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ABSTRACT

The ability to be programmed for a wide range of tasks is
what differentiates robots from dedicated automation. Conse-
quently, robots can be faced with often-changing requirements
and conditions. Conventional application development based on
teach programming takes robots out of production and occupies
personnel, limiting robots’ effectiveness in these environments.
Off-line programming solves these problems, but robot inaccu-
racy must be compensated by a combination of calibration, com-
pliance, and sensing. This complicates up-front systems engi-
neering and application development, but results in systems that
can operate in a wider range of requirements and conditions. Per-
formance can be optimized if application tolerances and process
uncertainties are known. If they often change, optimization must
be done dynamically. Automating this optimization is a goal
of smart manufacturing. With its trend of increasing connec-
tivity between the components of robotic systems both within
workcells and to the enterprise, exchanging this information has
become more important. This includes tolerance information
from design through process planning to production and inspec-
tion, and measurement uncertainty from sensors into operations.
Standards such as ISO 10303 (STEP), the Quality Information
Framework (QIF), the Robot Operating System (ROS), and MT-
Connect support this exchange to varying degrees. Examples
include the assignment of assembly tasks based on part toler-
ances and robot capabilities; the automated generation of robot
paths with tolerances arising from sensed obstacles; and the op-
timization of part placement to minimize the effects of position
uncertainty. This paper examines requirements for exchanging
tolerance and uncertainty in robotics applications, identifies how
these requirements are being met by existing standards, and sug-

gests improvements to enable more automated information ex-
change.
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XML eXtensible Markup Language
XSD XML Schema Definition

INTRODUCTION
Industrial robots have had much success automating repet-

itive tasks in structured environments, where their ability to be
programmed has enabled their proliferation into a wide variety
of applications such as part handling, spray painting, and weld-
ing. The predominant method of teach programming is effective
but time consuming, and is an impediment to applying robots for
short-turnaround jobs. Off-line programming solves this prob-
lem, but relies on robot accuracy which is typically much worse
than that of machine tools, necessitating the use of sensors to
compensate for this inaccuracy. Sensors also enable robots to
operate in unstructured dynamic environments, and the contin-
ued improvement and cost reductions in sensors, especially vi-
sion, have now made it possible to deploy robots into previously
hard-to-automate operations and for jobs with small lot sizes and
short lead times, and often-changing performance requirements.

These changing requirements and uncertain environments
make automated offline programming a necessity, but they also
afford an opportunity to optimize manufacturing [1]. Effectively
conveying information throughout the design, planning, and pro-
duction phases is key to achieving this optimization. Until re-
cently, this was a manual process, since product and manufactur-
ing information resided in proprietary systems with no support in
standards for preserving the semantic content throughout the ex-
port and import steps. The situation has improved, with standards
in place for design, process planning, execution, and quality ac-
tivities that make full semantic exchange possible. This paper
will examine the state of these information exchange standards,
and identify needs for revisions that can improve the efficiency
and effectiveness of the exchange of tolerance and uncertainty
information through the manufacturing chain for robots.

USE CASE SCENARIO
In this section, a use case scenario will be presented to pro-

vide context for the following sections on information exchange
issues. At the outset, systems engineering is done to determine
how the overall manufacturing activities will be carried out in the
facility, given budgets, the equipment market, and staff capabili-
ties. In this scenario, an assembly workcell has been established
that combines industrial robots, dexterous manipulators, auxil-
iary equipment, and sensors, that together can achieve assem-
bly performance to desired accuracy. This workstation includes
two robots, each with dexterous grasping abilities, vision system
throughout to determine the actual locations of parts and obsta-
cles, force sensing for insertion of close-fitting parts, and auxil-
iary equipment for the staging and fixturing of parts as needed.

The process begins with a designer preparing a set of de-
sign files for components of an assembly that fulfills customer
requirements for form, fit, and function. The design files spec-
ify product and manufacturing information, including geomet-
ric dimensions and tolerances. Using the design information, an
assembly planner determines the order of operations needed to
complete the full assembly, including any tooling requirements
or other resources necessary to carry out individual steps. For
complex assemblies, this may require the assignment of tasks to
different resources, including people, depending on their capabil-
ities. In this scenario, a process planner prepares a sequence of
jobs for fabricating the assembly components [2, 3]. Robot pro-
gramming for the assembly tasks is done offline, with no teach
programming. Computer-aided design (CAD) files for the as-
sembly components are loaded into an assembly planning sys-
tem, which generates the sequence of operations, possibly well
ahead of the actual assembly event. Because of the potential
for robot collisions, the exact sequence of robot motions will be
determined during execution, using information from the robot
controllers and sensors. This can be done using explicit syn-
chronization elements in the individual robot programs, through
the sequential execution of programs through a supervisory con-
troller, or through a single controller that does real-time planning
for both robots as if they were a combined unit. In this scenario,
a supervisory controller is used for high-level sequencing of pro-
grams for each robot.

The components arrive in two sets: a base assembly struc-
ture, in this case an engine block, and a kit of parts to be attached
to it. The engine block has a single feature with tight assembly
tolerances, and must be located so that this feature is accessible
to the more accurate robot, and in its zone of highest accuracy.
A prior inspection step has measured the actual location of this
feature, and the CAD model has been updated. The block is af-
fixed to a pallet that can be shuttled onto a rotary worktable via
a mobile cart and conveyor. Once on the rotary table, it can be
rotated to its most favorable orientation.

The parts kit is in an area accessible to both robots. The lo-
cation of parts in the kit is not known a priori, so a vision system
is used to determine their identity and location to sufficient accu-
racy. In general, parts may not be graspable in the orientation in
which they are to be inserted, or in the order in which they must
be assembled, so robot plans must be generated dynamically to
reorient parts or clear out obstructing parts. In this scenario, a
shared staging area is provided for these operations.

The location (six-degree-of-freedom (DoF) pose) of parts
determined by the vision system will have some uncertainty, as
will the location of the robot as it grasps the part, resulting in
compounded uncertainty in the part as it is presented to its as-
sembly location. To overcome this, a visual localization step is
conducted just prior to assembly, where the robot presents the
grasped part to a vision system that determines its actual loca-
tion. The final robot path for assembly is adjusted by an offset to



the nominal pose.
A nominal free space robot path is computed that includes

tolerances on position and orientation that ensure an envelope of
collision-free motion. The tolerances give flexibility to the real-
time path planner to optimize motion using machine-specific cost
functions, such as minimizing joint motion or energy consump-
tion [4].

For assembly tasks with tight clearances, position control is
not sufficient, and force control must be done to ensure proper
fit. The inclusion of force control may reduce the need for high
accuracy, necessitating only moderate accuracy to bring the part
into the range where it can engage the assembly location within
the region required to begin the force-controlled insertion.

The parts kit arrives first, and the vision system shows that
the parts are present and accessible, but that several need to be re-
oriented in order to be grasped properly for insertion. The super-
visory controller generates a set of programs for the robots, con-
sisting of a series of pick-and-place moves with path tolerances
that ensure collision-free motion over their full duration, elim-
inating the need to synchronize motion during execution. The
robots proceed to reorient the affected parts.

The engine block arrives and is shuttled into its nominal
location on the rotary table. The vision system determines its
actual pose, and the part is rotated so that the region of min-
imum uncertainty contains the high-tolerance feature, and this
lies within the robot’s region of maximum accuracy. This is the
first assembly operation, and the robot acquires the part from the
kit, takes it to the vision system to determine its actual grasped
pose, and the offset insertion path is executed to bring the part
into contact for the final force-controlled insertion.

Assembly of the other components continues. In most cases,
the robots can operate independently, with their paths enveloped
in tolerances that ensure collision-free motion. In some cases,
however, there is the potential for collision unless the motion is
synchronized. In these cases, the programs are sequenced by the
supervisory controller, which suspends the activities of one robot
while the other completes its task.

Once the assembly process is done, the completed assembly
is transferred to a final quality assurance step, where the location
of features and connections is verified according to the design
requirements.

In the following sections, this use case scenario will serve
as a reference example to illustrate the applicability of standards
for exchanging tolerance and uncertainty, and issues that could
be addressed through revisions to these standards.

TOLERANCES IN DESIGN
As described in the use case scenario, the process begins

with a designer preparing a set of design files that define product
geometry including geometric dimensions and tolerances. These
tolerances signify how much variation is acceptable for satisfac-

tory form, fit, and function. The assignment of optimal toler-
ances that keep manufacturing costs low while still meeting re-
quirements can be difficult, and in many cases, they are informed
by practical experience of the manufacturer. Standard practice is
to represent this information in geometric dimensioning and tol-
erancing (GD&T) callouts, which could be interpreted visually
but do not support automated querying, as shown in Figure 1.

FIGURE 1: A part with typical GD&T annotations

Standards for visually representing GD&T are ASME
Y14.5-2008 [5] and ISO 1101:2012 [6]. These standards have
been used for decades and cover a wide range of variations in
product features, such as flatness, perpendicularity, location, cir-
cularity, and straightness. It is important to distinguish between
the presentation of GD&T information, and the representation.
Representation includes the information necessary to fully de-
fine the meaning of the tolerances, without resorting to visual
depiction.

Standards for exchanging semantic information on nominal
product information have been available for many years through
the ISO 10303 ”STEP” family [7]. STEP is a methodology for
describing product information throughout its life cycle. CAD
systems exchange STEP information through their import and
export facilities, converting between native formats and STEP so
that partners in the supply chain can each use software that best
fits their needs. The advent of ISO 10303 Part 242 in 2014 stan-
dardized an information model for the meaning of GD&T. This
improvement allows for the more full automation of information
exchange further downstream, into production and quality assur-
ance. An example from this information model is depicted in
Figure 2.



ENTITY flatness_tolerance;
name : label;
description : OPTIONAL text;
magnitude : OPTIONAL length_measure_with_unit;
toleranced_shape_aspect : geometric_tolerance_target;
END_ENTITY;

FIGURE 2: EXPRESS entity showing an example of semantic
GD&T for flatness

PROCESS PLANNING
The use of semantic GD&T greatly simplifies the task of

exchanging models between CAD systems from different ven-
dors, a problem faced by systems integrators and suppliers who
must support different formats from different customers. It also
opens the possibility of more fully automating the downstream
processes that are influenced by tolerance requirements. Follow-
ing the use case scenario, from the assembly design, a planner
determines the order of operations needed to complete the full
assembly, including any tooling requirements or other resources
necessary to carry out individual steps depending on their capa-
bilities. This process is variously known as computer-aided pro-
cess planning (CAPP) or computer-aided manufacturing (CAM)
depending on the domain. These systems automate much of the
tedious calculating of end-effector motions or tool paths, and
provide graphical aids for visualizing results, but rely on interac-
tion from a human expert to guide the process and make determi-
nations on suitable alternatives due to the absence of tolerances
and other performance requirements. Even when these CAPP
and CAM systems can use this information to automate the plan-
ning process, it must be manually entered. Here we see the full
value of the exchange of semantic GD&T both in preserving in-
formation exchanged between design systems, and streamlining
its use in downstream planning processes.

To determine if a robot can achieve the tolerance require-
ments, and to compute optimal robot motion, robot performance
metrics are needed. The most common performance metric for
industrial robots is repeatability, or the consistency with which
the robot returns to a given point. This is due to the prevalence of
the method of teach programming, where the robot is physically
brought to a series of poses that are recorded for later playback
in a programmed sequence. This method of programming can be
time consuming, and requires a person to do the teaching while
the robot is taken out of production. While it is cost effective for
high-volume applications, it is often faster to do small jobs man-
ually. In contrast, off-line programming uses models of the parts,
robot, and work volume to generate sequences of nominal robot
poses, relying on the accuracy of the robot to achieve the com-
puted points. This is analogous to the primary method of pro-
gramming machine tools, using CAD data and a CAM system.
However, due to their construction, robots are typically much

less accurate than machine tools, and off-line programming must
be supplemented with other techniques to increase the accuracy
to acceptable levels. Calibration can be done, but errors vary
considerably throughout the work volume due to flexing of robot
links, so calibration tables must be generated at many locations
and orientations. This process is known as error mapping. Be-
cause robots typically have low stiffness and will deflect appre-
ciably under loads, error maps are only effective when developed
under loaded conditions. If these vary during an application, er-
ror mapping may be ineffective. Process sensing is effective un-
der varying loading conditions, because the actual location of the
robot is measured and deviations can be adjusted in real time.
This requires an increased investment in sensing technology, and
possible changes in the process to reduce noise or occlusions.
With a combination of calibration and sensing, robot accuracy
can be increased to approach its repeatability.

Supplemental sensing technology is often brought to bear
in robot applications driven by offline programs, after calibra-
tion and error mapping have reduced systematic errors. A hybrid
technique is to use a set of taught points at key areas in the work
volume, benefitting from high repeatability, and calculating off-
sets from these taught points based in sensor data from cameras
or other vision systems. Using this technique, accuracy errors
are reduced to the much smaller neighborhood around the offset.
Robots have been successfully used in this way for semiconduc-
tor chip placement, with placement accuracy requirements well
below the 1-mm level. ISO 9283 [8] specifies methods for de-
termining overall values of repeatability and accuracy that are
guaranteed throughout the work volume for a given load. These
include accuracy and repeatability for a target point under condi-
tions of varying approach, accuracy and repeatability for motion
along paths, position settling time and overshoot, cornering de-
viations, static compliance, and other metrics. These values are
worst-case values, and in many cases the accuracy of a robot is
much greater. On the other hand, these metrics are valid only
for the test conditions, such as at 20 ◦C, and performance can
be worse under other conditions. It is desirable to know where
these regions of higher or lower accuracy lie, so that applica-
tion programs can be placed accordingly and benefit from higher
performance. To do this, a more sophisticated model of robot
accuracy is needed. The Open Source Robotics Foundation’s
Robot Operating System (ROS) provides an information model
for robots that helps achieve this, called the Unified Robot De-
scription Language (URDF). URDF allows the description of ge-
ometric, kinematic, and dynamic information about the links and
joints of a robot. Figure 3 shows a sample representation of a
robot description.

The xyz and rpy attributes are the Cartesian and orientation
(roll, pitch, and yaw) of the transforms between the links and
joints. Other attributes define dynamic properties for mass, iner-
tia, and friction. Note that there is no uncertainty associated with
any of these values. Automated process planning could be im-



<link name="link1">
<inertial>
<origin xyz="0 0 0.5" rpy="0 0 0"/>
<mass value="1"/>
<inertia ixx="100" ixy="0" ixz="0"

iyy="100" iyz="0" izz="100"/>
</inertial>

<collision>
<origin xyz="0 0 0" rpy="0 0 0"/>
<geometry>
<cylinder radius="1" length="0.5"/>

</geometry>
</collision>

</link>

<joint name="joint1">
<origin xyz="0 0 1" rpy="0 0 3.1416"/>
<parent link="link1"/>
<child link="link2"/>
<dynamics damping="0.0" friction="0.0"/>
<limit effort="30" velocity="1.0"

lower="-2.2" upper="0.7"/>
</joint>

FIGURE 3: Sample Unified Robot Description Format (URDF)
showing how links and joints are represented

proved if this information were available when selecting robots
for assembly tasks.

Run-time tolerances are supported by ROS in the form of
poses with covariance, where the pose representation is Carte-
sian location and quaternion orientation. The tolerances (or un-
certainty, depending on the context) are expressed using a co-
variance matrix on the Cartesian location, and the roll, pitch, and
yaw equivalents of the quaternion orientation. This covariance
approach to orientation is not well suited for uncertainty analysis,
a point described in detail in the section on the use of orientation
uncertainty in assembly tasks.

Robot path tolerances are also available in ROS, using toler-
ances on end points.

These tolerances apply to the joints values, not the Cartesian
values, and so are dependent on the robot selected. ROS does
provide various Cartesian motion planners, such as Descartes [9],
but tolerance information is experimental. For example, orienta-
tion tolerances using a cone about the tool’s directional axis have
been used for insertion tasks.

QUALITY ASSURANCE
The Quality Information Framework (QIF) [10] is an ANSI

standard sponsored by the Dimensional Metrology Standards
Consortium (DMSC) that defines an integrated set of Extensi-
ble Markup Language (XML) information models to enable the

FollowJointTrajectoryActionGoal
trajectory_msgs/JointTrajectoryPoint[] points
float64[] positions
float64[] velocities
float64[] accelerations
float64[] effort
duration time_from_start

control_msgs/JointTolerance[] path_tolerance
float64 position
float64 velocity
float64 acceleration

control_msgs/JointTolerance[] goal_tolerance
float64 position
float64 velocity
float64 acceleration

duration goal_time_tolerance

FIGURE 4: Tolerances on paths and goals for robot trajectories
in ROS

effective exchange of metrology data throughout the entire man-
ufacturing quality measurement process from product definition
to inspection planning to execution to analysis and reporting.
QIF handles feature-based dimensional metrology, quality mea-
surement planning, first article inspection, and discrete quality
measurement. QIF is gaining attention as an important quality
technology [11–16].

QIF is based on XML, and uses terminology and semantics
from the inspection world to represent the various elements in the
QIF specification. The QIF information models are contained
in files written in the XML Schema Definitions (XSD). The
QIF XSD Version 2.0 models consists of six application schema
files QIFRules, QIFResults, QIFPlans, QIFProduct, QIFStatis-
tics, and QIFMeasurementResources bundled into a QIF Docu-
ment. QIF also includes a library of XSD schema files containing
information items used by all QIF applications (Auxiliary, Char-
acteristics, Expressions, Features, GenericExpressions, Geome-
try, IntermediatesPMI, Primitives, PrimitivesPD, PrimitivesPMI,
Statistics, Topology, Traceability, Units, and Visualization).

The flow of QIF data starts with generation of CAD + PMI
data exported as QIF Model Based Design (MBD) application
data. Quality planning systems import the MBD and gener-
ate Plans (whats), then import Resources and Rules informa-
tion and export Plans (whats and hows). Programming systems
import Plans to generate Dimensional Measurement Equipment
(DME) specific programs, or general instructions to guide in-
spection. Dimensional measurement equipment executes pro-
grams and evaluates characteristics of a single manufactured part
or assembly and exports the measurements as Results. Analy-
sis systems, typically performing statistical process control, im-
port single parts Results and generate analysis of multiple part
batches as QIF Statistics data.

The role of uncertainty in QIF would be to characterize the



FIGURE 5: QIF 2 Architecture

statistical distribution of the error. Underlying all measurement
data in QIF is the assumption that the QIF Dimensional Mea-
surement Equipment is of order of magnitude ten times more
accurate than the inspected feature. Thus, a feature characteristic
of 1 mm would require a DME that measures to .1 mm accu-
racy. This inspection rule-of-thumb allays many concerns, but is
not absolute. In fact, QIF has a separate section on detailing the
environment and other inspection factors, (e.g., ambient temper-
ature), that could contribute to quality inspection errors.

QIF provides for inspection measurements to have an at-
tached uncertainty associated with the result. In QIF, the mea-
surement actual values (e.g., the diameter of an instance of Cir-
cleFeatureActualType) are elements that can have the optional
attributes “meanError” and “combinedUncertainty”. Those are
attributes of the ActualDecimalType in Units.xsd shown below.
Measurement data which correspond to actual value types in QIF
are derived from ActualDecimalType.

<xs:complexType name="ActualDecimalType">
<xs:annotation>
<xs:documentation>
An ActualDecimalType defines a SpecifiedDecimalType
with two additional optional attributes: meanError
and combinedUncertainty. These attributes should
either both be used or both be omitted.
</xs:documentation>

</xs:annotation>
<xs:simpleContent>
<xs:extension base="SpecifiedDecimalType">
<xs:attribute name="combinedUncertainty"
type="NonNegativeDecimalType">
<xs:annotation>
<xs:documentation>
The optional combinedUncertainty attribute
is a value expressing the combined
uncertainty assigned to the
SpecifiedDecimalType.

</xs:documentation>
</xs:annotation>

</xs:attribute>
<xs:attribute name="meanError"
type="NonNegativeDecimalType">
<xs:annotation>
<xs:documentation>
The optional meanError attribute is a
value expressing the mean error
assigned to the SpecifiedDecimalType.

</xs:documentation>
</xs:annotation>

</xs:attribute>
</xs:extension>

</xs:simpleContent>
</xs:complexType>

Determining the uncertainty for a QIF actual measurement
is an optional reporting attribute often viewed as unnecessary.
It would be preferable if the vendor of the inspection software
could have access to the numerous factors that play into deter-
mining the uncertainty, for example, ambient temperature, last
calibration, and the model of DME reported benchmarks. If this
were the case, taking inspection measurements in an intemperate
30 ◦C ambient temperature would result in a large uncertainty.

SENSOR UNCERTAINTY
MTConnect is an integration standard to solve the “Island

of Automation” problem in the discrete manufacturing industry.
MTConnect is an open, royalty-free standard that uses prevalent
commercial off-the-shelf technology - XML and HTTP. The MT-
Connect intent is to foster greater interoperability between con-
trols, devices, and software applications by publishing data over
networks using the Internet Protocol [17]. Over the course of the
MTConnect standards development, sensors have gone from an
implicit modeling role within devices to an explicit information
model. This is especially important as sensors can provide real-
time production information to better understand and optimize
manufacturing activities in a factory.

A sensor may measure in one dimension, such as tempera-
ture or acceleration whose fluctuations are a function of time, or
a sensor can be multidimensional, such as an image which can be
a function of two or three-dimensional space and time. MTCon-
nect Part 2 V1.2 [18] presents a sensor model that defines sen-
sor data formats and communication interfaces. MTConnect in-
cludes sensor information models for sensors of one dimension:
acceleration, angular acceleration, angular velocity, amperage,
angle, concentration, conductivity, direction, displacement, elec-
trical energy, flow, frequency, fill level, linear force, load, mass,
pH, pressure, position, power factor, resistance, rotary velocity,
sound level, strain, temperature, time, tilt, torque, volt ampere,
volt ampere reactive, velocity, viscosity, voltage, and wattage.
At present, MTConnect only provides information models for
one-dimensional sensor values.



In MTConnect, a sensor is comprised of two major com-
ponents - a sensing element and a sensor interface. A sensing
element provides a signal or measured value. It is modeled as
an MTConnect DataItem. Each sensor model includes a sensing
element, calibration, signal conditioning, and analog-to-digital
conversion (ADC) information [19]. A sensor interface has ca-
pabilities, such as signal processing, conversion, and communi-
cations, and it is modeled as an MTConnect Component called
Sensor. Each sensor interface may have multiple sensing ele-
ments, which represent the data for a variety of measured values.
Further, when an MTConnect sensor represents multiple sensing
element(s), each sensing element is represented by a Channel.
A Channel represents one sensing element and can have its own
attributes and Configuration data.

FIGURE 6: Sensor Architecture of MTConnect

The MTConnect architecture has an “Agent” that is a web
service and acts as a “bridge” between an MTConnect “Device”
and a Client Application. An MTConnect Device is a piece
of equipment, like a robot, organized as a set of components
that provide data. An MTConnect “Adapter” is a process that
provides a data stream from a device to the agent. MTCon-
nect defines XML information models in order to exchange stan-
dard data items. MTConnect has a so-called “Streams” infor-
mation model that defines data reporting of Events, Samples,

Conditions, and Asset data items through continually-updated
channels. MTConnect has a standard configuration information
model that provides data as a “probe”. Figure 6 shows the dual-
ity of MTConnect sensor configuration as two types: A Sensor
built into an MTConnect Device (i.e., Robot) and an indepen-
dent Sensor as a standalone MTConnect Device. In Figure 6, the
robot “contains” the sensors and will report sensed values as part
of its data reporting.

The MTConnect standard provides an XML configuration
report colloquially known as a “probe”. The MTConnect probe
enumerates the DataItems that will be reported in a “stream”.
The MTConnect probe represents sensor values as a DataItem
sample, which includes XML attributes for sensor type, units,
name, and XML id. Also included in the DataItem XML for
acceleration is an attribute called statistic which is calculated
specific to the sensor DataItem. The statistic attribute indi-
cates that the data has been processed using a statistical op-
eration like average, mean, or root square. Examples of MT-
Connect statistic attributes are AVERAGE, MINIMUM, MAXI-
MUM, ROOT MEAN SQUARE, RANGE, MEDIAN, MODE,
and STANDARD DEVIATION. Below is the XML reported
from the temperature (thermistor) sensor when querying the MT-
Connect Agent for a system configuration (i.e., probe) [20].
<DataItem type="TEMPERATURE" category="SAMPLE"

name="Rtemp" id="temp" units="CELSIUS" >
<Source componentId="s1">channel:1</Source>

</DataItem>

The above XML uses the MTConnect Devices XSD as the
Information Model schema to describe each device and its data
items available. Below, the XML shows the data reporting as
configured using the MTConnect Streams XSD as the Informa-
tion Model. MTConnect streams describe a time series of data
items, including samples, events, and conditions. Below the
Streams snippet describes the sensor readings for sensor one, the
“temp” temperature sensor:
<Temperature dataItemId="temp"

timestamp="2017-03-07T21:17:42.814257"
name="Robotemp"
sequence="839777883"> 19.9

</Temperature >

A sensor measured value is rarely observed in isolation from
a combination of noise and distortion [21]. In fact, noise and
distortion are the fundamental source of the limitations in the
accuracy of sensor measurements. For example, the sources of
accelerometer noise can be broken down into the electronic noise
from the circuitry that is converting the motion into a voltage sig-
nal or mechanical noise from the sensor itself. If an MTConnect
sensor sample is returned as a data item, especially a sensor that
may be noisy and prone to providing outlier values, a quantifica-
tion of the error would be desirable. For example, temperature
sensors typically provide a statement that the thermistor is accu-
rate to ± 3 degrees. To translate this into an uncertainty value



(or statistical distribution of the error), we assume that the error
mean is zero and that three standard deviations from this mean
provides approximately 99.7 % of the error statistical population
assuming a normal error distribution. Of note, it is assumed that
the vendor in providing a bounds on the sensor accuracy, has
used a sufficiently large number of observations to provide a re-
liable estimate of the accuracy. For the thermistor example, the
three-degree bounded limit translates into a standard deviation
uncertainty of one degree.

It would be desirable for MTConnect to report the un-
certainty associated with any measurement, especially sensors,
since noisy measurements or outliers could pass through the data
reporting system as ground truth, when in fact the numbers are
abnormal and should be discarded or should be filtered. Below is
an MTConnect sensor that incorporates uncertainty as an associ-
ated MTConnect data item:

<DataItem type="TEMPERATURE"
category="SAMPLE"
name="Robotemp"
id="temp" units="CELSIUS" >

<Source componentId="s1">channel:1</Source>
</DataItem>
<DataItem type="TEMPERATURE"
statistics="STANDARD_DEVIATION"
category="SAMPLE" name=" RobotempUnc"
id="tempuncertainty" units="CELSIUS" >

</DataItem>

Now, every sensor temperature sensor measurement will
have an associated uncertainty value associated with the read-
ing. Below is MTConnect data stream XML snippet reporting
the temperature sensor measurement, but now containing an as-
sociated data item to explicitly state the uncertainty of the tem-
perature sensor measurement. For example, in the temperature
sensor uncertainty reading, we assume measurement units corre-
spond to those described in the probe XML given above, so the
temperature uncertainty is given as a standard deviation of one
degree

<Temperature dataItemId="temp"
timestamp="2017-03-07T21:17:42.814257"
name="Robotemp"
sequence="839777883"> 19.9

</Temperature >
<Temperature dataItemId="tempuncertainty"
timestamp="2017-03-07T21:17:42.814257"
name="RobotempUnc" sequence="839777883"> 1.0

</Temperature >

Now, the uncertainty of the MTConnect data item can also
be used to register abnormal changes detected internally by the
sensor that may affect its measurements. For example, suppose
an acceleration sensor contains an internal temperature moni-
tor and detects that its board’s internal temperature is exceed-
ing 40 ◦C, which adversely effects the sensor operation and its
acceleration measurements. In this case, the uncertainty value

could be negative, indicating the measures can never be equal to
the mean. Although there is no explicit MTConnect facility for
expressing multidimensional sensor data such as images, MT-
Connect has the ability to incorporate and transport XML data
independent of the core MTConnect information models. Using
the MTConnect “asset” model, MTConnect agents can pass sen-
sor data as embedded “asset” data. This facility along with asset
notification and the “statistic” attribute can form the basis for re-
porting 2D and 3D sensor data. A brief overview will show the
deployment of the MTConnect “asset” mechanism.

MTConnect defines “assets,” which use an associative array
of key/value stores to store the XML. This allows the ability to
collect and report entire XML documents as they change within
applications. Below, the XML shows how an AssetChanged tag
with an asset type Sensor and READING value that would be up-
dated within the MTConnect XML query to indicate new quality
results from an inspection.

<AssetChanged dataItemId="multidimsensor_asset_chg"
timestamp="2016-09-08T19:42:16.855924Z" sequence="46"
assetType="Sensor"> Reading
</AssetChanged>

For our implementation, the Quality Measurement Results
(QMR) XML Schema was used to develop the XML that is then
assessable via the Internet with the following query to an MT-
Connect agent –

http://xxx.xxx.xxx.xxx/asset/INSPECTION?type=Part

where xxx.xxx.xxx.xxx is the ip address of the MTConnect
server, and which returns a so-called “blob” of otherwise unstruc-
tured multidimensional sensor data, outlined by the following
XML snippet:

<MultiDimSensor timestamp="2011-07-25T13:55:22"
assetId="Reading">

<Reading>
<!-- this is the start of the sensor blob data -->
. . .
</Reading>
</MultiDimSensor>

Multidimensional sensors are affected by noise and distor-
tion, so the uncertainty should reflect this. Although it is pos-
sible to embed another sensor data item in the MTConnect sys-
tem configuration to reflect the uncertainty, it would be easier to
incorporate an existing standard such as the Metadata Working
Group Standard [22] to handle image data.

In theory, using the MTConnect sequence number to pack-
age data, a client could query an MTConnect agent to stream
multidimensional data. No tests were done to verify this capabil-
ity.



USE OF ORIENTATION UNCERTAINTY IN ASSEMBLY
TASK

If a CAD model of a part is available, any Point of Inter-
est (POI) associated with that part can be determined using six-
degree-of-freedom data acquired by a pose measuring system.
Uncertainty of a selected POI is derived from uncertainty of pose
measurement. Uncertainty of a part’s location propagates homo-
geneously to its all POIs but propagation of orientation uncer-
tainty may be more complicated and may have directional de-
pendence.

FIGURE 7: Two vector bars mounted rigidly to a part form a
local frame which is tracked by a pose measuring system. The
location of any POI on a part (marked by an arrow) can be deter-
mined from dynamically tracked pose and fixed location of the
POI in a local frame. Uncertainty in pose measurement must be
propagated to the POI.

Let us assume the j-th noisy pose measurement yields RRR j
rotation and ttt j translation. If a location of a POI in the CAD
coordinate frame is UUU = U uuu(θ ,ϕ), where U =‖UUU‖ and a unit
vector u points in the direction of azimuth ϕ and elevation θ ,
then the location of a POI on the rotated object in the coordinate
frame of the pose measuring system is

UUU i =Uwww j + ttt j , (1)

where a unit vector www j points to a rotated POI

wwwi = RRRuuu(θ ,ϕ) . (2)

Uncertainty in the orientation RRR j is propagated to www j and the
noisy orientation can be represented as

RRR j = R̄RR ∆ RRR j , (3)

where the mean orientation R̄RR is used as the approximation of
the unknown true orientation and ∆RRR j is a small random rotation
which can be expressed in axis-angle representation (a j,ρ j) as

∆RRR j(aaa j,ρ j)≈ III +

 0 −qz
j qy

j
qz

j 0 −qx
j

−qy
j qx

j 0

 , (4)

where I is the identity matrix and

qqq j = ρ j aaa j . (5)

From N repeated measurements of noisy orientation RRR j, j =
1, . . . ,N, a covariance matrix of orientation data cov(q) can be
calculated and its three eigenvalues {∧1,∧2,∧3}(∧1 < ∧2 < ∧3)
and associated eigenvectors {eee1,eee2,eee3} can be calculated. Noisy
rotations RRR j can also be used to investigate distribution of trans-
formed unit vectors w j in (2). One way of doing this is to charac-
terize a distribution of µ j defined as the angle between www j and the
mean unit vector w̄ww. The spread of this distribution may be char-
acterized by the angular uncertainty σ : smaller σ correspond to
a tighter concentration of noisy www j around the mean direction w̄ww
and larger σ correspond to wider spread of www j around w̄ww.

For a large class of pose measuring systems, angular uncer-
tainty depends on direction, i.e., σ = σ(θ ,ϕ) where azimuth and
elevation angles determine direction of unit vector u(θ ,ϕ) in (2).
Directional distribution of σ(θ ,ϕ) is closely correlated with the
distribution of axes a j of small noisy rotations ∆RRR j in (4,5), as
can be seen in Figure 8 and Figure 9.

Thus, depending on the directions of eigenvectors of the co-
variance matrix of the orientation data, different POIs of the mea-
sured object will be affected differently. Such situation is shown
in Figure 10.

In summary, the covariance matrix of the orientation data
needs to be carefully analyzed, as not only the values of its di-
agonal elements (variances of orientation data) and off-diagonal
elements (correlation coefficients) are important.

CONCLUSION
Improvements in sensing and control have enabled robots to

be deployed in difficult-to-automate applications characterized



FIGURE 8: Histograms of axes a j of small random rotations ∆RRR j
on log scale in (a), −in f indicates empty bins; (b) directional
distribution of angular uncertainty σ in [mrad]. Based on ori-
entation data obtained with an Optitrack Duo, the length of data
N > 50,000. Plotted directions of eigenvectors correspond to
eigenvalues ∧1,∧2,∧3 of the covariance matrix of the orienta-
tion data q.

FIGURE 9: The same as in Figure 8 but based on orientation data
obtained with another pose measuring system (iGPS).

FIGURE 10: Angular uncertainty mapped onto a CAD model
based on the data acquired with: a) iGPS (same as in Figure 9b)
and b) OptiTrack Duo (same as in Figure 8b).

by often-changing requirements for operation in uncertain envi-
ronments. To more fully automate the optimization of these ac-
tivities, it is important to be able to exchange information about
the tolerance on required performance, and the uncertainty in
measured performance. Standards for the exchange of this in-
formation have been revised with this objective, to varying suc-
cess. This paper examined the support of these standards using
a use case scenario, and showed the results of a case study on
the use of orientation uncertainty to optimally place objects in

a robot workcell. Future work by the authors will examine the
performance improvements achievable in robot path control.

DISCLAIMER
Commercial equipment and software, many of which are

either registered or trademarked, are identified in order to ade-
quately specify certain procedures. In no case does such identi-
fication imply recommendation or endorsement by the National
Institute of Standards and Technology, nor does it imply that the
materials or equipment identified are necessarily the best avail-
able for the purpose.
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