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Abstract. We propose an efficient algorithm to minimize an anisotropic
surface energy generalizing the Geodesic Active Contour model for im-
age segmentation. In this energy, the weight function may depend on
the normal of the curve/surface. Our algorithm is Lagrangian, but non-
parametric. We only use the node and connectivity information for com-
putations. Our approach provides a flexible scheme, in the sense that it
allows to easily incorporate the generalized gradients proposed recently,
especially those based on the H1 scalar product on the surface. How-
ever, unlike these approaches, our scheme is applicable in any number of
dimensions, such as surfaces in 3d or 4d, and allows weighted H1 scalar
products, with weights may depending on the normal and the curvature.
We derive the second shape derivative of the anisotropic surface energy,
and use it as the basis for a new weighted H1 scalar product. In this way,
we obtain a Newton-type method that not only gives smoother flows, but
also converges in fewer iterations and much shorter time.

1 Introduction

Finding the boundaries of objects or regions in images is a fundamental problem
in computer vision. Active contour methods proposed in the eighties have been
a very successful approach to solve this problem. One of the pioneering methods
of this approach is the Geodesic Active Contour (GAC) model by Caselles et al.
In [4], they propose finding the boundaries as curves Γ that correspond to the
minima of a weighted length integral

JGAC(Γ ) =

∫
Γ

ρ(|∇I(x)|)dσ, (1)

where ρ(s) = (1 + s2/λ2)−1, λ > 0 and I : D ⊂ R2 → R is the smoothed image
intensity function. Later Caselles et al.extend this to 3d in [5] to extract surfaces
in volumetric images.

Following [4], many extensions and intricate energies were proposed to ad-
dress the challenges of the segmentation problem. However the model (1) has
maintained its value and is still widely used. In this paper, we consider an
anisotropic variant of (1) in a more general setting

J(Γ ) =

∫
Γ

g(x, n)dσ, (2)
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where Γ is an (d-1)-dimensional surface in a d-dimensional space. The energy
J(Γ ) is an anisotropically weighted surface integral. The weight function g de-
pends on the normal n of the surface Γ , as well as the spatial coordinates x of
the surface. This variation has found application in edge integration [15] and
variational stereo [10, 11, 14].

To devise minimization schemes for (2), we need to compute deformation
velocities V to evolve the surface Γ in a way that will decrease its energy. A
crucial step for this is to quantify the effect of a candidate velocity V on the
energy J(Γ ). For this, we use the concept of shape derivatives [8], which we
define in Section 2. The shape derivative of J(Γ ) with respect to a velocity V is
given by dJ(Γ ;V ) =

∫
Γ

(gκ+ ∂ng + divΓ(gy)Γ )V dσ, where V = V · n and
κ is the mean curvature of Γ , gy denotes the derivative of g with respect to the
normal variable, divΓ is the tangential divergence operator defined in Section
2. This has been known in the area of geometric flows [7], but was recently
rederived in computer vision literature using method of moving frame [12] and
level set formalism [21]. If we choose

V = − (gκ+ ∂ng + divΓ(gy)Γ ) , (3)

we ensure dJ(Γ ;V ) 6 0, hence energy decrease for J(Γ ). This choice commonly
used in computer vision corresponds to using an L2 metric for the velocity space.
Recently H1 metric has been proposed by Charpiat et al. [6] and Sundaramoor-
thi et al. [23]. When applied to the surface energy (2), this corresponds to the
following velocity equation

α0∆ΓV + V = − (gκ+ ∂ng + divΓ(gy)Γ ) , (4)

where α0 > 0 is a constant and ∆Γ denotes the tangential Laplacian operator
defined in Section 2. This equation yields spatially coherent velocities, therefore
smoother evolutions. In [6, 23], the H1 metric is considered in 2d for curves only
and a numerical solution is proposed by turning it into an ODE and computing
the solution with a convolution.

In this paper, we will consider the weak form of a more general version of (4)

〈α∇ΓV,∇Γφ〉+〈βV, φ〉 = −〈gκ, φ〉−〈∂ng, φ〉+〈(gy)Γ ,∇Γφ〉, ∀φ ∈ H1(Γ ), (5)

where α = α(x, n, κ) > 0, β = β(x, n, κ) > 0 and ∇Γ denotes the tangential
gradient defined in 2. This more general velocity equation provides new oppor-
tunities to compute better descent velocities for (2). In particular, we can derive
the second shape derivative of (2) and leverage (5) to implement Newton-type
minimization schemes (see [1] for a trust-region-Newton method). The second
shape derivative of (2) is the first contribution of this paper (see [13] for GAC
energy (1)), and it will enable us to achieve faster convergence, and robustness
to varying image conditions.

We will also propose a Lagrangian computational scheme based on the finite
element method (FEM) to compute the velocity V from (5) and to deform the
surface Γ with V decreasing its energy J(Γ ). This FEM-based velocity scheme
is the main contribution of our paper and has the following advantages:
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– The scheme is applicable in any number of dimensions including surface in
3d and 4d, unlike the schemes proposed in [6] and [23], applicable in 2d only.

– The weights α, β in (5) are not constant as in [6, 23]. They can in fact be
more general functions and depend on the position x, the normal n and the
mean curvature κ of the surface Γ , and we exploit this to implement fast
Newton-type minimization schemes.

– Although the scheme is Lagrangian, it is nonparametric, that is, we do not
parametrize the surface Γ . We only work with the list of simplices that
represent Γ . This greatly simplifies the implementation.

– To compute the velocity V using (5), we only need first derivatives gx, gy of
g. This is in contrast to the previous approaches [10], [14] that use (3) within
a level set framework. They need to account for the term divΓ(gy)Γ , which
requires second derivatives of g. As level set discretization of this term is
very tedious, it is often ignored.

2 Shape Derivatives of the Energy

We use the concept of shape derivatives to understand the change in the energy
induced by a given velocity field V . Once we have the means to evaluate how
any given velocity V affects the energy, we will be able to choose a descent
velocity from the space of admissible velocities, namely a velocity that decreases
the energy for a given surface Γ .

Before we start deriving the shape derivatives of (2). we need some defini-
tions and concepts from differential geometry. We denote the outer unit normal,
the scalar (total or mean) curvature and the curvature vector of surface Γ ∈ C2

by n, κ, κ(:= κn) respectively. For given functions f,w ∈ C2(D) on image
domain D, we define the tangential gradient ∇Γ f = (∇f − ∂nfn)|Γ , tangen-
tial divergence divΓw =

(
divw − n ·Dw · n

)∣∣
Γ
, tangential Laplacian ∆Γ f =(

∆f − n ·D2f · n− κ∂nf
)∣∣
Γ
. We define the shape derivative of energy J(Γ ) at

Γ with respect to velocity field V as the limit dJ(Γ ;V ) = limt→0
1
t (J(Γt) −

J(Γ )), where Γt = {x(t,X) : X ∈ Γ} is the deformation of Γ by V via equation
dx
dt = V (x(t)), x(0) = X [8, 20]. For a surface-dependent function ψ(Γ ), the

material derivative ψ̇(Γ ;V ) and the shape derivative ψ′(Γ ;V ) at Γ in direction
V are defined as follows [20, Def. 2.85,2.88]:
ψ̇(Ω;V ) = limt→0

1
t

(
ψ(x(t, ·), Γt)− ψ(·, Γ0)

)
, ψ′(Γ ;V ) = ψ̇(Γ ;V )−∇Γψ · V .

The 2nd shape derivatives defined as: ψ′′(Γ ;V ,W ) = (ψ′(Γ ;V ))′(Γ ;W ), and
d2J(Γ ;V ,W ) = d(dJ(Γ ;V ))(Γ ;W ).

With these definitions, we can now calculate the shape derivative of the
weighted surface energy (2). In the following, V denotes V · n the normal com-
ponent of the vector velocity.

Lemma 1 ([13, Sect. 3]). The shape derivative n′(Γ ;V ) of the normal n of
the surface Γ in direction V is given by n′ = n′(Γ ;V ) = −∇ΓV .

Theorem 1 ([20, Sect. 2.33]). Let ψ = ψ(x, Γ ) be given so that ψ̇(Γ ;V ),
ψ′(Γ ;V ) exist. Then J(Γ ) =

∫
Γ
ψ(x, Γ )dσ is shape differentiable and we have

dJ(Γ ;V ) =
∫
Γ
ψ′(Γ ;V )dσ +

∫
Γ

(
∂νψ + κψ

)
V dσ.
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Notice that the shape derivative depends only on the normal component V of V .
Therefore, from this point on, we work with scalar velocities V so that V = V n.

Theorem 2. Let ψ = ψ(x, Γ ) be given so that ψ′(Γ ;V ), ψ′′(Γ ;V,W ) exist.
Then, the 2nd shape derivative of J(Γ ) =

∫
Γ
ψ(x, Γ )dσ with respect to V,W is

d2J(Γ ;V,W ) =

∫
Γ

ψ′′(Γ ;V,W )dσ +

∫
Γ

ψ∇ΓV · ∇ΓW + (κ2 −Σκ2
i )ψVWdσ

+

∫
Γ

(∂nψ
′(Γ ;W ) + κψ′(Γ ;W ))V + (∂nψ

′(Γ ;V ) + κψ′(Γ ;V ))Wdσ.

In the following, gx, gy denote the derivatives of g(x, n) with respect to the
first variable x and the second variable n respectively.

Proposition 1. The shape derivative of (2) at Γ with respect to V is

dJ(Γ ;V ) =

∫
Γ

(κg + ∂ng)V − gy · ∇ΓV dσ =

∫
Γ

(κg + ∂ng + divΓ(gy)Γ )V dσ.

Proof. We use Theorem 1 with ψ = g(x, n). Then ψ′(Γ ;V ) = gy ·n′ = −gy ·∇ΓV
using Lemma 1. We also need to compute the normal derivative of g(x, n). We
have ∂nψ = ∂n(g(x, n)) = ∂ng + gTy ∂nn = ∂ng (note ∂nn = 0).
We substitute ψ′, ∂nψ in Thm 1 ⇒ dJ(Γ ;V ) =

∫
Γ

(κg + ∂ng)V − gy · ∇ΓV dσ.
We apply the tangential Green’s formula to the last term of the integral, and
use the identity divΓ(ω)Γ = divΓ(ω)− κω · n [8, Chap. 8] to obtain the result.

Proposition 2. The 2nd shape deriv. d2J(Γ ;V,W ) of (2) w.r.t. velocities V,W

d2J =

∫
Γ

∇ΓV · ((g − gy · n)Id+ gyy) · ∇ΓWdσ +

∫
Γ

(
∂2g

∂n2
+ 2κ

∂g

∂n
+ (κ2 −

∑
κ2
i )g

)
VWdσ

−
∫
Γ

(κgy − gTy ∇Γn+ nT gTxy) · (∇ΓW V +∇ΓV W )dσ.

Proof. ψ = g(x, n) in Thm.2⇒ ∂nψ = ∂ng, ∂nnψ = ∂nng, ψ
′(Γ ;V ) = −gy ·∇ΓV ,

ψ′′(Γ ;V,W ) = − (gy)
′ · ∇ΓV − gy · (∇ΓV )

′
= ∇ΓV · gyy · ∇ΓW − gy · n∇ΓV · ∇ΓW

= ∇ΓV · (gyy − gy · n Id) · ∇ΓW
∂nψ

′(Γ ;V ) = −∂ngy · ∇ΓV − gy · ∂n∇ΓV = −(gyxn) · ∇ΓV − gy · (−∇Γn∇ΓV )

= (gTy ∇Γn− nT gTyx)∇ΓV,

since ∂n∇ΓV = −∇Γn∇ΓV . Substitute deriv.s of ψ in Thm.(2), and reorganize.

3 The Minimization Algorithm

Given shape derivatives of surface energy (2) in Section 2, we can develop
an iterative minimization algorithm to compute minimal surfaces as follows:
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choose an initial surface Γ 0.
repeat

compute the descent velocity V k.
choose step size τk.
update the surface points Xk+1 = Xk + τkV k, ∀Xk ∈ Γ k.

until stopping criterion is satisfied.

This is a well-known approach. However, realizing an effective algorithm that will
always converge, with a small number of iterations and a small computational
cost, is not straight-forward. One needs to design the three main components of
the algorithm carefully to ensure effectiveness for a diverse set of image inputs.
These are: stopping criterion, step size τk selection, and the gradient descent
velocity V k. Wrong stopping criteria may lead to premature termination of iter-
ations or no convergence. The selection of the step sizes has an impact on con-
vergence as well. Cautious small steps at each iteration can ensure convergence,
but may result in too many iterations and long computation times, whereas large
steps can enable fast convergence, but might miss the local minima that we need
to capture. Moreover, in some iteration schemes, large step sizes can create in-
stabilities in the surface evolution, manifested as noisy or oscillatory geometric
patterns on the surface. We describe our solutions for these below.

Step size selection: Minimization problems of this type have traditionally
been formulated as surface evolution problems with fixed step sizes. However,
with fixed steps, one may miss the minima, or the iterations may not converge.
For this reason, we use the Armijo criterion [13, 18] to select a step 10−4 6 τk 6
1 ensuring energy decrease at iteration k. Our initial candidate for a step at
iteration k is min(2τk−1, τkmax) where is τkmax is a safe-guard maximum step that
can be taken at iteration k and we set τ0 = 0.01. We accept and use the step τk

if it satisfies the following energy decrease condition,

J(Γ k+1) < J(Γ k) + ητkdJ(Γ k;V k), (6)

where is η a small positive number, η = 10−3 in our experiments. If condition (6)
is not satisfied, we reduce this step (divide by two) until it is satisfied.

Since our goal is to reach a local minimum of (2), we do not want to move the
surface Γ too much at each iteration (not to miss a minimum). Therefore, we im-
pose an iteration-dependent max step τkmax, based on the maximum displacement
Γ can take without missing an important feature of energy landscape. If δI is the
image-dependent bound on the displacement we allow, then the maximum step
is given by τkmax = δI/max(V ), in which the bound δI can be set to the average
width of a valley of the energy weight g(x, n) or the average edge width of the
image function I(x). In our examples, we used δI = 2σ, where σ is the standard
deviation of Gaussian Gσ(x) applied to the image I(x) to define the isotropic
edge indicator function g(x) = 1/(1+|∇Gσ∗I(x)|2/λ2), λ = 1

4 max |∇Gσ∗I| > 0.
Stopping criterion: In finite-dimensional optimization, the iterations are

stopped when the norm of the energy gradient is below a given threshold. A
typical choice for this norm is the Euclidean norm. This is not applicable to
the shape gradient, because it is a mapping defined on the surface, and the
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surface itself changes through the iterations. To address these issues, we use the

L2 norm ‖G‖L2(Γ ) =
(∫
Γ
|G|2dσ

)1/2
of the shape gradient G = gκ + ∂ng +

divΓ(gy)Γ and accompanying shape gradient thresholds εabs, εrel to realize a
stopping criterion. If we require the pointwise value |G(x)| of the shape gradient
at the optimal surface Γ ∗ to be a small fraction of a pointwise maximum value
Gmax ≈ maxx∈D,n∈S1 |G(x, n)|, then the following threshold for the L2 norm
can be used

‖G‖L2(Γ ) < (εabs + εrelGmax)|Γ |1/2. (7)

In our experiments, we set εabs = 0.1, εrel = 0.01, and use the quantity max |g|/δI
as an indicator of the scale of Gmax. In addition to the stopping criterion (7), we
monitor the energy change. If step size selection cannot provide an acceptable
step τk satisfying (6) before convergence (7), then we check energy change in
recent iterations. If the change has been very small, i.e. |J(Γ k) − J | < εJ |J |
then we terminate iterations. We set εJ = 10−4, and J = 1

nJ

∑nJ
l=1 J(Γ l) is the

average energy for the last nJ = 5 iterations.
A simple descent velocity: An obvious choice that is commonly used in

literature is to set the velocity equal to the negative shape gradient

V = −G = −(gκ+ ∂ng + divΓ(gy)Γ ). (8)

This clearly is a descent velocity as dJ(Γ ;V ) =
∫
Γ
GV dσ = −

∫
Γ
G2dσ 6 0.

The velocity (8) was used in [15, 10, 14] for energy minimization. There are two
downsides to (8): 1) The curvature term gκ makes the geometric evolution un-
stable, requires very small steps. 2) The term divΓ(gy)Γ requires two derivatives
on data function g and is very tedious to discretize when expanded explicitly.

The first downside can be alleviated by pursuing a semi-implicit stepping
scheme. We recall the identities, κ = −∆ΓX, κ = κ · n, V = V n, relating the
position vector X, the scalar and vector curvatures κ,κ, the scalar and vector
velocities V,V . Then instead of using the following explicit update sequence at
each iteration, κk = −∆ΓX

k → κk = κk · nk → V k = −(gκk + f(Γ k)) →
V k = V knk → Xk+1 = Xk + τkV k (f(Γ ) := ∂ng + divΓ(gy)Γ ) , we keep

κk+1,κk+1, V k+1,V k+1 as unknowns to be evaluated at the next iteration. But
this requires us solve the following system of equations at each iteration to
compute the velocity from the known points Xk and normals nk of the current
surface Γ k: V k+1 − V k+1nk = 0,

κk+1 − τ∆ΓV
k+1 = −∆ΓX

k, κk+1 − κk+1 · nk = 0, V k+1 + gκk+1 = −fk. (9)

This semi-implicit scheme is unconditionally stable, i.e. no stability bound im-
posed on step size τk, but it requires more computation per iteration as we
handle a larger number of unknowns at each iteration, and solve a large system
of equations, in contrast to the simple update sequence (Xk → κk → κk →
V k → V k →Xk+1) in the explicit scheme.

The 2nd downside can be alleviated by writing velocity eqn V = −G in weak
form: multiply with a smooth test function φ defined on Γ , integrate over Γ

〈V, φ〉 = −〈G,φ〉 = −〈gκ+ ∂ng, φ〉+ 〈gy,∇Γφ〉, (10)
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where 〈u, v〉 =
∫
Γ
uv dσ is the L2 scalar product on Γ . To obtain (10), we use

Green’s identity
∫
Γ
v divΓwdσ = −

∫
Γ
w ·∇Γ vdσ for integration by parts. Unlike

strong form (8), weak form (10) does not require additional derivatives of gy.
Better descent velocities: The velocity computed with equation (10) is

the L2 gradient descent velocity (as we use the L2 scalar product on Γ on the
left hand side of (10)). We can choose to use other scalar products to define
other gradient descent velocities [2, 6, 23, 22]. These velocities can have desirable
properties, such as smoother surface evolution, faster convergence. To realize
such a framework, we choose a generic scalar product b(·, ·) inducing a Hilbert
space B(Γ ) on Γ . Then velocity V computed by the generalized velocity equation

b(V, φ) = −〈G,φ〉 = −〈gκ+ ∂ng, φ〉+ 〈gy,∇Γφ〉, ∀φ ∈ B(Γ ), (11)

is a descent velocity, because it satisfies dJ(Γ ;V ) = −〈G,V 〉 = −b(V, V ) 6 0.
Two possible options for the scalar product are L2 and weighted H1:
〈V,W 〉L2 = 〈V,W 〉 =

∫
Γ
VW dσ, 〈V,W 〉H1 = 〈α · ∇ΓV,∇ΓW 〉+ 〈βV,W 〉,

where α(x, Γ ), β(x, Γ ) are spatially-varying weight functions, and may depend
on the geometry, e.g.normal, curvature, of Γ as well. The function α : Rd×Γ →
Rd×d is a positive definite matrix-valued, and β : Rd × Γ → R is a positive
scalar-valued. The H1 scalar product with constant weight functions was used
in [6, 23]. Our framework, in contrast, enables us to use general non-constant
weight functions, which can also depend on the geometry of Γ . This offers more
flexilibity in the choice of gradient descent velocities.

A particularly useful choice is based on the shape Hessian of the surface
energy, derived in Section 2. If we compute the velocity V using the Newton’s
method, solving equation, d2J(Γ ;V, φ) = −dJ(Γ ;φ) (= −〈G,φ〉), ∀φ ∈ B(Γ ),
we find that this velocity leads to faster convergence, quadratic close to the
minimum. One easily sees that the 2nd shape derivative

d2J(Γ ;V,W ) = 〈α ·∇ΓV,∇ΓW 〉+〈βV,W 〉−〈γ ·∇ΓV,W 〉−〈γ ·∇ΓW,V 〉, (12)

is similar to a weighted H1 scalar product, when α(x, Γ ) = (g − gy · n)Id+ gyy,
β(x, Γ ) = ∂nng + 2κ∂ng + (κ2 −

∑
κ2
i )g, γ(x, Γ ) = κgy − gTy ∇Γn+ nT gTxy.

The shape Hessian (12) however is not a proper scalar product, and it cannot
be used with the generalized velocity equation (11) to compute descent veloc-
ities, because it is not positive definite. Still, we can try to use it to create a
custom scalar product based on (12) to achieve improved convergence. For this,
we propose the thresholded coefficients

α+ = (g − gy · n)+ Id+ gyy, β+ =
(
∂nng + 2κ∂ng + (κ2 −

∑
κ2
i )g
)

+
,

where f+ = max(f, ε) with ε = 1 for β+, ε = min(g) for α+ in our implemen-
tation, and g is designed so that the Hessian matrix function gyy is positive
semidefinite. Then by neglecting the last two terms in (12), we obtain the fol-
lowing weighted H1 scalar product

〈V,W 〉H1 = 〈α+ · ∇ΓV, ∇ΓW 〉+ 〈β+V,W 〉, (13)

which acts like a preconditioner on the velocity and results in smoother surface
evolutions and convergence in fewer iterations compared to the L2 velocity (8).
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4 Lagrangian Discretization

The minimization algorithm developed so far is in the continuous mathematical
realm, and cannot yet be used to compute numerical minima for energy (2).
For the actual computation, we need a discrete representation of the surface;
moreover, a discretization of the energy (2), and all the relationships used in
a minimization iteration: the step size condition (6), the stopping criterion (7),
the velocity equation (11). The original algorithm for GAC model [4, 5] relied
on a Eulerian level set representation of the surface, and the minimization was
carried out as a level set evolution with fixed step size. The discretization was
by finite differences on the image grid. This can have high computational cost
if all the grid points are evaluated as unknowns in the iterations. In this work,
we opt for a Lagrangian discretization of the problem for its efficiency and the
flexibility it offers to realize an effective shape optimization algorithm.

Discretization of the geometry: We discretize the surface as a set of sim-
plices {Γhi }mi=1, namely, line segments making up polygonal curves in 2d, and
triangulated surfaces in 3d. The simplices provide a basis for discretization of
the minimization equations as well. This simplicial discretization is compact and
efficient; a collection of curves used to segment a megapixel image can be repre-
sented with only a few hundred nodes, providing orders of magnitude reduction
in the number of variables compared to a Eulerian representation.

We can tune the efficiency of the surface representation even further by im-
plementing spatial adaptivity. More nodes are used to increase surface resolution
in complicated parts of the geometry or the image, and fewer nodes in flat areas.
To manage this dynamically through the evolution of Γ , we use geometrically-
consistent surface refinement and coarsening operations [3]. For a line segment,
refinement introduces a new node in the middle, and projects it along the nor-
mal to match curvature. For a triangle, we use longest-edge bisection approach
[19]. Coarsening is just an undo operation for refinement. These adaptations are
executed at the end of each iteration to ensure accuracy before the next iteration.

Finite element method for velocity: We use the simplicial discretization
{Γhi }

nΓ
i=1 of the approximate surface Γh to introduce a finite element (FE) dis-

cretization of the velocity equations. We choose a set of piecewise linear nodal
basis functions {φi}mi=1 defined on surface elements. The function φi satisfies
φi(xi) = 1 on ith node xi of Γh, but φi(xj) = 0 on the other nodes xj , j 6= i. We
use {φi} as test functions in the generalized velocity eqn (11):

b(V, φi) = −〈G,φi〉 = −〈gκ+ ∂ng, φi〉 − 〈gy,∇Γφi〉, i = 1, . . . ,m.
Similarly, we take the geometric relationships κ = −∆ΓX, κ = κ · n, V =
V n, multiply by φi, integrate on Γh, and write them in weak form: 〈κ,φi〉 =
〈∇ΓX,∇Γφi〉, 〈κ, φi〉 = 〈κ ·n, φi〉, 〈V ,φi〉 = 〈V,φi ·n〉, where φi is the vector-
valued test functions, e.g. φi = (φi, φi) in 2d. We also expand all the critical
quantities in terms {φi}mi=1, so that they are represented by coefficient vectors
κ =

∑m
j=1 kjφj = kjφj , κ = kjφj , V = vjφj , V = vjφj . In this way, we obtain

discretized equations in matrix form: Ak = Mx, Mk = Nk, Bv = g, Mv = Nv,
where Aij = 〈∇Γφi,∇Γφj〉, Mij = 〈φi, φj〉, Bij = 〈α+·∇Γφi,∇Γφj〉+〈β+φi, φj〉,
Nk
ij = 〈φi, φjnk〉, gi = −〈gκ+ ∂ng, φi〉 − 〈gy,∇Γφi〉, and vector versions A,M.
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The matrices A,M,B consist of tridiagonal blocks in 2d, and they can be
inverted in O(m) time. In 3d, they are sparse matrices, and can still be inverted
efficiently using a sparse direct solver or the conjugate gradient algorithm. Given
the current surface nodes x = {xi ∈ Γh}mi=1, we solve for the discrete velocity
v with the explicit sequence k = A−1Mx → k = M−1Nk → v = B−1g →
v = M−1NV. The semi-implicit equations (9) are discretized similarly, then
solved as a coupled system of equations with a much larger coefficient matrix.

Adaptivity of discretization: The central concern for the quality of the
discretization is accuracy, specifically, how faithfully it captures the geometry,
and how well it resolves important features in the image, meanwhile maintaining
efficiency as well. Thus we aim to keep accuracy within a reasonable range, not
too low or too high. We use two separate criteria for judging the accuracy:
1) Geometry : Measure geometric discretization error with maxΓhi |κ||Γ

h
i |2 in 2d,

maxΓhi
|ni−nj |

h |Γhi |2 in 3d (nj is the normal of the neighbor element).

2) Data: To see how well the element Γhi resolves the data func.g(x, n), compare
low and high order quadrature approximations of the local integral

∫
Γhi
g(x, n)dσ.

Mesh elements are refined if one of two errors is large, coarsened if both are low.
An additional and critical adaptivity criterion is how well we are approxi-

mating the shape gradient G, key to velocity computations (11), step size selec-
tion (6), and stopping criterion (7). Ideally, the optimization iterations would
converge to the optimal surface Γ ∗, and we would have the shape gradient
|G(x)| ≈ 0,∀x ∈ Γ ∗. In practice, the energy, the shape gradient, and the ve-
locity will be from different discretizations, and thus may be inconsistent. This
typically manifests itself with step size selection failures close to the minimum.
When this occurs, we identify 10% elements with largest G value, refine them,
restart shape optimization to ensure convergence with satisfactory accuracy.

We also enable topological adaptivity in 2d, e.g. merging, splitting of curves,
based on intersection detection and local surgery to reconnect curves [9, 16, 17].

5 Numerical Experiments

We test our algorithm with synthetic and real image examples in 2d and 3d. We
set g(x, n) = 1/(1+ |∇Gσ ∗I(x)|2/λ2), λ = 1

4 max |∇Gσ ∗I| > 0 and σ = 2 pixels
in the Gaussian Gσ(x). We minimize (2) using L2 velocity (8), and the weighted
H1 velocity using (13) (subject to a maximum iteration number of 1000).

We first evaluate the two velocities and our numerical algorithm on two clean
synthetic images. The merit of these two images is that it enables us to evaluate
the sensitivity of our algorithm with respect to image resolution, thereby the
sharpness of the image gradient at the object boundary. For this, we generate
the same image at resolutions of 2002, 4002, 8002, 16002 pixels. We examine the
number of iterations, the number of energy evaluations, and the actual running
times from the velocities (see Fig. 1). We find that H1 velocity gives superior
results in all these cases. It is robust with respect to image resolution, whereas
the performance of L2 velocity deteriorates as the resolution increases. At highest
resolution, L2 does not converge and stops at the maximum iteration number.
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resolution 200 400 800 1600

(1) L2 27, 29, 0.4s 83, 87, 1.2s 299, 319, 4.6s 1000, 1286, 15.4s
H1 25, 26, 0.2s 41, 42, 0.3s 81, 82, 0.6s 153, 154, 1.1s

(2) L2 52, 57, 0.7s 169, 176, 2.4s 665, 706, 9.1s 1000, 1337, 14.3s
H1 27, 28, 0.2s 57, 65, 0.4s 90, 91, 0.7s 184, 190, 1.3s

(3) L2 145, 184, 2.3s 462, 592, 7.8s 1000, 1138, 16.1s 1000, 1377, 14.2s
H1 119, 180, 1.3s 101, 108, 1.0s 286, 383, 2.9s 645, 925, 8.3s

Fig. 1. L2 and H1 velocities used to segment two synthetic images of increasing resolu-
tion (top right), starting with the different initial curves (1),(2),(3) (yellow), converging
to the (red) boundary curves. Iteration numbers, energy evaluations and actual timings
(seconds) are compared.

Next we evaluate our algorithm with real image examples (see Fig. 2). We
examine the quality of the segmentation, and report the number of iterations,
the number of energy evaluations, and the actual running times. We find that
our observations from synthetic examples are repeated on the real examples as
well. The L2 velocity takes much longer than the weighted H1 velocity, both in
terms of iteration numbers and running times.

L2: 1000, 1670, 24s L2: 1000, 1928, 20s L2: 896, 1728, 15.3s
H1: 180, 308, 1.4s H1: 202, 286, 3.7s H1: 194, 234, 1.7s

Fig. 2. L2 and H1 velocities used to segment three example images. The optimization
starts with the yellow curves, and converges to the final cyan final curve with L2

velocity, and red curve with H1 velocity. Iteration numbers, energy evaluations and
actual timings (seconds) are reported and compared for each example. L2 velocity
terminates by reaching the maximum (1000) number of iterations in examples 1, 2.

Finally, we test our algorithm on synthetic 3d examples (see Fig. 3). We verify
that our discrete representation can be successfully used to segment 3d objects
with weighted H1 descent velocities of the surface energy (2). These examples
also demonstrate the spatial adaptivity of the triangulated surface mesh. We
start the optimization with coarse meshes. These meshes are then adapted and
refined as the geometry gets more complicated and as the algorithm senses more
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details of the data through the iterations. The final objects are captured in good
detail without resorting to an excessively refined mesh.

6 Conclusion

We propose a new minimization algorithm for a more general anisotropic ver-
sion (2) of the Geodesic Active Contour model [4, 5, 10, 12, 14] in any number of
dimensions, supporting alignment penalties on the normal of the surface, in ad-
dition to isotropic image-based penalties. The first variation of this energy, used
to develop minimization algorithms, is already known. We derive the second
variation or second shape derivative, and use it to develop a Newton-type shape
optimization algorithm that results in smoother descent velocities, and converges
in fewer iterations and in less time. The Newton-type minimization algorithm
is more robust; it exhibits consistent convergence behavior for increasing resolu-
tion of the same image, with sharper gradients, whereas the performance of the
commonly-used L2 velocity deterioriates.

We use a Lagrangian (not Eulerian e.g. level sets) discretization of the geom-
etry, namely, polygonal curves in 2d and triangulated surfaces in 3d, for com-
putational efficiency and ease of implementation. Our representation is adaptive
and captures the objects in the image accurately, but economically, adding more
nodes and resolution only when necessary (see Fig.3). The velocity equations are
discretized using the Finite Element Method, which can be solved efficienly, in
linear time with respect to number of nodes in the case of 2d polygonal curves.
Unlike previous approaches [6, 23], our discretization can handle and compute a
variety of generalized descent velocities, including L2, H1 and Newton, for any
number of dimensions, 2d, 3d, 4d.

k = 12, J = 1.802 k = 20, J = 0.986 k = 30, J = 0.407 k = 59, J = 0.278

k = 50, J = 4.441 k = 85, J = 2.780 k = 160, J = 0.500 k = 241, J = 0.024

Fig. 3. Iterations from segmentations of two synthetic 3d objects using weighted H1

velocity. Note the spatial adaptivity of the triangulated surface adjusting to the objects.
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