intersection of Ω and the extension of V O from O is denoted

by TV
Ω(O,r). The other intersection point of Ω(O, r) and V O

(or its extension) is denoted by T̄V
Ω(O,r).

Notation 2. As mentioned before, the boundary curves of

an MW-Voronoi region are the segments of some Apollonian

circles. The set of all such Apollonian circles for the i-th MW-

Voronoi region is denoted by Ωi. The sets Ω̄i and Ω̃i are

defined as follows:

Ω̄i = {Ω ∈ Ωi|Si ∈ Ω}

Ω̃i = {Ω ∈ Ωi|Si /∈ Ω}

Assumption 1. [13] The graph representing the communica-

tion topology of sensors is connected [15]. This means that

every sensor can obtain the information required to construct

its MW-Voronoi region.

III. SENSOR DEPLOYMENT STRATEGIES

Three different distributed sensor coordination techniques

are developed in this section for a mobile sensor network. The

algorithms are iterative, similarly to [16], where every sensor

Si, i ∈ n, first broadcasts its location Pi and sensing radius ri
to its neighboring sensors, and then constructs its MW-Voronoi

region Πi using the similar information it receives from them.

It then checks for possible coverage holes in the region. If a

coverage hole is detected, the sensor finds a target position (but

does not move there) such that by moving there the coverage

hole would be eliminated, or its size would be reduced by at

least a certain amount. Let the new target position for sensor

Si, i ∈ n, be denoted by Ṕi, and find βṔi

Πi
, i.e., the coverage

area w.r.t. the new position. If this area is greater than the

current local coverage area (note that the sensor has not moved

yet), i.e. βṔi

Πi
> βPi

Πi
, the sensor moves to the new position;

otherwise, it stays in its current location. The algorithm stops

when the coverage increase by each sensor in two consecutive

iterations does not exceed a prescribed value.

The following theorem is similar to Theorem 1 of [16], and

shows that the total coverage under the sensor deployment

scheme described in the previous paragraph always increases.

Theorem 1. Consider a set S of n sensors in the plane with

their positions and sensing radii denoted by the sets P =
{P1, P2, . . . , Pn} and r = {r1, r2, . . . , rn}, respectively, and

let the MW-Voronoi regions be Π1,Π2, . . . ,Πn. Assume the

sensors move to new positions Ṕ = {Ṕ1, Ṕ2, . . . , Ṕn}, where

Ṕi 6= Pi for all i belonging to K, a non-empty subset of n (note

that the MW-Voronoi regions corresponding to the position set

Ṕ will be different from Π1,Π2, . . . ,Πn). If the i-th coverage

area w.r.t. Ṕi in the previously constructed MW-Voronoi region

Πi is greater than the i-th local coverage area in Πi (i.e.,

βṔi

Πi
> βPi

Πi
) for all i ∈ K, then the total coverage increases.

Proof: The proof is similar to that of Theorem 1 in [16].

Notation 3. An MW-Voronoi diagram with n regions

Π1,Π2, . . . ,Πn will hereafter be represented by V , and the

number of vertices of region Πi will be denoted by mi, for

any i ∈ n.

A. Farthest Point Boundary Strategy (FPB)

In this algorithm, each sensor moves toward the farthest

point in its MW-Voronoi region such that any existing coverage

hole in its region can be covered. This point is denoted by

Xi,far for the i-th region. In fact, once a sensor detects

a coverage hole, it calculates the farthest point (using the

information about its MW-Voronoi region as well as the

coverage holes in that region, as it will be shown later) and

moves toward it continuously until Xi,far is covered. The

following definition is used to calculate the farthest point in

each MW-Voronoi region.

Definition 5. The corner points of the i-th MW-Voronoi region

(i.e., the intersection of its boundary curves) are denoted by

Vi1, Vi2, . . . , Vimi
. These points will hereafter be referred to

as the MW-Voronoi vertices for the i-th MW-Voronoi region

(note that a region may have no vertex). It is to be noted

that the farthest point in each MW-Voronoi region lies on the

boundary of the region.

Theorem 2. Let Ai be the set of all vertices for the i-th region

(i ∈ n) of the MW-Voronoi diagram V , and define the set Bi

as follows:

Bi =

{

TSi

ΩSiSj,k
| k =

wi

wj

, 1 ≤ j ≤ n, Sj ∈ Ni

}

where Ni is the set of all neighbors of the i-th sensor. Then

the farthest point in the i-th region belongs to the union of the

sets Ai and Bi; i.e., Xi,far ∈ Ai ∪Bi.

Proof: As noted earlier, Xi,far lies on the boundary of

the i-th region. Consider the following two cases:

Case 1: Xi,far is on the boundary curve Vi1Vi2 such that

Vi1Vi2 ∈ ΩSiSg,
wi
wg

. If TSi

Ω
SiSg,

wi
wg

is on the boundary curve



Vi1Vi2, given that for any positive wi

wg
6= 1, TSi

Ω
SiSg,

wi
wg

is the

farthest point to Si and Sg , thus Xi,far ∈ Bi; otherwise, since

among all points on the boundary curve Vi1Vi2 either Vi1 or

Vi2 is the nearest point to TSi

Ω
SiSg,

wi
wg

, hence Xi,far is either

Vi1 or Vi2. This means that Xi,far ∈ Ai.

Case 2: Xi,far is on the boundary segment Vi3Vi4. In this

case, it is straightforward to show that the farthest point is

either Vi3 or Vi4. This means that Xi,far ∈ Ai.

Therefore, in both cases considered above Xi,far ∈ Ai ∪Bi.

Note that according to Theorem 2, the farthest point of the

i-th MW-Voronoi region belongs to a set of points with 2 ×
dim(Ni) elements.

B. Maxmin-Vertex Strategy

The main idea of the Maxmin-vertex strategy is based on

the fact that normally for a good coverage result, the sensors

should not be too close to the vertices of their MW-Voronoi

regions. In this strategy, the target position of each sensor in

every iteration is selected as a point inside its MW-Voronoi

region with maximum distance from the nearest vertex. This

point is denoted by Ōi for the i-th MW-Voronoi region, i ∈ n,

and is called the Maxmin-vertex centroid. Denote the distance

between Ōi and the nearest vertex to it by r̄i.

Definition 6. The Maxmin-vertex circle of a region in the

MW-Voronoi diagram V is defined as the largest circle centered

inside that region such that all of the vertices of the region

are either outside the circle, or on it. This circle is, in fact,

Ω(Ōi, r̄i) for the i-th region (i ∈ n).

Lemma 1. Suppose the i-th MW-Voronoi region is not a circle

(i.e., it has at least two boundary curves). If the Maxmin-vertex

circle passes through exactly one vertex, say Vi1, then Ōi is

TVi1

Ω for some Ω ∈ Ωi; otherwise, the circle passes through

more than one vertex.

Proof: Let V̄i1 be the nearest vertex of the i-th MW-

Voronoi region to Ōi, and define:

û := min
V ∈Vi−{V̄i1}

{

d(Ōi, V )
}

, i ∈ n (2)

where Vi is the set of vertices of the i-th MW-Voronoi region

in the MW-Voronoi diagram.

i
O

1i
V

2i
V3i

V

Fig. 1: An example of the Maxmin-vertex circle, when it passes through
exactly one vertex.

Suppose Ōi and T V̄i1

Ω are disjoint for any Ω ∈ Ωi. Suppose

also that the Maxmin-vertex circle does not pass through any

vertex other than V̄i1, and hence the parameter δ∗ = (û− r̄i)/2

is strictly positive. There are two possible cases, as discussed

below.

Case 1: Ōi is inside the i-th MW-Voronoi region. Let Ô be a

point inside the i-th MW-Voronoi region and on the line V̄i1Ōi,

but closer to Ōi, such that the distance between Ōi and Ô is

equal to a given value δ ∈ (0, δ∗] (see Fig. 2(a)).

Case 2: Ōi is on the boundary of the i-th MW-Voronoi region.

Suppose Ōi is on the curve ǫ. Since Ōi and T V̄i1

Ω are distinct

for any Ω ∈ Ωi, one can choose a point Ô on ǫ such that

d(Ô, V̄i1) > d(Ōi, V̄i1) and the distance between Ōi and Ô is

equal to a given value δ ∈ (0, δ∗] (see Fig. 2(b)).

In both cases, according to the triangle inequality:

d(Ô, V ) ≥ d(Ōi, V )− δ ≥ û− δ, ∀V ∈ Vi − {V̄i1} (3)

From the above relation and on nothing that û−δ ≥ r̄i+δ > r̄i
and d(Ô, V̄i1) > d(Ōi, V̄i1), it can be concluded that

min
V ∈Vi

{

d(Ô, V )
}

> r̄i, i ∈ n (4)

which contradicts the initial assumption that Ōi is the Maxmin-

vertex centroid. This means that there is at least one more

vertex on the Maxmin-vertex circle.

û

i
O

1i
V

Ô

(a)

û

i
O

1i
V

Ô

(b)

Fig. 2: The Maxmin-vertex centroid, when it is: (a) inside an MW-Voronoi
region, and (b) on the boundary of an MW-Voronoi region.

Lemma 2. Given an MW-Voronoi diagram, assume that the

Maxmin-vertex circle of one of the regions, say region i (i ∈
n), passes through exactly two vertices V̄i1 and V̄i2. Then Ōi

is the intersection point of the perpendicular bisector of V̄i1V̄i2

and the boundary of the i-th MW-Voronoi region.

Proof: Suppose Ōi is not the intersection point of the

boundary of the i-th MW-Voronoi region and the perpendicular

bisector of V̄i1V̄i2, i.e., Ōi is inside the i-th region. Define:

ũ := min
V ∈Vi−{V̄i1,V̄i2}

{

d(Ōi, V )
}

, i ∈ n (5)

Since Ω(Ōi, r̄i) passes through exactly two vertices, thus

δ∗ = (ũ − r̄i)/2 is strictly positive. Let Õ be a point on

the perpendicular bisector of V̄i1V̄i2 and outside the triangle

V̄i1V̄i2Ōi, but closer to Ōi, such that the distance between the

points Ōi and Õ is equal to a given value δ ∈ (0, δ∗] (see

Fig. 3). Using the triangle inequality, one can write:

d(Õ, V ) ≥ d(Ōi, V )−δ ≥ ũ−δ, ∀V ∈ Vi−{V̄i1, V̄i2} (6)



Using (6) along with the relations ũ−δ ≥ ũ−δ∗ = r̄i+δ∗ > r̄i

i
O

1i
V

2i
V

O
~

u
~

Fig. 3: An illustrative figure used in the proof of Lemma 2.

and d(Õ, V̄i1) = d(Õ, V̄i2) > r̄i, one arrives at:

min
V ∈Vi

{

d(Õ, V )
}

> r̄i, i ∈ n (7)

which contradicts the initial assumption that Ōi is the Maxmin-

vertex centroid. This completes the proof.

Definition 7. For convenience of notation, the circle passing

through two vertices Vp and Vq of region i in the MW-Voronoi

diagram V , centered at the intersection of the perpendicular

bisector of VpVq and the boundary curve VkVl, is denoted by

Ωk,l
p,q , k, l, p, q ∈ mi. Also, the circle passing through three

vertices Vp, Vq and Vr of region i is denoted by Ωp,q,r, for

p, q, r ∈ mi. In addition, the circle passing through one vertex

Vr of MW-Voronoi region i, centered at TVr

Ω , is denoted by

ΘVr

Ω , for any r ∈ mi and Ω ∈ Ωi.

Theorem 3. Given an MW-Voronoi diagram, suppose the i-th
region (i ∈ n) has more than one boundary curve. Denote by

Ĉi and C̀i the sets of all circles Ωk,l
p,q , ∀k, l, p, q ∈ mi and

ΘVr

Ω , ∀r ∈ mi, Ω ∈ Ωi, respectively, centered on the boundary

of the i-th region, and do not enclose any of the vertices of

this region. Denote by C̃i the set of all circumcircles of any

three vertices, centered inside the i-th MW-Voronoi region or

on its boundary, which do not enclose any of the vertices of this

region. Define Ci = Ĉi ∪ C̀i ∪ C̃i. Then the circle Ω(Ōi, r̄i)
belongs to Ci, and it is the largest circle in this set.

Proof: If Ω(Ōi, r̄i) /∈ C̀i, then according to Lemma 1 the

Maxmin-vertex circle passes through more than one vertex.

If it passes through exactly two vertices, say V1, V2, then

according to Lemma 2, there exist k, l ∈ mi such that

Ω(Ōi, r̄i) = Ωk,l
1,2. Hence, in this case Ω(Ōi, r̄i) ∈ Ci, and

from Definition 6, r̄i = max {r |Ω(O, r) ∈ Ci} . If, on the

other hand, the Maxmin-vertex circle passes through three or

more Voronoi vertices, then it is the circumcircle of those

vertices. Therefore, Ω(Ōi, r̄i) ∈ Ci, and again it is deduced

from Definition 6 that r̄i = max {r |Ω(O, r) ∈ Ci} .

C. Minmax-Vertex Strategy

The main idea of the Minmax-vertex method is that nor-

mally to achieve high area coverage, no sensor should be

”too far” from any of its Voronoi vertices. The Minmax-vertex

algorithm selects the target location of each sensor as a point

inside its MW-Voronoi region with minimum distance from the

farthest vertex. This point will be referred to as the Minmax-

vertex centroid, and will be denoted by Ǒi for the i-th region

(i ∈ n). Furthermore, the distance between this point and the

farthest vertex from it in the i-th region will be represented by

ři. The Minmax-vertex circle is defined next.

Definition 8. The Minmax-vertex circle of an MW-Voronoi

region is defined as the smallest circle centered inside the

region such that all of the vertices of the region are either

inside the circle or on it. This circle is, in fact, Ω(Ǒi, ři), for

the i-th region (i ∈ n).

Lemma 3. In the case when an MW-Voronoi region is not a

circle (i.e., it has at least two boundary curves), its Minmax-

vertex circle passes through more than one vertex.

Proof: Let V̌i1 be the farthest vertex to Ǒi on the boundary

of the i-th MW-Voronoi region, and define:

ẑ := max
V ∈Vi−{V̌i1}

{

d(Ǒi, V )
}

, i ∈ n (8)

Suppose that the Minmax-vertex circle does not pass through

any vertex other than V̌i1, and hence δ∗ = (ři− ẑ)/2 is strictly

positive. There are two possible cases, as discussed below.

Case 1: Ǒi is inside the i-th MW-Voronoi region. Let Ô be a

point inside the i-th MW-Voronoi region and on the line V̌i1Ǒi

such that the distance between Ǒi and Ô is equal to a given

value δ ∈ (0, δ∗] (see Fig. 4(a)).

Case 2: Ǒi is on the boundary of the MW-Voronoi region.

Suppose Ǒi is on the curve ǫ. Let Ô be a point on ǫ or inside

the i-th MW-Voronoi region such that d(Ô, V̌i1) < d(Ǒi, V̌i1),
and the distance between Ǒi and Ô is equal to a given value

δ ∈ (0, δ∗] (see Fig. 4(b)).

In both cases, according to the triangle inequality:

d(Ô, V ) ≤ d(Ǒi, V ) + δ ≤ ẑ + δ, ∀V ∈ Vi − {V̌i1} (9)

From the above relation and on noting that ẑ+δ ≤ ři−δ < ři

Ôû

1iV

iO

(a)

Ô

û

i
O

1i
V

(b)

Fig. 4: Minmax-vertex centroid, when it is: (a) inside an MW-Voronoi
region, and (b) on the boundary of an MW-Voronoi region.

and d(Ô, V̌i1) < d(Ǒi, V̌i1), it can be concluded that

max
V ∈Vi

{

d(Ô, V )
}

< ři, i ∈ n (10)

which contradicts the initial assumption that Ǒi is the Minmax-

vertex centroid. This means that there is at least one more



vertex on the Minmax-vertex circle.

Lemma 4. Given an MW-Voronoi diagram, assume that the

Minmax-vertex circle of one region, say region i (i ∈ n),

passes through exactly two vertices V̌i1 and V̌i2. Then Ǒi is

the intersection point of the perpendicular bisector of V̌i1V̌i2

and the boundary of the i-th MW-Voronoi region.

Proof: Suppose Ǒi is not the intersection point of the

perpendicular bisector of V̌i1V̌i2 and the boundary of the i-th
MW-Voronoi region, i.e., Ǒi is inside the i-th region. Define:

z̃ := max
V ∈Vi−{V̌i1,V̌i2}

{

d(Ǒi, V )
}

, i ∈ n (11)

Since Ω(Ǒi, ři) passes through exactly two vertices, thus

δ∗ = (ři − z̃)/2 is strictly positive. Let Õ be a point on

the perpendicular bisector of V̌i1V̌i2 and inside the triangle

V̌i1V̌i2Ǒi, but closer to Ǒi, such that the distance between the

points Ǒi and Õ is equal to a given value δ ∈ (0, δ∗] (see

Fig. 5). Using the triangle inequality, one can write:

d(Õ, V ) ≤ d(Ǒi, V )+δ ≤ z̃+δ, ∀V ∈ Vi−{V̌i1, V̌i2} (12)

Using (12) along with the relations z̃+δ ≤ z̃+δ∗ = ři−δ∗ <

O
~

u
~

iO

1i
V

2i
V

Fig. 5: An illustrative figure used in the proof of Lemma 4.

ři and d(Õ, V̌i1) = d(Õ, V̌i2) < ři, one can conclude that:

max
V ∈Vi

{

d(Õ, V )
}

< ři, i ∈ n (13)

which contradicts the initial assumption that Ǒi is the Minmax-

vertex centroid. This completes the proof.

Theorem 4. Given an MW-Voronoi diagram, let Ŵi be the

set of all circles Ωk,l
p,q , ∀k, l, p, q ∈ mi, centered on the

boundary of the i-th region, with all vertices of the region

either inside the circles or on them. Let also W̃i be the set of

all circumcircles of any three vertices, centered inside or on

the i-th region, with all vertices of the region either inside or

on them. Define Wi := Ŵi ∪ W̃i. Then the circle Ω(Ǒi, ři)
belongs to Wi, and it is the smallest circle in this set.

Proof: According to Lemma 3, the Minmax-vertex circle

passes through more than one Voronoi vertex. If it passes

through no more than two Voronoi vertices, say Vi1, Vi2,

then according to Lemma 4, there exist k, l ∈ mi such that

Ω(Ǒi, ři) = Ωk,l
1,2. Hence, in this case Ω(Ǒi, ři) ∈ Wi, and

from Definition 8, ři = min {r |Ω(O, r) ∈ Wi} . If, on the

other hand, the Minmax-vertex circle passes through three or

more Voronoi vertices, then it is the circumcircle of those

vertices. Therefore, Ω(Ǒi, ři) ∈ Wi, and again it is deduced

from Definition 8 that ři = min {r |Ω(O, r) ∈ Wi} .

Remark 1. As noted in [17], when the sensing radii of

the sensors are the same, the Voronoi regions turn out to

be polygons. In this case, the smallest circle enclosing a

polygon can be obtained by solving a rather simple convex

optimization problem, and the center of the circle is called the

circumcenter [18]. In the general case when the sensing radii

of the sensors are not the same, however, the MW-Voronoi

region boundaries are portions of the Apollonian circles and

are not straight lines. Thus, the Maxmin-vertex and Minmax-

vertex centroids cannot be obtained by the linear programming

approach or other convex optimization methods. Theorems 3

and 4 use an efficient geometric approach in this case to find

the centroids.

Remark 2. According to Theorems 2, 3 and 4, the complexity

of the algorithms to find the new location of the i-th sensor

in the FPB strategy is of order O(mi), while it is of order

O(m4
i ) in the Minmax-vertex and Maxmin-vertex algorithms.

In addition, regardless of the number of sensors, their sensing

and communication capabilities, field size, etc., the MW-

Voronoi diagrams partition the field in such a way that the

number of vertices of each region is typically not “too large”.

Hence, the problem of finding the new location of the sensors

is usually not too complex, computationally.

Theorem 5. The proposed algorithms (FPB, Minmax-vertex

and Maxmin-vertex) are convergent.

Proof: Let the positions and sensing radii

of the sensors in the k-th round be denoted

by P(k) = {P1(k), P2(k), . . . , Pn(k)} and

r(k) = {r1(k), r2(k), . . . , rn(k)}, respectively. Denote

also the MW-Voronoi regions in the k-th round by

Π1(k),Π2(k), . . . ,Πn(k), and the corresponding total

covered area of the field by β(k). If the k-th round is not

the final round, then some sensors move and change their

locations in the next round. Assume that the i-th sensor,

i ∈ n, moves to the new location Pi(k + 1) 6= Pi(k); if the

coverage area w.r.t. this location is greater than the previous

local coverage area, i.e. β
Pi(k+1)
Πi(k)

> β
Pi(k)
Πi(k)

, then according

to Theorem 1 the total coverage in the network increases in

this round, i.e. β(k + 1) > β(k). On the other hand, the total

covered area is upper-bounded by the overall area of the field,

from which the convergence of the algorithms is implied.

Remark 3. The convergence of the proposed sensor coordina-

tion algorithms is implied from the results obtained. However,

the convergence may not be achieved in finite time.

To terminate the algorithms in finite time, an appropriate

threshold ǫ is considered for the minimum acceptable coverage

increase as noted earlier, such that the algorithm will continue

after the k-th round only if there is a sensor in the network

whose coverage increases at least by ǫ in the following

iteration, i.e. ∃i ∈ n : β
Pi(k+1)
Πi(k)

≥ β
Pi(k)
Πi(k)

+ ǫ. Note that the

choice of ǫ involves a trade-off between network coverage and

deployment time. The following theorem (along with its proof)

is borrowed from [17], and provides an upper-bound on the



number of rounds required to run the algorithm, as a function

of ǫ.

Theorem 6. Consider a set of n mobile sensors S, randomly

deployed in a 2D field. Using any of the proposed algorithms

with the coverage improvement threshold ǫ, the number of

required rounds to run the algorithm is at most Atotal

ǫ
, where

Atotal is the overall area of the field.

Proof: Let the number of rounds required to run the

algorithm in order to meet the termination condition be denoted

by ζf . Let also the total uncovered area of the field in the

k-th round be represented by θ(k), and note that β(k) =
Atotal−θ(k). Denote the position of the sensors and their cor-

responding MW-Voronoi regions in the k-th round by P(k) =
{P1(k), P2(k), . . . , Pn(k)} and Π1(k),Π2(k), . . . ,Πn(k), re-

spectively. It is concluded from the properties of the MW-

Voronoi diagram that:

θ(k) =

n
∑

i=1

θ
Pi(k)
Πi(k)

, ∀1 ≤ k ≤ ζf (14)

Define the moving set of the k-th round as the largest subset of

S that moves in the k-th round, and denote the indices of the

sensors in this set by Indx(k). Note that at least one sensor

moves in the k-th round, i.e. Indx(k) 6= ∅, ∀1 ≤ k ≤ ζf .

Note also that the i-th sensor, i ∈ Indx(k), moves in the k-th

round if β
Pi(k+1)
Πi(k)

≥ β
Pi(k)
Πi(k)

+ ǫ. This means that:

θ
Pi(k+1)
Πi(k)

≤ θ
Pi(k)
Πi(k)

− ǫ, ∀i ∈ Indx(k) (15)

On the other hand, it is possible that some of the points in

θ
Pi(k+1)
Πi(k)

are also covered by another sensor located at Pj(k+

1), for some j ∈ n\{i}. Hence:

θ(k + 1) ≤
n
∑

i=1

θ
Pi(k+1)
Πi(k)

(16)

Since for any i ∈ n\Indx(k) the i-th sensor does not move

(which implies θ
Pi(k+1)
Πi(k)

= θ
Pi(k)
Πi(k)

), from (15) and (16) one

arrives at:

θ(k + 1) ≤
n
∑

i=1

θ
Pi(k)
Πi(k)

− |Indx(k)| ǫ (17)

It is now concluded from (14) and (17) that:

θ(k + 1) ≤ θ(k)− |Indx(k)| ǫ ≤ θ(k)− ǫ (18)

or equivalently:

β(k + 1) ≥ β(k) + |Indx(k)| ǫ ≥ β(k) + ǫ (19)

which means that using the proposed sensor coordination

scheme, in each round the total covered area increases by at

least ǫ. Therefore, the total amount of increased coverage from

the first round to the termination round is greater than or equal

to ζf ǫ. Since the total covered area is always less than or equal

to Atotal, hence Atotal ≥ ζf ǫ or equivalently Atotal

ǫ
≥ ζf .

Remark 4. One of the important properties of the MW-

Voronoi diagram is that first of all it partitions the field, and

more importantly there is exactly one sensor in each region.

Since the new location of every sensor under the algorithms

developed in this work is inside its own MW-Voronoi region

and the sensor moves only within the region, collision will

never occur. Note that if some sensors could not communicate

with their neighbors, then the MW-Voronoi region constructed

around each one of them might be wrong. Consequently, not

only does this have a negative impact on the detection of

coverage holes, it could also lead to sensor collision.

IV. SIMULATION RESULTS

Example 1: In this example, the three algorithms developed

in the previous section are applied to a 50m× 50m flat space.

In each simulation, the algorithm continues as long as the

coverage area of at least one of the sensors in its MW-Voronoi

region increases by more than 0.1m2 in the next move, and is

terminated otherwise. The results are obtained by performing

20 simulations with different random initial locations for the

sensors.

Assume first 27 sensors are randomly deployed in a 50m×
50m plane: 15 with a sensing radius of 6m, 6 with a sensing

radius of 5m, 3 with a sensing radius of 7m, and 3 with a

sensing radius of 9m. Moreover, the communication range

of each sensor is assumed to be 10/3 times greater than its

sensing range. The coverage factor (defined as the ratio of

the covered area to the overall area) of the sensors in each

round is depicted in Fig. 9 for the three algorithms proposed

in this paper. It can be observed from this figure that all

three strategies result in a satisfactory coverage level of the

sensing field in the first few rounds of the corresponding

algorithms. The resultant curves also show that the Minmax-

vertex algorithm performs better than the other algorithms as

far as coverage is concerned.
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Fig. 6: Covered area percentage per round for 27 sensors.

It is desired now to compare the performance of the pro-

posed algorithms in terms of the number of deployed sensors

n. To this end, consider three more setups: n=18, 36, and

45 (in addition to n=27 discussed above). Let changes in the

number of identical sensors in the new setups be proportional

to the changes in the total number of sensors (e.g., for the

case of n=18 there will be 10 sensors with a sensing radius

of 6m, 4 with a sensing radius of 5m, 2 with a sensing radius

of 7m, and 2 with a sensing radius of 9m). Fig. 7 provides

the coverage results for different number of sensors. It can be

seen from this figure that the covered area under the Minmax-

vertex algorithm is greatet than that under other algorithms for

different number of sensors.

The convergence rate of sensors in reaching the steady-state

coverage level is also an important measure of the efficiency of
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Fig. 7: Network coverage for different number of sensors using the proposed
algorithms.

sensor coordination algorithms. Since the sensor deployment

time of all algorithms is more or less the same in each round,

in Fig. 8 the number of rounds required to reach the steady

state (i.e., to satisfy the termination condition specified earlier)

are shown to evaluate the convergence speed of different

algorithms.
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Fig. 8: The number of rounds required to reach the termination conditions
for different number of sensors using the proposed algorithms.

Another important means of assessing the performance of

the sensor deployment algorithms is energy efficiency. The

consumed movement energy of each sensor is known to be

directly related to its traveling distance, as well as the number

of times it stops (the latter is related to the static friction). Thus,

to compare the energy efficiency of the proposed techniques,

the traveling distance and the number of movements should

be taken into consideration. To evaluate the energy efficiency

of the algorithms, assume that the movement energy of each

sensor is 0.210J/inch (or 8.268J/m) [19], [20]. In other words,

the energy required to move a sensor by 1 inch (without

stopping) is 0.210J. Consider two scenarios, where the energy

required for bringing a sensor to a complete stop and then

moving it by overcoming the static friction instantaneously is

equal to (i) 8.268J, and (ii) 33.072J [10], [21]. Tables I and II

provide a summary of the energy consumption results for these

two cases. Define α as the ratio of energy consumption due

to one stop followed by one move from complete stop to

energy consumption due to one meter move. Now, if there

are a large number of sensors in the field and the power

required to overcome static friction of a sensor is much

larger than that required to move it (per unit), the Maxmin-

vertex algorithm is more energy-efficient than the other two

algorithms. If, however, the power required to overcome static

friction of a sensor is much smaller than that required to move

it, then regardless of the number of sensors the FPB algorithm

performs better than the other two algorithms in terms of

energy consumption.

The above discussion is summarized below (logic and’s in

these statements are capitalized):

1) The Minmax-vertex algorithm performs better in terms

of network coverage.

2) The Maxmin-vertex algorithm outperforms the other two

algorithms when there are a large number of sensors in

the field, AND:

• the deployment time is the main concern.

• the energy consumption is the main concern, AND

the power required to overcome the static friction of

a sensor is much larger than that required to move

it (per unit).

3) The FPB algorithm is more desirable when:

• the deployment time is the main concern AND the

number of sensors in the field is not large.

• the energy consumption is the main concern, AND

the power required to overcome the static friction of

a sensor is much smaller than that required to move

it (per unit).

• the computational complexity is concerned.

Example 2: Consider 36 sensors distributed randomly in

a 50m by 50m field. Assume 20 of these sensors have a

communication range of 20m, 8 have a communication range

of 16.66m, 4 have a communication range of 30m, and 4 have

a communication range of 23.33m. The sensing radius of each

sensor is assumed to be 33% of its communication radius. It

is desired now to compare the three algorithms developed in

this paper with some other methods presented in [17], namely

the WVB, Minmax-curve and Maxmin-curve algorithms. The

coverage factor in every round of each algorithm is provided in

Figure 9. It can be observed from this figure that the Minmax-

vertex and FPB algorithms outperform the other algorithms in

terms of coverage factor.
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TABLE I: The energy consumption in Joule for different number of sensors using the proposed algorithms for the first scenario of Example 1

n = 18 n = 27 n = 36 n = 45
FPB 47.4234 J 44.7480 J 42.9542 J 28.1041 J

Minmax-vertex 77.6335 J 95.0093 J 68.6495 J 37.0676 J

Maxmin-vertex 50.9095 J 56.8741 J 48.2570 J 27.3611 J

TABLE II: The energy consumption in Joule for different number of sensors using the proposed algorithms for the second scenario of Example 1

n = 18 n = 27 n = 36 n = 45
FPB 83.8715 J 97.3876 J 105.4810 J 71.0150 J

Minmax-vertex 153.3546 J 232.9012 J 163.1114 J 84.8015 J

Maxmin-vertex 83.8437 J 115.5310 J 105.1340 J 58.4763 J

Remark 5. Note that the size of the field and the number of

sensors considered in this section are more or less the same

as the ones used in the literature (e.g., see [10], [22], [23],

[24], [25]). Moreover, the sensing and communication ranges

of sensors considered in the simulations are consistent with

the setting used in [10], [26] and other sensor prototypes such

as Smart Dust, CTOS dust, and Wins (Rockwell) [21].

V. CONCLUSIONS

Efficient sensor coordination algorithms are developed in

this work to increase sensing coverage in a network of mobile

sensors with non-identical sensing ranges. The sensing field

is first partitioned using the multiplicatively weighted Voronoi

(MW-Voronoi) diagram, and three distributed deployment al-

gorithms are subsequently developed. Under the proposed

algorithms, the sensors move iteratively in such a way that

coverage holes are reduced in size. The algorithms tend to

move the sensors in proper directions such that the network

configuration (in terms of the distance of sensors from the

vertices of the MW-Voronoi regions) becomes closer to an

ideal configuration. To avoid complex non-convex optimization

problems, novel geometric methods are used to find the new

sensor locations in the MW-Voronoi regions. The proposed

algorithms are compared with other techniques with different

number of sensors.
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