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Abstract—Public safety organizations increasingly rely on wire-
less technology for their mission critical communication during
disaster response operations. In such situations, a communication
network could face much higher traffic demands compared to
its normal operation. Given the limited capacity of base stations
in the network, such peak traffic scenarios could lead to high
blocking probability or equivalently service interruptions during
critical communications. At the same time, networking infras-
tructure can breakdown during a disaster. Proper deployment
of mobile cells - Cells on Wheels - can help to enhance the
network coverage or accommodate excess traffic in areas with
high concentration of users. In addition, an intelligent relocation
strategy can be used to efficiently adapt the cell locations to
match variations in the spatial distribution of the traffic. In
practical scenarios, these mobile base stations may not be able to
relocate to all positions within the target field. Such prohibited
areas introduce additional constraints on designing an intelligent
relocation strategy. In this paper, we propose a decentralized
relocation algorithm that enables mobile cells to adapt their
positions in response to potentially changing traffic patterns
in a field with prohibited areas. Extensive simulations show
considerable improvement in supporting spatially variable traffic
throughout the target field.

I. INTRODUCTION

Emergency scenarios such as natural or man-made disasters
are typically characterized by unusual peaks in traffic demand
caused both by people living in the disaster area as well as the
first responders and public safety personnel [1]. Such traffic
hotspots that typically involve vital life-saving information are
a major challenge for the communication network covering
the disaster area. The exact locations and magnitudes of these
traffic hot-spots within a disaster area are usually not known
apriori. As the sizes of these possible emergency incidents are
unpredictable, estimating the capacity requirements to meet the
resulting highly variable excess traffic is nearly impossible. In
addition to the above, the network infrastructure itself may
be subject to full or partial beak-downs during emergencies.
These situations constitute an important challenged network
scenario where there is a temporary shortage of resources
required to address critical communication needs.

A reasonable solution to this problem is using a set of
mobile base stations that can be quickly deployed to service
the excess traffic during the disaster recovery. A portable cell -
a cell on light truck (COLT) or a cell on wheels (COW) - can
be used to augment the remaining communication infrastruc-
ture and keep first responders connected to their command
centers. By properly deploying these mobile cells, we can

create a temporary network to support critical public safety
communication throughout the disaster area. Such mobile
networks that can be easily deployed, configured and adapted,
offer the ideal solution to any disaster response effort.

The base station deployment or positioning is an important
problem during network architecture design. It has been shown
that the identification of the globally optimum base stations
locations in a network is an NP-hard problem [2]. In practice,
most of the system parameters required to find such an optimal
solution is unknown. In addition, the optimal positions could
change due to the variations in temporal or spatial distribution
of traffic demand.

In [3] and [4] the authors proposed using a portable self-
configurable cellular system to assist with damaged or de-
stroyed network infrastructure in emergencies or other natural
disasters. However, the deployment phases in all their pro-
posed approaches were not considered to be autonomous or
adaptive. As a result when the spatial distribution of traffic
changes, the network may fail to adequately meet the traffic
demand at various locations on the field. The autonomous
adaptive relocation problem in which each mobile node has
local information about the location of traffic sources in its
coverage area has been considered in [5]. There, the au-
thors proposed a distributed algorithm for adaptive relocation
of wireless access networks in order to minimize the total
transmission power. However, minimizing total transmission
power does not guarantee increasing total covered area or total
supported traffic. In addition, in their algorithm each node
requires information about the location of traffic sources within
its coverage area at each step in order to calculate its new
location. This will incur a large overhead for their proposed
algorithm. In [6], an adaptive self-deployment algorithm is
proposed in which base stations are capable of autonomous
relocation to simultaneously maximize coverage and supported
traffic in the network. There, the authors assumed the base
stations can freely relocate to all points within the target
field. However, in practice structural obstacles, areas with
outstanding water or other hazardous materials, or surfaces
with debris are examples of prohibited areas where mobile
cells are expected to avoid. Such prohibited areas introduce
additional constraints on designing an intelligent relocation
strategy. To the best of our knowledge, there is no distributed
algorithm that aims to maximize network coverage subject to
capacity constraints and prohibited areas.



In this paper, an adaptive self-deployment algorithm is
proposed in which base stations are capable of autonomous
relocation to simultaneously maximize coverage and supported
traffic in the network subject to prohibited areas.

The rest of this paper is organized as follows. System
description, assumptions and problem formulization are pro-
vided in Section II. In Section III, a distributed adaptive
relocation algorithm that simultaneously maximizes coverage
and supported traffic is presented. In Section IV, we analyze
the efficiency of the proposed algorithm through extensive
simulations. Finally, conclusions and future work are presented
in Section V.

II. PROBLEM STATEMENT

Consider a region Q ⊂ R2 and a set of mobile nodes
(i.e. base stations) denoted by S = {s1, s2, ..., sN}. These
base stations can wirelessly communicate with each other. Let
P0 = {p0,1, p0,2, p0,3, ..., p0,N} denote the initial position of
these base stations where p0,i ∈ Q, ∀i ∈ {1, 2, .., N}. For sim-
plicity, we assume that shadow fading characteristics depend
mostly on the immediate environment surrounding the user.
For example, this is the case when the base station antennas
are located high enough. This results in the shadow fading
intensity experienced by a user at point q to be independent
of its corresponding base station location. As stated earlier,
base stations cannot relocate or pass through the prohibited
areas; however, there might be a need to provide coverage for
emergency responders when they are operating inside these
areas.

We assume each user in Q connects to the base station from
which it receives the strongest control reference signal that is
greater than some specified threshold (i.e. receiver sensitivity
denoted by ηr). We also assume interference is negligible,
which can be achieved by interference-coordination among
neighbor base stations. For example, Inter-Cell Interference
Cancelation algorithms (ICIC) such as dynamic frequency
reuse schemes can be used to mitigate inter-cell interference.
There is also non-inter-cell coordinated schemes in which each
base station uses orthogonal channel [7].

We define coverage area of a base station as the region
where its average downlink transmitted reference signal is the
strongest signal received by users and its value is greater than
or equal to ηr. This corresponds to 50% coverage probability at
cell-edge when shadow fading has log-normal distribution. In
order to increase reliability of connection in coverage area, we
can consider a fade margin ηF . Fade margin is the additional
signal, above the receiver threshold, that is not necessary for
communication; however, it is necessary for reliability predic-
tion. Based on our propagation and channel loss assumptions,
there exists a Rcov such that the average downlink transmitted
reference signal is greater than η = ηF + ηr for all points
within distance Rcov of each base station. In order to formalize
total covered area over region Q, we define Voronoi region

Vi = V (pi) as follows:

Vi =
{
q ∈ Q | E[Prx(pi, q)] ≥ E[Prx(pj , q)],

∀j ∈ {1, ..., N} − {i}
}

(1)
where Prx(pi, q) is the received signal strength of base station
i at point q.

Since all base stations are transmitting using equal power,
Voronoi region Vi = V (pi) will be the set of points such
that E[L(pi, q)] ≤ E[L(pj , q)]. E[L(pi, q)] = E[Ls(pi, q)] +
E[Lp(pi, q)] holds where Ls and Lp represent shadow fading
and pathloss respectively. Since Ls is almost the same at point
q with respect to different base stations, Vi will be the set
of all points q ∈ Q such that E[Lp(pi, q)] ≤ E[Lp(pj , q)].
This is equivalent to dist(q, pi) ≤ dist(q, pj). As a result, the
Voronoi region Vi = V (pi) is the set of all points q ∈ Q such
that dist(q, pi) ≤ dist(q, pj) for all i 6= j, i ∈ S. To construct
the Voronoi diagram, the bisectors of each base station and
its neighbors need to be drawn first. Among all polygons
generated by these bisectors, the smallest one which contains
the base station is the Voronoi polygon of that base station.
It follows from defined coverage model and Voronoi polygon,
that any point in a Voronoi polygon which is not in coverage
area of the base station associated with that polygon cannot
be in coverage area of any other base station either. Thus, in
order to find the so-called ”coverage holes”, i.e. the points that
are not in coverage area of any base station, each base station
would only need to check its own Voronoi polygon.

The coverage area of each base station within its Voronoi
polygon is called the local coverage area of that base station.
Total covered area in Q is equal to sum of local covered areas,
so we define the coverage metric as follows:

O(p1, ..., pN ) =

N∑
i=1

∫
Vi

f(dist(q, pi))dq (2)

Where f(x) is equal to 1 if x ≤ Rcov otherwise f(x) = 0.
In practice, the communication range of a base station to

other base stations is bounded. This is a limiting factor for
the base stations to reach their neighbors, and can potentially
result in wrong Voronoi polygons around some of the base
stations, negatively affecting the efficient detection of coverage
holes in Voronoi polygons.

We are also assuming that the spatial distribution of traffic
sources in the target field is non-uniform, and slowly variable
which is due to change in user demand and its position.
So traffic hot-spots location and their capacity demand may
change during time. As a result, a base station deployment
that is servicing traffic at time t0, may not meet the traffic
demand at time t1. This can be either due to having overloaded
base stations or having traffic which is not in coverage area
of any base station. Let Oi = {o1, ..., ok} denote the set of
overloaded Voronoi neighbors of base station i. If we assume
that the total traffic demand throughout the target field is
less than the total network capacity (i.e. capacity of a base
station multiplied by the number of base stations), then it
is imaginable that the overload scenarios faced by few base
stations can be overcome by judicious relocation of all base



stations in the network. Besides that, relocations that aim to
increase coverage in the area, are needed to service the users
that are not in coverage area of any base station.

In this paper, we propose a strategy where mobile base
stations adaptively and autonomously adjust their positions
in order to maximize the supported traffic and eliminate the
base station overload situations in traffic hot-spot zones. Given
the aforementioned traffic constraint, our proposed relocation
algorithm also tries to maximize the network coverage area at
the same time. Let Pn denote the locations of base stations at
iteration n, we are interested to find a distributed algorithm in
which Pn converges to P ∗ for a given traffic distribution and
such that:

P ∗ = arg max
p1,...,pM

N∑
i=1

∫
Vi

f(dist(q, pi))dq (3)

s.t. E[ρi] ≤ 1 ∀i ∈ {1, ..., N}
where ρi denotes the capacity demand of base station i which

is the sum of the required resources of all users u connected
to cell i by a connection function which gives the serving cell
i to user u.

ρi =
∑
u∈Ui

ρi,u, ρi,u =
si,u
s
, si,u =

⌈
σu
ei,u

⌉
where Ui denotes the set of users which are supposed to

connect to cell i. si,u denotes the number of resources used
by node u. s denotes the total number of available resources
at each base station. σu represents the required bit rate of user
u in order to transmit data. ei,u is the bandwidth efficiency of
user u. The dxe represents the minimum integer larger than x.
We are interested to propose a relocation algorithm that can
achieve autonomous adaptive base station deployment subject
to the capacity constraints.

III. PROPOSED ALGORITHM

Our proposed approach is an iterative algorithm; where in
each iteration every base station first broadcasts its location
along with the capacity demand from users in its coverage area
to other neighboring base stations. Each base station then uses
this information to calculate its new location. The new location
is calculated through an adaptation of simulation optimization
algorithm presented in [8]. The basic strategy of the algorithm
in [8] is to generate a sequence of feasible and improving
solutions. If the constraint is well satisfied, then the variables
change in the direction which improves the objective function.
If the constraint function is not satisfied, the variables change
in a direction which satisfies the constraint.

Intuitively, the proposed algorithm aims to maximize net-
work coverage while ensuring that base stations can meet
their corresponding traffic demand. Each base station tries
to increase its local coverage, when the capacity constraints
of itself and its neighbors are satisfied. We refer to this
phase as coverage improvement phase. On the other hand, if
the capacity constraint of a base station is not satisfied (i.e.
overload situation), it makes a request for help by sending a
signal to the neighboring base stations. We refer to this phase
as load balancing phase.

In order to calculate moving direction in both phases, we
need to be able to calculate gradient of an integral function
in a Voronoi polygon. Gradient of function f is the direction
which increases f fastest. The region in Voronoi polygon of
node i in which the average power of received signal is greater
than the receiver sensitivity is denoted by µ(pt,i). µ(pt,i) can
be defined by k relations hj(pt,i, q) ≤ 0 for j = 1, ..., k.
hj(pt,i, q) are boundary functions which consist of both
Voronoi boundaries and coverage boundary of the mobile base
station. By concatenation of the boundary functions hj(pt,i, q)
as h(pt,i, q) = [h1(pt,i, q), ..., hk(pt,i, q)]

T , this region can be
represented by h(pt,i, q) ≤ 0. Denote the boundary of µ(pt,i)
by ∂µ(pt,i). The boundary of the region corresponds to the
equalities in the above formulation. Note that this boundary
has k segments, where each segment can be expressed as:

∂jµ(pt,i) = {q ∈ µ(pt,i) : hj(pt,i, q) = 0} (4)
Consider the following integral function over the region:

F (pt,i) =

∫
µ(pi,t)

z(pt,i, q)dq (5)

where z(., .) is a given function. The gradient of F (pt,i) with
respect to pt,i can be computed as [9]:

∇pt,iF (pt,i) =

∫
µ(pt,i)

∇pt,iz(pt,i, q)dq

−
k∑
j=1

∫
∂jµ(pt,i)

z(pt,i, q)

‖∇qhj(pt,i, q)‖
∇pt,ihj(pt,i, q)dq (6)

In the coverage improvement phase, each base station moves
in the direction which increases local coverage fastest. The
local coverage area of each base station can be formulated as

J(pt,i) =

∫
µ(pt,i)

dq (7)

Each base station can calculate gradient of its local coverage
function as [9]

∇pt,iJ(pt,i) =

∫
∂µ(pt,i)

q − pt,i
‖q − pt,i‖

dq (8)

where ∂µ(pt,i) is the portion of the perimeter of the sensing
disk which is inside Vi. Figure 1 provides a geometrical
interpretation of equation 8. It is desired in this figure to
maximize the gray region by properly relocating the base
station i inside the polygon. As Figure 1 shows, the gradient
of the local coverage is toward right.

In the load balancing phase, a base station moves in the
direction which would result in the fastest offloading of traffic
from the overloaded Voronoi neighbors. Since we do not
have any information about traffic distribution in the area,
we assume traffic sources of each base station is uniformly
distributed within its coverage area. Let ϕ(q) denote the
estimated traffic density at point q for overloaded areas, we set
ϕ(q) for the rest of area to 0. The amount of offloaded traffic
from overloaded neighbor base stations when base station i is
at pt,i is as follows:

G(pt,i) =

∫
µ(pt,i)

ϕ(q)dq (9)



pt,i

Fig. 1. Geometrical interpretation of the gradient function with respect to
pt,i for coverage improvement phase

Here z(pt,i, q) = ϕ(q) which is not a function of pt,i. So
first term in equation 6 will be equal to zero. Based on the
definition of ϕ(q), ϕ(q) is nonzero only on the Voronoi edges
which are besides overloaded neighbor base stations. As a
result by using 6, we have:

∇pt,iG(pt,i) =

−
|Oi|∑
j=1

∫
∂jµ(pt,i)

ϕ(q)

‖∇qhj(pt,i, q)‖
∇pt,ihj(pt,i, q)dq (10)

where ∂jµ(pt,i) is the part of Voronoi polygon Vi which is
mutual between base station i and oj . hj(pt,i, q) represents
the equation of ∂jµ(pt,i) and it is equal to (poj ,t− pt,i)T (q−
pt,i+poj,t

2 ). The gradients can be computed as follows:

∂hj(pt,i, q)

∂pt,i
= pt,i − q (11)

∂hj(pt,i, q)

∂q
= poj ,t − pt,i (12)

after applying 11 and 12 to 12, we have:

∇pt,iG(pt,i) =

|Oi|∑
j=1

∫
∂jµ(pt,i)

ϕ(q)
q − pt,i

‖poj ,t − pt,i‖
dq (13)

∇pt,iG(pt,i) is the direction which offloads the traffic from
the overloaded neighbor base stations fastest.

Figure 2 provides a geometrical interpretation of equation
13. In this figure, pk,t is the only overloaded neighbor of pt,i.
Same weight is assigned to all the points within the gray area.
As Figure 2 shows, the gradient of the G(pt,i) is toward pk,t.

If base station i is on the border of a prohibited region and
the moving direction calculated by the gradient function is
blocked by the prohibited region, the gradient is not a valid
moving direction. In this case, base station moves in a valid
direction which has the largest positive directional derivative.
Directional derivative of objective function F with respect to
direction u can be calculated as follows:

D−→u F (pt,i) = ∇pt,iF (pt,i).
−→u = ‖∇pt,iF (pt,i)‖‖−→u ‖ cos(θ)

where θ is the angle between ∇pt,iF (pt,i) and −→u . As a result
among all valid moving directions, the one with the smallest
θ (and positive cos(θ)), is increasing the objective function
fastest. This will result in detouring the prohibited region.

After base station i calculates its moving direction at step
t, it moves by at,i meters toward the calculated direction. at,i
denotes step size sequence for iterative updates of base station
i’s location. at,i = Aig(step(t, i)), where Ai is the scaling
factor and g(step(t, i)) is the decaying factor which gradually
decreases from 1 to 0. step(t, i) is initially set to 1 and each
time base station i moves, it is incremented by 1. Choice of
at,i can affect the speed of convergence of the algorithm. In

pt,i pj,t

pk,tpz,t

Fig. 2. Geometrical interpretation of the gradient function with respect to
pt,i for load balancing phase when base station located at pk,t is overloaded

order to adjust at,i to achieve proper convergence speed, we
propose to use the following procedure:
• If over the last M relocations of base station i, the moving

direction remains the same, then let Ai = 2at−1,i and set
step(t, i) = 1.

• If over the last M relocations, the new location of base
station i falls out of its corresponding Voronoi polygon,
then let Ai =

at−1,i

2 and set step(t, i) = 1.
In the above procedure, the value of M is also important.

Small M could result in incorrect updates due to small amount
of information, while a large choice of M increases the
convergence time due to the slow update frequency of at,i.
If over the last M relocations, the total relocated distance by
base station i is too small or too large, this means at,i has
not been properly chosen for the current network status. This
could be either due to the size the area or rapid change in the
traffic pattern.

Πi(.) in Algorithm 1, represents the projection function. If
pt,i + at,i <

−→
D i > falls out of the Voronoi polygon of base

station i, then Πi(pt,i + at,i <
−→
D i >) will be projected in

the polygon. Besides that, in both phases, when base station
reaches the boundary of a prohibited area, it stops.

To conserve energy and decrease unnecessary nodes relo-
cation in the network while providing an acceptable service
quality, we also propose a stopping criterion. If the base station
is in the coverage enhancement phase and the magnitude of
coverage hole is less than εcov , it will not move any further.
If the base station is in the load-balancing phase and the total
amount of overloaded traffic within its neighbors is less than
εlb, it will not move any further. We can achieve a trade-off
between stopping time and performance by changing εlb and
εcov . Larger εlb and εcov will decrease the stopping time which
is at the cost of worse performance.

Remark: The problem investigated in this paper is a non-
convex optimization problem with unknown information about
location of users within the target field. Thus, the proposed
algorithm will not necessarily result in the optimal solution.

IV. SIMULATION AND RESULTS

Consider a target area of size 1800m× 1800m. This target
area size is comparable with case 3 of Scenario III cited in
the FCC report on the Public Safety Nationwide Interoperable
Broadband Network [1]. Several mobile base stations that are
connected to a wireless backhaul network are expected to pro-
vide communication services to users in this area. It is assumed
that each base station has 50 resource blocks of 180KHz in
size. It is also assumed that the carrier frequency is 700MHz,
channel bandwidth is 10MHz, and transmission power of



Algorithm 1 Autonomous adaptive deployment algorithm
1: . Each base station si broadcasts its location pt,i at time t and

its capacity demand ρsi to its neighbors and then constructs its
Voronoi polygon based on the similar information it receives from
other base stations

2: . Each node si ∈ S calculates its new location as follows:
3: Calculate ∇pt,iG(pt,i) by equation 13
4: if ∇pt,iG(pt,i) 6=

−→
0 and ρsi ≤ 1 then

5: . Choosing a valid moving direction which offloads traffic
from overloaded neighbors fastest

6: <
−→
D i >= arg max−→

Di:‖
−→
Di‖=1

−→
D i.∇pt,iG(pt,i)

7: else if ρsi ≤ 1 then
8: . Choosing a valid moving direction which increases local

coverage fastest
9: Calculate ∇pt,iJ(pt,i) by equation 8

10: <
−→
D i >= arg max−→

Di:‖
−→
Di‖=1

−→
D i.∇pt,iJ(pt,i)

11: end if
12: pt+1,i = Πi(pt,i + at,i <

−→
D i >)

each base station is equal to 16.39dBm/resourceblock. The
receiver’s sensitivity is considered to be -90dBm. Each base
station has limited power in communicating with other base
stations. It is assumed transmission power of each base station
for communication between each other is equal to 36dBm.

We assume that traffic hot-spots are distributed with Pois-
son point process (PPP), and users (i.e. traffic sources) are
generated based on the model in [10]. In this model, first a
random location is assigned to each user. Then, each user u is
moved toward its closest traffic hot-spot HSu by a factor of
β ∈ [0, 1]. So, the user’s new location unew is calculated as
unew = βHSu+ (1−β)u. β has a Gaussian distribution with
mean µβ ∈ [0, 1] and variance σβ =

0.5−|µβ−0.5|
3 . A large

µβ will result in users being closer to traffic hot-spots, while
small µβ will lead to a uniform distribution of traffic. Each
user is generating traffic with the rate of 64kbps, 128kbps or
256kbps based on a uniform distribution.

The path-loss at distance d of a base station is modeled
as 40 log(d) + 30 log(f) + 49 where d is in km and f is in
MHz. In addition, shadow fading with a standard deviation
of 5dB is also considered. A spatially correlated shadow
fading environment with correlation function r(x) = e−

x
50

was generated as described in [11]. Using the path-loss model
and receiver sensitivity, Rcov is calculated to be 200m. Mobile
base stations employ our proposed algorithm to autonomously
relocate and provide better support of traffic within the target
area. Node relocation, control signaling exchange and all other
updates are carried out using a 60s simulation time-step. It is
assumed that each base station can relocate up to a maximum
of 60m during a time-step. We set at,i = 200

step(i,t) , a decreasing
function of step(i, t) and slowly converging to 0. We set
εlb = 2 and εcov = 3m2.

In the first two scenarios we show the improvement in
the performance by execution of Algorithm 1 during time.
Then, we show how much the proposed algorithm improves
the performance considering uniform initial deployment by
averaging over 100 different scenarios.

First, we consider the capacity and coverage performance
of the network considering an initial random deployment of
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Fig. 3. First scenario: (a) Initial locations of base stations; (b) Final locations
of base station after execution of Algorithm 1
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Fig. 4. Network coverage and supported Traffic during execution of Algorithm
1 (first scenario)

mobile base stations at the center of a 800m × 800m target
field. For example, Figure 3(a) shows the initial positions
of the base stations (marked by red triangles) along with
initial user distribution (marked by green asterisk). Prohibited
areas are shown by black polygons. In our simulations, µβ
is equal to 0.6. Given this initial deployment, base stations
1, 18 and 19 encounter high traffic demands beyond their
capacity limits. With the execution of our proposed relocation
algorithm, base stations that have available capacity relocate
closer to traffic hot-spots. When the capacities of base stations
meet the traffic demand within their coverage area, they will
continue relocating to expand network coverage within the
target field. In this way, traffic hot-spots that were originally
outside the coverage area of the initial deployment will get
an opportunity to be discovered. The above process continues
until all base stations can meet their respective traffic demands
and maximum network coverage is achieved. Figure 3(b)
shows the final base station positions after 20 time-steps. After
20 time steps, the total amount of excess traffic at neighbors
of each base station does not exceed εlb, so none of the base
stations deploy load balancing phase. Besides that, none of the
neighbor base stations of 3, 5, 10, 13 and 26 are overloaded,
so they deploy coverage improvement algorithm and relocate
in order to increase the total covered area. Figure 4 shows how
network coverage and the total supported user traffic evolve
during the execution of our proposed algorithm. As observed,
Algorithm 1 results in increasing the supported user traffic
from 80% to 97% as well as improving the network coverage
from 41% to 74%.

Next, after the base stations converge to their final positions
in Figure 3(b), we consider a scenario where traffic hot-
spots locations change. This is shown in Figure 5(a). With
this new traffic distribution, base stations 6 and 30 will face
high traffic demands above their capacity limits. Again, using



-500 0 500
meters

-500

0

500

m
e
te

rs 1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

2021

22

23

24

25

26
27

28

29

30

Base Station Hot-Spot User

(a)

-500 0 500
meters

-500

0

500

m
e
te

rs

1
2

3

4

5
6

7

8

9
10

11

12

13

14

15

16

17

18

19

2021

22

23

24

25

26 27

28

29

30

Base Station Hot-Spot User

(b)
Fig. 5. Second scenario: (a) Initial locations of base stations; (b) Final
locations of base station after execution of Algorithm 1
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Fig. 6. Network coverage and supported Traffic during execution of Algorithm
1 (second scenario)

Algorithm 1, the base stations will autonomously relocate to
new positions in order to adapt to new traffic hot-spots and
accommodate the corresponding demand. Final base station
positions are shown in Figure 5(b). Figure 6 depicts changes in
the area coverage and supported traffic during the execution of
our algorithm. As observed, the supported user traffic increases
from 67% to 97%. The tradeoff in supporting almost all traffic
demand in this scenario is the decrease in the overall network
coverage from 85% to 82%.

Next, we investigate the performance of our proposed al-
gorithm by averaging over 100 different scenarios assuming a
uniform initial deployment and random spatial traffic demands
(i.e. µbeta, number of hot-spots and their location). The results
are shown in Figure 7. With an initial uniform deployment of
base stations, occurrences of traffic hot-spots will cause several
base stations to face traffic demands above their capacity
limits. These situations result in a low average supported
traffic of only 67%. Using Algorithm 1, the base stations
will adaptively relocate to meet non-uniformities in the traffic
demand; and therefore, the average supported traffic in the
network will increase to 93%.
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Fig. 7. Average network coverage and supported traffic during execution of
Algorithm 1 (assuming a uniform initial deployment)

V. CONCLUSIONS AND FUTURE WORK

Cells on Wheels are a cost effective solution to com-
plement a public safety network during emergencies. The
variable nature of the spatial distribution of traffic throughout
the target field along with the large peak-to-average traffic
ratio necessitates judicious and adaptive deployment of the
cells. Assuming, autonomous mobile base stations, we have
proposed a distributed relocation algorithm that effectively
adapts the overall network coverage in order to maximize the
supported user traffic. In practice, there might be situations
where mobile cells are not able to move to all locations
within the target field due to the existence of various obstacles
or other prohibited areas. Our proposed algorithm iteratively
determines the best relocation direction for mobile cells while
avoiding any prohibited area. Simulations show that substantial
gain in performance can be achieved under typical usage
scenarios. Further research is required to study the impact
of various system parameters on the overall performance and
convergence speed of the algorithm. In this paper, it was
assumed that all base stations are mobile, new strategies will
be required if the overall network consists of a combination of
mobile and static base stations. The authors plan to investigate
this case in the future.
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