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We derive a method for extrapolating the grand canonical free energy landscape of a multicomponent
fluid system from one temperature to another. Previously, we introduced this statistical mechanical
framework for the case where kinetic energy contributions to the classical partition function were
neglected for simplicity [N. A. Mahynski et al., J. Chem. Phys. 146, 074101 (2017)]. Here, we
generalize the derivation to admit these contributions in order to explicitly illustrate the differences
that result. Specifically, we show how factoring out kinetic energy effects a priori, in order to consider
only the configurational partition function, leads to simpler mathematical expressions that tend to
produce more accurate extrapolations than when these effects are included. We demonstrate this by
comparing and contrasting these two approaches for the simple cases of an ideal gas and a non-ideal,
square-well fluid. [http://dx.doi.org/10.1063/1.4996759]

I. INTRODUCTION

Monte Carlo (MC) simulations are a well-established
technique for computing the thermodynamic properties of
fluid phases.1–3 Grand canonical Monte Carlo (GCMC) sim-
ulations consider systems at a fixed volume which may
exchange mass and energy with their surroundings, and
are particularly useful for computing fluid phase coexis-
tence of subcritical bulk fluids. Although numerous other
MC approaches have been developed for this application,1–4

when combined with flat-histogram methods, GCMC can be
a particularly efficient method for computing thermodynamic
properties of multicomponent fluids.5–7 In the absence of an
applied sampling bias, the macrostate probability distribu-
tions from GCMC simulations at different imposed chemi-
cal potentials and temperatures may be combined and then
coupled to histogram reweighting approaches to predict prop-
erties at other conditions.1,8–11 A macrostate is defined by
the instantaneous value of the extensive property conjugates
of chemical potential and temperature, i.e., the number of
molecules of each component present and the system’s internal
energy. However, in general, reweighting involves the dis-
cretization of the energy portion of a system’s macrostate
space; neither the bounds nor the resolution of this space
is generally known a priori, and a poor choice can lead to
erroneous results. Furthermore, the (hyper)volume of phase
space grows geometrically with the number of components
present, quickly making this intractable for multicomponent
fluids.

As an alternative approach, we recently developed a
technique to extrapolate a GCMC macrostate distribution

a)Electronic mail: nathan.mahynski@nist.gov

from one temperature to another by expanding the distri-
bution as a Taylor series at each macrostate.12 This does
not require any discretization of the energy portion of phase
space, trivially generalizes for multicomponent fluids,6 and
improves the computational efficiency of biased GCMC meth-
ods when studying fluid phase thermodynamics over a range
of temperatures. Furthermore, we have demonstrated that the
derivatives involved in these Taylor series expansions are
straightforward to calculate by collecting readily available
quantities within each flat-histogram GCMC simulation. Thus,
it requires essentially no additional effort to implement. Previ-
ously, we derived this statistical mechanical framework when
the kinetic energy of the fluid’s components had been factored
out of the system’s classical partition function and ignored. In
other words, only the configurational partition function was
considered.

For reasons we will subsequently discuss, this signifi-
cantly reduces the complexity of the mathematical expressions
involved in our extrapolation approach. At fixed temperature,
the choice to include or neglect these effects does not influ-
ence a system’s extensive thermodynamic properties (except
the internal energy itself); however, when using this tempera-
ture extrapolation method, there are significant ramifications
that we describe herein. Generally speaking, we find that our
extrapolation approach is more accurate when these effects
are neglected, as in previous work.12 Here we provide the
mathematical basis for this choice and provide the equations
necessary for the application of our method in the case that
kinetic effects are included.

This paper is organized as follows. In Sec. II, we discuss
the thermodynamic ensembles involved in our multicompo-
nent sampling approach and describe the extrapolation method
itself and the flat-histogram MC simulations we use to illus-
trate our method. Subsequently, in Sec. III, we derive the
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statistical mechanical expressions for the thermodynamic
derivatives necessary to perform the extrapolation. This high-
lights the implementation differences between when kinetic
energy effects are accounted for and when they are neglected.
Section IV contains results which exemplify the differences
between the two cases for an ideal gas and for a non-ideal,
square-well fluid. We conclude in Sec. V by summarizing the
results and providing guidelines for practitioners to implement
our method.

II. METHODS
A. The isochoric semigrand ensemble

Consider a k-component system in the grand canoni-
cal ensemble, where the chemical potentials, ~µ = (µ1, µ2,
. . . , µk), volume, V, and temperature, T, are fixed. The grand
canonical partition function may be written as

Ξ(~µ, V , β) =
∑
N1

. . .
∑
Nk

exp *
,
β

k∑
i=1

µiNi
+
-

Q, (1)

where Q is the canonical partition function, β ≡ 1/kBT (kB is
the Boltzmann constant), and N i is the number of molecules
of species i. Here, we focus on the case when the total parti-
cle number, Ntot =

∑k
i=1 Ni, is used as the order parameter to

define a system’s macrostate. This order parameter has often
proven useful for studying first order phase transitions in mul-
ticomponent fluids.6,12 Extensions to other order parameters
may also be derived by following the procedure we have out-
lined in this and previous work12 but are beyond the scope of
this paper. Through a change of variables, one may express
Eq. (1) as6

Ξ(~µ, V , β) =
∑
Ntot

exp (βµ1Ntot)

×



∑
N2

. . .
∑
Nk

exp *
,
β

k∑
i=2

∆µiNi
+
-

Q


=

∑
Ntot

exp (βµ1Ntot)Υ(Ntot;∆~µ, V , β), (2)

where ∆µi ≡ µi − µ1, and Υ(Ntot;∆~µ, V , β) is the isochoric
semigrand partition function,

Υ(Ntot;∆~µ, V , β) =
∑
N2

. . .
∑
Nk

exp *
,
β

k∑
i=2

∆µiNi
+
-

Q. (3)

Thus, the probability of a given macrostate, Π(Ntot), may be
expressed as

ln Π(Ntot) = βµ1Ntot + ln Υ − ln Ξ. (4)

From standard histogram reweighting techniques,1 this dis-
tribution for some µ1 may be estimated from a distribu-
tion measured at the same temperature, volume, and ∆~µ
= (∆µ2,∆µ3, . . . ,∆µk) but a different µ0

1 as follows:

ln Π(Ntot; µ1,∆~µ) = ln Π(Ntot; µ
0
1,∆~µ)

+ β(µ1 − µ
0
1)Ntot. (5)

In the vicinity of a first order transition between fluid
phases with low and high overall densities, the macrostate

distribution displays multiple peaks, each corresponding to a
given phase, delineated by a trough between each of them.5,6

Once the macrostate distribution is known, one may compute a
grand canonical ensemble-averaged thermodynamic property,
〈X〉, of some phase α,

〈X〉 =

∑
Ntot ∈α Π(Ntot)X(Ntot)∑

Ntot ∈α Π(Ntot)
, (6)

where X is some extensive property measured as a function
of N tot. Furthermore, the pressure, P, of the system is known
from

PαV β = ln *.
,

∑
Ntot ∈α

Π(Ntot)
+/
-
− ln Π(0). (7)

Coexistence between phases can be found by searching for the
condition corresponding to equal pressures since by definition,
the phases already have the same imposed temperature and
chemical potential(s) in a GCMC simulation.

B. The canonical partition function

Thus, ln Π(Ntot) is a function of Υ and Ξ, which both
depend on the canonical partition function

Qtot =
1∏k

i=1 hdNi Ni!

∫
exp

(
−βH(~q,~r)

)
d~rd~q, (8)

where H is the Hamiltonian of the system, d is the system’s
spatial dimensionality, and h is Planck’s constant. In this work,
we exclusively focus on d = 3. For simplicity, we also assume
that particles are monatomic and have no internal degrees of
freedom, although this does not affect the generality of our
conclusions.

We denote the momenta degrees of freedom for each
particle present in all dimensions by~q and similarly the config-
urational degrees of freedom as~r. In the classical limit, kinetic
and potential energy contributions may be decoupled such that
H(~q,~r) = Up(~q) + Uk(~r).2 Therefore, we can express the total
canonical partition function as the product of the partition
functions resulting from the integration of the configurational
(potential energy) and momenta (kinetic energy) degrees of
freedom such that Qtot = QpQk, where

Qp =
1∏k

i=1 Ni!

∫
exp

(
−βUp(~r)

)
d~r. (9)

Because the kinetic energy operator is a quadratic function of
the momenta of all particles in each spatial dimension, Qk may
be evaluated analytically,

Qk =
1∏k

i=1 hdNi

∫
exp

(
−βUk(~q)

)
d~q

=
1∏k

i=1 Λ
dNi
i

. (10)

Here, Λi =
√

h2/ (2πmikBT ) is the thermal de Broglie wave-
length and mi is the mass of species i. Consequently, at a given
temperature, Qk represents a constant multiplier on Qp. Thus,
one may proceed with a GCMC simulation according to one
of two broad approaches. One the one hand, kinetic contribu-
tions may be included such that the total partition function (Q
= Qtot) is treated during a MC simulation. On the other hand,
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since it is known analytically, the kinetic contributions may be
factored out and disregarded, allowing the simulation to exclu-
sively consider the configurational partition function (Q = Qp).
Afterwards, one may reintroduce the kinetic effects into any
necessary thermodynamic calculations after the simulation has
finished.

In previous work, we demonstrated a technique to extrap-
olate ln Π(~Ψ) from one temperature to another as a func-
tion of different order parameters, ~Ψ, when Qk has been
neglected.12 We refer to this approach as “configurational
extrapolation” because the simulation considers only the con-
figurational degrees of freedom. Conversely, we refer to the
case when kinetic effects are incorporated as “total-energy
extrapolation.” Here, we illustrate the consequences of includ-
ing kinetic energy contributions to demonstrate why configu-
rational extrapolation is generally mathematically simpler and
computationally more accurate. The key to this is a single
partial derivative of Qtot, which is easier to see if we first dis-
cretize the integral over a system’s degrees of freedom into a
sum

Q =
∑
ν

O(ν)exp
(
−βÛ(ν)

)
, (11)

where ν represents a set of the system’s microstates with
energy, Û(ν), and degeneracy, O(ν). Consequently, it is clear
that

1
Q
∂Q
∂ β
= −U, (12)

where U is the average internal energy of the canonical system.
We have left Q ambiguous here because Eqs. (11) and (12)
hold for both Qtot and Qp. The energy on the right hand side of
these equations is simply different, corresponding to U tot and
Up, respectively. For a system of monatomic particles in the
thermodynamic limit,

1
Qtot

∂Qtot

∂ β
=

(
1

Qp

∂Qp

∂ β
+

1
Qk

∂Qk

∂ β

)
,

Utot = Up + Uk

= Up + d
2 NtotkBT .

(13)

In what follows, we contrast two cases: (1) total-energy
extrapolation, when the kinetic energy contributions are
accounted for in a system so that Q = Qtot and U = U tot,
and (2) configurational extrapolation, when only the config-
urational partition function is considered such that Q = Qp and
U = Up. Henceforth, when we present U or Q without a sub-
script, we are implying that the equation it appears in is equally
valid for both cases.

C. Extrapolation of the macrostate distribution

As previously shown,12 one may express the macrostate
distribution, ln Π(Ntot), as a Taylor series in β,

ln Π(Ntot; β) = ln Π(Ntot; β
0) +

∂ln Π(Ntot)
∂ β

�����β0

∆β

+
1
2!
∂2ln Π(Ntot)

∂ β2

�����β0

∆β2 + . . . , (14)

where ∆β ≡ β − β0. Thus, if one can obtain an expression
for the requisite derivatives, one can estimate ln Π(Ntot) at
an arbitrary β if it is known at another β0. In Sec. III, we

derive expressions for these derivatives. To evaluate them, all
combinations of the products of energy and particle numbers
raised to integer powers are measured at each N tot during the
simulation at β0. For example, this includes terms such as
N2

1 N2U3, N2
2 U, and U3. For a desired order of extrapolation, ξt,

we collect these products in a matrix Z(Ntot; ~ξ) whose elements
are specified by the vector ~ξ = (ξ1, . . . , ξk , ξn, ξu), where each
power in ~ξ is a non-negative integer such that ξi ∈ [0, ξt +1],12

Z(Ntot; ~ξ) = N ξ1
1 N ξ2

2 . . .N ξk
k N ξn

totU
ξu . (15)

Although the order that Eq. (14) may be calculated up to
is given by ξt + 1, to calculate extensive properties using
Eq. (6) at the new temperature, the Z(Ntot; ~ξ) matrix must,
in general, also be extrapolated. Following a similar Taylor
series approach, this may be done up to order ξt.12 When the
Z(Ntot; ~ξ) matrix is averaged over the course of the simula-
tion, its entries reflect averages (moments) in the isochoric
semigrand ensemble. In what follows, we denote all such
moments with a tilde, Z̃ . From these values, the grand canon-
ical ensemble-averaged quantities, henceforth denoted with
brackets,

〈Z〉 =
1
Ξ

∑
Ntot

exp (βµ1Ntot) Z̃(Ntot) (16)

may be calculated using Eq. (6).
During both traditional and flat-histogram GCMC simu-

lations, it is common to record an average of only the poten-
tial energy. It is important to emphasize that for total-energy
extrapolation to be employed correctly, the energy recorded
after each step in the MC simulation must generally be adjusted
on-the-fly to include the kinetic contributions. This is because
the Z(Ntot; ~ξ) matrix will be used to compute derivatives of the
partition functions describing the system, so its entries (which
involve energy) must be consistent with the system’s canoni-
cal partition function (in the case of total-energy extrapolation,
Qtot). When N tot is used as a sampling order parameter, it is
possible to correct each entry for kinetic energy after the sim-
ulation is finished, but it is generally simpler to simply record
it on-the-fly.

When considering the differences between including and
neglecting kinetic energy, it is convenient to represent the
moments in the Z(Ntot; ~ξ) matrix in terms of β-independent
and potentially β-dependent factors. The former are denoted
collectively as R, and the latter is simply Uξu . Thus, one can
write

Z(Ntot; ~ξ) =

R︷                  ︸︸                  ︷
N ξ1

1 N ξ2
2 . . .N ξk

k N ξn
totU

ξu = RUξu . (17)

Note that in configurational extrapolation, U = Up, which
remains independent of β. Furthermore, since N tot is the
order parameter and is constant for a given moment in
Z(Ntot; ~ξ), the factor involving N tot need not be included dur-
ing simulation and may simply be added after the simulation
has finished. This reduces the size of the Z(Ntot; ~ξ) matrix
since the dimensionality of the ~ξ vector is now reduced by
one.
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D. Simulations

We employed a hybrid Wang-Landau Transition Matrix
Monte Carlo (WL-TMMC) simulation approach13–15 to
construct the macrostate distribution for a fluid. Our imple-
mentation has already been described in Ref. 12 so we will
not reproduce it in detail here. To summarize, an initial Wang-
Landau (WL) simulation state is used to obtain a preliminary
estimate of the (logarithm of the) macrostate distribution,
ln Π(Ntot), which is subsequently refined using transition
matrix methods.13,14 In concert, this approach is capable of
constructing an accurate macrostate distribution more quickly
than either of the two techniques alone.14

In this work, we consider two systems as illustrative exam-
ples: a single-component ideal gas and a square-well fluid. For
the latter, the interparticle potential energy is given by

u(r) =



∞, r < σ
−ε , σ ≤ r < λσ
0, r ≥ λσ.

(18)

We set ε = 1, σ = 1, and λ = 1.5, and use a periodic, cubic
simulation cell whose volume is V = 512σ3. An ideal gas is
simply obtained in the limit that λσ → 0.

III. GENERALIZED EXPRESSIONS
FOR THE DERIVATIVES

Here we report the necessary derivatives for a second
order extrapolation (ξt = 2) using Eq. (14). We will illus-
trate the mechanics of the first steps explicitly in order to show
how kinetic energy contributions impact the results and leave
the higher order derivatives as an exercise to the reader. As
will become apparent, all necessary derivatives may be eval-
uated by using the moments contained within the Z(Ntot; ~ξ)
matrix.

A. First order terms

The first derivative of Eq. (4) with respect to β is given
by

∂ln Π(Ntot)
∂ β

= µ1Ntot +
1
Υ

∂Υ

∂ β
−

1
Ξ

∂Ξ

∂ β
. (19)

We therefore require expressions for the derivatives of the two
partition functions, Υ and Ξ. Through a simple chain rule, and
the application of Eq. (12), we have

1
Υ

∂Υ

∂ β
=

1
Υ

∑
N2

. . .
∑
Nk

*
,

*
,

k∑
i=2

∆µiNi
+
-

exp *
,
β

k∑
i=2

∆µiNi
+
-

Q + exp *
,
β

k∑
i=2

∆µiNi
+
-

∂Q
∂ β

+
-

=
1
Υ

∑
N2

. . .
∑
Nk

*
,

*
,

k∑
i=2

∆µiNi − U+
-

exp (β∆µ2N2) Q+
-
=

k∑
i=2

∆µiÑi − Ũ. (20)

Similarly, for the grand canonical partition function, we arrive at

1
Ξ

∂Ξ

∂ β
=

1
Ξ

∑
Ntot

∑
N2

. . .
∑
Nk

*
,

*
,
µ1Ntot +

k∑
i=2

∆µiNi
+
-

exp *
,
βµ1Ntot + β

k∑
i=2

∆µiNi
+
-

Q + exp *
,
βµ1Ntot + β

k∑
i=2

∆µiNi
+
-

∂Q
∂ β

+
-

=
1
Ξ

∑
Ntot

∑
N2

. . .
∑
Nk

*
,

*
,
µ1Ntot +

k∑
i=2

∆µiNi − U+
-

exp *
,
βµ1Ntot + β

k∑
i=2

∆µiNi
+
-

Q+
-

= 〈µ1Ntot +
k∑

i=2

∆µiNi − U〉 = µ1〈Ntot〉 +
k∑

i=2

∆µi〈Ni〉 − 〈U〉. (21)

Thus, the first derivative of the macrostate distribution at each
value of N tot may be expressed as

∂ln Π(Ntot)
∂ β

= µ1 (Ntot − 〈Ntot〉) +
k∑

i=2

∆µi

(
Ñi − 〈Ni〉

)
−

(
Ũ − 〈U〉

)
. (22)

We point out that because we used Eq. (12) directly to simplify
the derivatives of the partition functions, and this final expres-
sion is structurally identical regardless of whether kinetic
energy contributions are included or neglected. This is because
the form of Eq. (12) holds regardless; thus U is left ambigu-
ous as Eq. (22) may be applied both when U = Up and when

U = U tot. Only for higher order terms does this distinction
begin to matter.

B. Higher order terms

The next derivative of Eq. (22) at each value of N tot is
simply given by

∂2ln Π(Ntot)

∂ β2
= −µ1

∂〈Ntot〉

∂ β
+

k∑
i=2

∆µi
*
,

∂Ñi

∂ β
−
∂〈Ni〉

∂ β
+
-

− *
,

∂Ũ
∂ β
−
∂〈U〉
∂ β

+
-
. (23)
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Rather than further simplifying this expression immediately,
as has been done in previous work,12 we leave this explicitly
in terms of the first derivatives of extensive properties. The
reason we do so is to illustrate that all second and higher order

derivatives of lnΠ(Ntot) may be expressed in terms of moments
that can be obtained from the Z(Ntot; ~ξ) matrix. We begin by
considering the derivatives of isochoric semigrand ensemble-
averaged extensive moments, Z̃ ,

∂Z̃
∂ β
=

∂

∂ β



1
Υ

∑
N2

. . .
∑
Nk

Zexp *
,
β

k∑
i=2

∆µiNi
+
-

Q



=
1
Υ

∑
N2

. . .
∑
Nk

*
,
−ZU +

∂Z
∂ β

+ Z
k∑

i=2

∆µiNi
+
-

exp *
,
β

k∑
i=2

∆µiNi
+
-

Q −
1
Υ

∂Υ

∂ β

1
Υ

∑
N2

. . .
∑
Nk

Zexp *
,
β

k∑
i=2

∆µiNi
+
-

Q

=

k∑
i=2

∆µi f̃
(
Z̃ , Ñi

)
− f̃

(
Z̃ , Ũ

)
+
∂̃Z
∂ β

. (24)

Here, f̃ (X̃, Ỹ ) ≡ X̃Y − X̃Ỹ is the fluctuation of quantities X and
Y in the isochoric semigrand ensemble. Note the difference

between ∂̃Z
∂β , which is the ensemble average of the derivative,

and ∂Z̃
∂β , which is the derivative of the ensemble-averaged quan-

tity Z̃ . When Z does not involve energy, e.g., for all Z(Ntot; ~ξ)

where ξu = 0, then ∂̃Z
∂β = 0. More generally, in the case where

we neglect kinetic contributions altogether, this final term and
all its subsequent derivatives are always zero, regardless of ξu,
since no term in the Z(Ntot; ~ξ) matrix depends on β; thus it
may be removed from Eq. (24).12

However, if kinetic energy is included, then U = U tot.
Thus, the final term in Eq. (24) must be considered for
all Z(Ntot; ~ξ) where ξu > 0. In this case, for a system of
monatomic particles, from Eq. (17) we have

∂Z
∂ β
= −

dξu

2
β−2NtotRUξu−1

tot . (25)

Note that for fluids composed of polyatomic molecules with
internal degrees of freedom, the kinetic energy will depend on
the number of degrees of freedom in the system, not just the
total number of particles. Consequently, the above expression
becomes slightly more involved and will further complicate
total-energy extrapolation but does not affect the configura-
tional extrapolation approach, for which ∂Z

∂β = 0. Incorporating
the ensemble average of this derivative into Eq. (24) we arrive
at

∂Z̃
∂ β
=

k∑
i=2

∆µi f̃
(
Z̃ , Ñi

)
− f̃

(
Z̃ , Ũ

)
+

−
dξu

2
β−2Ntot

K
RUξu−1

tot . (26)

Following a similar procedure in the grand canonical ensem-
ble, we have

∂〈Z〉
∂ β
= µ1 f̂ (〈Z〉, 〈Ntot〉) +

k∑
i=2

∆µi f̂ (〈Z〉, 〈Ni〉) +

− f̂ (〈Z〉, 〈U〉) +
〈 ∂Z
∂ β

〉
= µ1 f̂ (〈Z〉, 〈Ntot〉) +

k∑
i=2

∆µi f̂ (〈Z〉, 〈Ni〉) +

− f̂ (〈Z〉, 〈U〉) −
dξu

2
β−2〈NtotRUξu−1

tot 〉, (27)

where f̂ (〈X〉, 〈Y〉) ≡ 〈XY〉 − 〈X〉〈Y〉 is the fluctuation of quan-
tities X and Y in the grand canonical ensemble. We empha-
size that the final term in both Eqs. (26) and (27) is not
present when kinetic effects are neglected (configurational
extrapolation). This is why the term “U” is left ambigu-
ous in all but the final term in these equations, which arises
solely from kinetic considerations, and thus is explicitly rep-
resented by U tot to emphasize this point. For comparison, the
reader may refer to Ref. 12 wherein kinetic effects have been
neglected.

When the kinetic contributions are neglected, higher order
derivatives of Z(Ntot; ~ξ) [and therefore ln Π(Ntot)] may be
calculated recursively with the expressions given above by
exploiting the fact that

∂ f̃ (X̃, Ỹ )
∂ β

=
∂X̃Y
∂ β
− X̃

∂Ỹ
∂ β
− Ỹ

∂X̃
∂ β

. (28)

A similar expression holds for f̂ (〈X〉, 〈Y〉).12 Higher order
derivatives of ln Π(Ntot) clearly involve taking higher order
derivatives of Eqs. (26) and (27), e.g., ∂3ln Π(Ntot)/∂ β3

requires ∂2Z̃/∂ β2 and ∂2〈Z〉/∂ β2. Through the repeated use
of Eq. (28) in Eq. (26), and its grand canonical analog in
Eq. (27), one may calculate all higher order derivatives of
Eq. (23); therefore, expressions for the coefficients in Eq. (14)
are known up to arbitrary order since Eqs. (26) and (27) only
involve fluctuation quantities. Note that all necessary quanti-
ties X and Y are terms found in the Z(Ntot; ~ξ) matrix, which
enables this calculation.
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When kinetic contributions are taken into account, the
trailing “corrections” due to ∂̃Z

∂β and 〈 ∂Z
∂β 〉 in Eqs. (26) and

(27), respectively, are generally non-zero. As a result, the
expressions for the derivatives do not exclusively involve fluc-
tuations. Equation (28) may again be used to compute the

derivatives of fluctuations when necessary, but derivatives of
these trailing terms must also be computed. While this is not
difficult, it is more tedious and involved. For example, second
derivatives of terms in the Z(Ntot; ~ξ) matrix may be expressed
as

∂2Z̃

∂ β2
=

k∑
i=2

∆µi
∂ f̃ (Z̃ , Ñi)
∂ β

−
∂ f̃ (Z̃ , Ũ)
∂ β

−
dξu

2
β−2Ntot

*.
,
−2β−1K

RUξu−1
tot +

∂
K
RUξu−1

tot

∂ β
+/
-

, (29)

∂2〈Z〉

∂ β2
= µ1

∂ f̂ (〈Z〉, 〈Ntot〉)
∂ β

+
k∑

i=2

∆µi
∂ f̂ (〈Z〉, 〈Ni〉)

∂ β
−
∂ f̂ (〈Z〉, 〈U〉)

∂ β
+

−
dξu

2
β−2 *

,
−2β−1〈NtotRUξu−1

tot 〉 +
∂〈NtotRUξu−1

tot 〉

∂ β
+
-

. (30)

Again, the trailing terms in parentheses are not present when
kinetic effects are ignored. Although Eqs. (26) and (27) may
be applied again to terms in these equations to compute
higher order derivatives of these expressions, the prefactor
of β−2 implies that the chain rule must be applied each time
an additional derivative is taken, significantly increasing the
length and complexity of the resulting expressions. Nonethe-
less, all the tools necessary to obtain expressions for higher
order derivatives have now been provided. We simply remark
that when kinetic contributions are ignored, the derivatives
retain a significantly more compact mathematical form, and
as we will now illustrate, also tend to produce more accurate
extrapolations.

IV. COMPARING THE TWO APPROACHES
A. Consistency with the acceptance criterion

For a system in which kinetic contributions have been
included, the (unbiased) Metropolis acceptance criterion is dif-
ferent from the case when it is not. The energy that is recorded
in the Z(Ntot; ~ξ) matrix must be consistent with this choice. In
both instances, the probability of accepting a proposed Monte
Carlo move from one microstate to another, “x”→ “y,” is given
by

pacc = min

[
1,
π(y)
π(x)

]
, (31)

where π(s) is the probability of observing microstate “s.”
Clearly this depends on the choice of Q. In TMMC, pacc is
directly used to construct the macrostate distribution. There-
fore, ln Π(Ntot) and its derivatives depend on the choice
of whether to include kinetic energy effects. When kinetic
contributions have been incorporated

πk(s) =
exp

(
−βUp

)
Ξ

k∏
i=1

VNi(s)exp (βµiNi(s))

Λ
dNi(s)
i Ni(s)!

, (32)

whereas when they have been neglected, the de Broglie
wavelength terms are absent from the denominator [πp(s)
= πk(s)/Qk(s)]. If one uses Eq. (32) as written, then the
energy elements of the Z(Ntot; ~ξ) matrix must explicitly
include kinetic energy (U = U tot) to perform total-energy
extrapolation. Note that neglecting the kinetic energy is more
consistent with the fact that Monte Carlo inherently only sam-
ples the configurational contribution to the partition function
(or the configurational integral) and thus focuses on poten-
tial energy. In the case where kinetic effects are neglected
from the system’s partition function (configurational extrapo-
lation), the de Broglie wavelength terms should be removed
from the acceptance criterion, and only the potential energy
should contribute to the energy terms in the Z(Ntot; ~ξ) matrix
(U = Up).

At fixed temperature, the difference between the forms of
Eq. (32) is actually subtle and essentially irrelevant as the two
are equivalent if one incorporates the factor of ΛdNi(s)

i into the
chemical potential of species i,

µi,eff = µi −

µi,ref (β)︷      ︸︸      ︷
dkBT ln Λi . (33)

In this case, the effective chemical potentials are now sim-
ply a function of temperature. A similar procedure can be
used to recast both the chemical potentials and kinetic portion
of the canonical partition function into a single temperature-
dependent activity instead, which can be specified as input
to a GCMC simulation.2,16–20 This choice is highly rele-
vant when performing temperature extrapolation as the ref-
erence state for each component, µi,ref (β), now depends on
temperature.

These approaches for implicitly incorporating Qk by using
an effective or relative chemical potential are common prac-
tice. Similarly, it is also common practice to only collect
potential energy over the course of the simulation. There-
fore, this represents the intermediate case where Q = Qtot but
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U = Up. As discussed in Sec. II C, it is critical to maintain
consistency between the energy terms in the Z(Ntot; ~ξ) matrix
and the canonical partition function of the system in order
to correctly evaluate the thermodynamic derivatives. These
approaches still amount to requiring total-energy extrapola-
tion, unless Λi is arbitrarily set to a constant value (such as
unity) for all temperatures so that it is independent of β. In
that case, kinetic effects have effectively been removed from
the system’s partition function and configurational extrapola-
tion may be employed. This is the tactic we commonly adopt
as it is always possible to simply shift the chemical potential,
accounting for its reference state, after the relevant extrapola-
tion or calculations have been performed. A detailed example
calculation is provided in the Appendix for the interested
reader.

B. Single-component, monatomic ideal gas

We generally find that more accurate extrapolations are
obtained for fluid systems when kinetic effects are neglected.
The interested reader may find detailed examples of various
types of systems we have previously studied in Ref. 12. For the
sake of brevity, and since the mathematics is particularly trans-
parent, we focus here on the limiting case of a pure, monatomic
ideal gas to illustrate why configurational extrapolation tends
to be more accurate than total-energy extrapolation. Namely,
for the pure ideal gas fluid, configurational extrapolation is
“exact” at first order, and all higher order terms are iden-
tically zero, whereas when kinetic effects are incorporated,
total-energy extrapolation is only exact if an infinite number of
higher-order terms are included, becoming only an approxima-
tion when truncated to finite order. Therefore, a finite amount
of error will always persist in the latter case, which we shall
now prove.

As previously discussed, the form of Eq. (22) is indepen-
dent of whether U tot or Up is used. Note that if we elected to
perform total-energy extrapolation such that U = U tot, Eq. (22)
could be rewritten as

∂ln Π(Ntot)
∂ β

=

(
µ1 −

d
2

kBT

)
(Ntot − 〈Ntot〉)

+
k∑

i=2

∆µi

(
Ñi − 〈Ni〉

)
−

(
Ũp − 〈Up〉

)
. (34)

Thus, there is no structural change to the mathematical form
of the derivative; it is only “evaluated” at a different effec-
tive chemical potential of species 1 that has been reduced
by a factor originating from the inclusion of kinetic effects
[cf. first term in parentheses on the right hand side of
Eq. (34)].

However, since the moments in the Z(Ntot; ~ξ) matrix
depend on the choice of U, Eqs. (26) and (27) also depend
on this choice, which in turn affect the second derivative of
ln Π(Ntot), Eq. (23). From Eqs. (26) and (27), the reader will
observe that to second order, a factor of d

2 β
−2(Ntot − 〈Ntot〉)

appears during the evaluation of Eq. (23) when kinetic effects
are included, while it is absent otherwise. As already dis-
cussed, higher order expansions of ln Π(Ntot) with kinetic
effects included deviate by progressively more complicated
mathematical expressions because of chain rules that must be
applied to take additional derivatives of this term.

Notably, in the special case of a single-component ideal
gas, significant simplifications may be made. If we neglect
kinetic contributions, we may express the macrostate distribu-
tion as

ln Π(N ; β) = ln Π(N ; β0) + µ(N − 〈N〉)∆β +
1
2

(0)∆β2 + . . . .

(35)
Since U = Up = 0 for an ideal gas, second order and higher
terms are identically zero in Eq. (14), and thus the Taylor series
expansion is actually “exact” at first order.

The same is not true when kinetic contributions are
included because U = Uk + Up = Uk =

d
2 N β−1 , 0. Using

this relationship, Eq. (14) may be simplified in terms of only
the particle number. For a three-dimensional ideal gas, up to
second order, in the thermodynamic limit,

ln Π(N ; β) = ln Π(N ; β0) +

(
µ −

3
2
β−1

)
(N − 〈N〉)∆β +

1
2

*
,

3
2
β−2 (N − 〈N〉) −

(
µ −

3
2
β−1

)2

f̂ (〈N〉, 〈N〉)+
-
∆β2. (36)

However, this expansion is no longer exact, and higher order
terms are non-zero. This illustrates why there are accu-
racy differences between configurational and total-energy
extrapolation.

To quantitatively compare the two cases, we simulated
a three-dimensional ideal gas at several temperatures when
kinetic contributions were included and when they were
neglected. To construct the equation of state (ρ = N/V vs.
P diagram) at lower temperature (higher β), first ln Π(N ; β0)
was reweighted to a desired µ and then extrapolated from β0 to
β. When kinetic effects are neglected, the expression for tem-
perature extrapolation is exact when truncated to first order.
Indeed, to within nearly machine precision, our extrapolations
agreed precisely with direct simulations at lower temperature

and with the ideal gas equation of state. The ideal gas chemical
potential and density are related by

µ − µref = kBT ln〈ρ〉, (37)

where, according to our convention, µref = 0 when kinetic
contributions are neglected. However, when kinetic contribu-
tions are present µref = 3kBT ln Λ [cf. Eq. (33)], which is a
function of temperature.

Consequently, when kinetic effects are incorporated, total-
energy extrapolation to different temperatures at a fixed value
of µ means that the quantity µ − µref (related to the activity)
changes. In general, to make a comparison at identical state
points, one must take care with respect to the reference state of
the system. Henceforth, we report µ− µref to emphasize a fair



054105-8 Mahynski, Errington, and Shen J. Chem. Phys. 147, 054105 (2017)

comparison at “identical” conditions. This is important when
comparing simulations that did incorporate kinetic effects to
those that did not.

In Fig. 1(a), we report the equation of state obtained from
total-energy extrapolation from kBT = 1.35 to kBT = 1.05,
0.85 (∆β = 0.21, 0.44, respectively). Remarkably, we recov-
ered ρ vs. P curves that were nearly identical to those obtained
by direct simulation at lower temperature (same as the equa-
tion of state), regardless of the order of extrapolation. This is
unusual since the Taylor series expansion is only approximate
in this case. However, upon closer inspection, it is apparent
that the chemical potential at each point in the parameter-
ized ρ vs. P state space depends on the order of extrapola-
tion, even if the change in reference state is accounted for
correctly.

Figure 1(b) shows a comparison between different orders
of extrapolation for different ∆β values. Note that the first
and second order predictions “oscillate” around the analytic
ideal gas equation of state [black curves, Eq. (37)] at the lower
temperature, progressively converging as the order increases.
Furthermore, the deviation between this equation of state and
extrapolated simulations increases in magnitude with larger
∆β. Plots of density versus chemical potential reveal a simi-
lar oscillation. The result is that when plotted parametrically,
the extrapolated pressure versus density points appear to still
fall along the line determined by the known equation of state;
however, they appear to be shifted along that line relative to
the true ideal gas equation. If low temperature results from
kBT = 0.85 are extrapolated to high temperatures (kBT = 1.05,
1.35), the predictions converge to the equation of state in an
asymptotic manner from one side only, rather than alternating

about the exact result [cf. Fig. 1(c)]. The reason for the different
behavior will be subsequently discussed in detail in Sec. IV C.
Regardless, here we reiterate the contrast between this inexact,
but converging, behavior with that of configurational extrap-
olation, which produces an exact result at different values
of β.

In spite of the erroneous prediction of the chemical poten-
tial corresponding to a given point in ρ vs. P state space,
it is curious to see that the correct parameterization (equa-
tion of state) seems to be recovered nonetheless. The reason
is linked to the observation that the difference between the
extrapolated macrostate distribution and that obtained from
direct simulation, δln[Π(N)/Π(0)]ext−sim, is essentially linear
with N regardless of the value of µ [cf. Fig. 1(d)]. Recall that
prior to temperature extrapolation, a given macrostate distri-
bution is first reweighted to some desired µ using Eq. (5).
When using this equation to exactly reweight a distribution
from one µ to another at a fixed β, a linear shift in the slope
of ln Π(N) vs. N is the result of simply adjusting the value of
µ→ µ + δµ. This means that the difference between ln Π(N)
distributions obtained from direct simulation at β, and extrap-
olation from β0 to β, may be largely “masked” by artificially
using a slightly different µ value in each case to “correct”
for deviations resulting from truncation of the extrapolated
macrostate distribution.

Consequently, the extrapolated results appear to corre-
spond to a different value of µ when compared to direct
simulations (equivalent to the known equation of state). This
artificial adjustment is clearly a function of the order of extrap-
olation used since the Taylor series expansion is inexact when
kinetic effects are included, and the error will depend on the

FIG. 1. Comparing total-energy extrapolation to direct simulation for a single-component ideal gas. Pressure, P, is reported in units of kBT /V. (a) Results
from the equation of state (black lines) and extrapolation from kBT = 1.35 to two lower temperatures (kBT = 1.05, 0.85 such that ∆β = 0.21, 0.44,
respectively). First and second order extrapolations are visually indistinguishable, so only the first order results are shown for clarity. (b) Comparison
between the ideal gas equation of state (black lines) and the chemical potential that the points in (a) were obtained at. The inset shows the differ-
ence between the chemical potentials corresponding to the extrapolated and direct simulations (identical to equation of state) for different orders of
extrapolation. (c) Comparison between extrapolation and direct simulation as in (b), where instead the simulations performed at kBT = 0.85 were extrap-
olated to higher temperatures (kBT = 1.05, 1.35). (d) Difference between the simulated macrostate distribution at kBT = 0.85 where µsim ≈ −1.96
and ones reweighted to slightly different chemical potentials, δµ = µext − µsim , when extrapolated from kBT = 1.35 (∆β = 0.44) using second order
corrections.
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number of terms chosen. This approximately linear deviation
between extrapolated and directly simulated macrostate distri-
butions (which incorporate kinetic effects) seems to generally
occur for other systems as well, including binary systems,
such as those in Ref. 12, and the pure component square-well
fluid discussed in Sec. IV D. The noteworthy consequence
of this fortuitous “cancellation of errors” is that the equation
of state [parameterization of the observable properties, e.g.,
ρ(µ, β) vs. P(µ, β)] for a fluid may be very nearly obtained
correctly even with the extrapolated ln Π(Ntot) when kinetic
effects are included (total-energy extrapolation). The only
caveat is that the chemical potential predicted by extrapo-
lation at a given state point is not as accurate in this case.
However, this is often perfectly acceptable as the chemical
potential is not a quantity of concern; it is the observable prop-
erties predicted by the parameterized equation of state that are
important.

C. Underlying source of the accuracy difference

The source of the “oscillations” in the value of the chem-
ical potentials when using total-energy extrapolation to exam-
ine lower temperature states may be traced directly back to the

trailing “correction” due to ∂̃Utot
∂β in Eq. (26). To understand

this, we point out that grand canonical ensemble-averaged
quantities may be actually neglected from these extrapola-
tion expressions entirely. This potentially surprising assertion
arises from the fact that these terms, computed via Eq. (6),
are constant across all values of the order parameter. Con-
sequently, they serve only to multiply the macrostate prob-
abilities by some constant value, or, in log-space, to shift
ln Π(Ntot) by some fixed value as a result of extrapolation.
These shifts have no effect on the properties computed from
the resulting macrostate distribution [cf. Eq. (6) or Eq. (7), for
example] and are akin to simply changing the reference state
of the system. In other words, Eq. (22) could be expressed
instead as

∂ln Π(Ntot)
∂ β

= µ1Ntot +
k∑

i=2

∆µiÑi − Ũtot + C, (38)

where C is some constant that may be disregarded in practice.
Furthermore, the macrostate probability distribution is

generally normalized before it is used in any computation,
which essentially nullifies the significance of the value of C.
In light of this, we may reconsider the extrapolation equations
in terms of only their semigrand contributions to investigate
the source of the difference between total-energy and configu-
rational extrapolation. This means that the difference between
the methods is not a consequence of the trailing correction from
〈 ∂Z
∂β 〉 in Eq. (27) but is solely a result of the terms originating

from ∂̃Z
∂β in Eq. (26).

If we consider the specific case of a single-component,
monatomic ideal gas, we may express the first derivative of
the macrostate distribution as follows:

∂ln Π
∂ β

∼ µN − Ũtot = N

(
µ −

d
2
β−1

)
. (39)

Note that the sign of this term is ambiguous and depends on
the relative magnitude of the chemical potential with respect
to β. The reader will note then that the sign of subsequent
derivatives will alternate due to the negative exponent on β.
For example, consistent with the above expression, Eq. (26)
becomes

∂2ln Π

∂ β2
∼ −

∂Ũtot

∂ β
=������

f̃
(
Ũtot, Ũtot

)
−

I∂Utot

∂ β
=

d
2
β−2N > 0.

(40)

In this case, Utot =��Up +Uk = 3NkBT/2 in the thermodynamic
limit, so f̃

(
Ũtot, Ũtot

)
= 0 at fixed N. The third order derivative

is then

∂3ln Π

∂ β3
∼ −2

d
2
β−3N < 0, (41)

and so on. Thus, excepting the first order derivative whose
sign is ambiguous, coefficients on the odd powers in the Tay-
lor series are negative, and coefficients on even powers are
positive.

Now consider the case when simulations are extrapolated
to lower temperatures,∆β = 1/(kBTfinal)−1/(kBTinitial) > 0. It
follows that (∆β)n is non-negative for all n, and thus, the sign
of each term in the Taylor series is determined by the sign of
the coefficient. Since the sign of the coefficients alternate, as
shown above, the net result is that the sign of the terms in the
Taylor series also alternates. Combined with the “masking”
of errors discussed in the Sec. IV B, the chemical potential
that seems to correspond to a point in phase space responds
in a complementary way. For instance, if the macrostate is
underestimated by the truncated extrapolation, the chemical
potential that would appear to correspond to a given state point
will be overestimated in an attempt to compensate for this error
[cf. Fig. 1(b)].

In contrast, when extrapolating simulation data to higher
temperatures, ∆β < 0. Now the quantity (∆β)n > 0 for even
values of n, whereas (∆β)n < 0 odd values of n. However,
because the coefficients on odd (even) order terms are also neg-
ative (positive), all terms in this Taylor series will be positive.
Therefore truncation of the series always leads to a Taylor poly-
nomial, which underestimates the correct macrostate distribu-
tion, leading to an overestimation of the chemical potential
corresponding to that state [cf. Fig. 1(c)].

Note that when extrapolating the moment matrix,
Z(Ntot; ~ξ), a similar issue will arise. This extrapolation must
be done in addition to that of the macrostate distribution
in multicomponent systems to evaluate properties such as
mole fractions via Eq. (6).12 Although we cannot make the
same logical simplification for more complex (non-ideal,
multicomponent) systems, we suggest that similar behavior
may manifest in other cases, especially where the system
is only weakly non-ideal. We again emphasize that regard-
less of the nature of the deviation from direct simulations,
either oscillating or asymptotically approaching, this behav-
ior stands in stark contrast to the case of configurational
extrapolation that represents an exact result in this particular
case.
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Ultimately, it is not simply an issue of incorrect refer-
ence states, or poor convergence of simulations. The reason
that total-energy extrapolation tends to be less accurate than
configurational extrapolation is that the former requires the
inclusion of more terms in its Taylor series expansion to con-
verge to the correct macrostate distribution at a given set of
external conditions. This is primarily a consequence of the
fact that U = U tot, which is not independent of β, and thus

the trailing ∂̃U
∂β term in Eq. (26), which must be computed to

evaluate Eq. (23), is non-zero. This amplifies each term in the
Taylor series from second order and beyond, implying that
truncation at a finite order leads to greater error than in the
case of configurational extrapolation.

D. Subcritical square-well fluid

The superior accuracy of configurational extrapolation
over total-energy extrapolation is mathematically straightfor-
ward to realize in the case of an ideal gas since particle-energy
correlations are identically zero, allowing us to greatly sim-
plify Eq. (14). However, more realistic, non-ideal systems do
not have such simple particle-energy correlations. While it is
not immediately obvious that the same conclusion should hold,
extrapolation results for the systems we have studied thus far
suggest that this is the case.

As an example of this, here we have computed the satura-
tion properties of the subcritical square-well fluid described
in Sec. II D. We performed direct simulations at kBT/ε1,1

= T ∗ = 1.35, 1.20, 1.15, 1.10, and 1.05 when kinetic effects
were included and when they were neglected. Four indepen-
dent replicates were performed to obtain statistical averages.
The critical temperature for this fluid is T ∗c ≈ 1.22,7 and we
extrapolated the supercritical results to subcritical tempera-
tures for comparison. The results of second order extrapolation
are depicted in Fig. 2.

Regardless of whether kinetic effects were included, the
saturation properties were found to be within simulation uncer-
tainty of each other (standard error less of than 1%). This holds
true even when comparing to results obtained from extrapola-
tion instead of direct simulation [cf. Fig. 2(a)]. In other words,
once again, essentially the same equation of state is recovered
in both instances. However, as in the case of an ideal gas,
when kinetic effects were included, the chemical potential
at which coexistence was predicted via extrapolation devi-
ated systematically from direct simulations [cf. Figs. 2(b) and
2(c)]. In contrast, the following yielded statistically identical
saturation properties: direct simulations including kinetic con-
tributions, direct simulations ignoring kinetic contributions,
and configurational extrapolation. The macrostate distribution
at coexistence for all these cases is given in Fig. 2(d). Sim-
ulations with and without kinetic effects present are visually
identical, again deviating by at most 1% from each other, as
are the distributions obtained from extrapolation of each case.
It is clear in both instances that the extrapolated results deviate
systematically from those obtained from direct simulation, as
previously noted in Ref. 12.

However, even when the reference state is properly
accounted for in total-energy extrapolation, the chemical
potential that yields the extrapolated distribution deviates sys-
tematically from that of the fluid’s “true” equation of state.
In other words, the results of extrapolation with and with-
out kinetic contributions are essentially identical at coexis-
tence in Fig. 2(d) (blue and black, respectively). However,
these ln Π(N) distributions were obtained at slightly different
chemical potentials [cf. Fig. 2(c)]. In contrast, for configu-
rational extrapolation, the chemical potential corresponding
to the extrapolated macrostate distribution is in agreement
with that obtained from direct simulation neglecting kinetic
effects.

FIG. 2. Comparison between second order extrapolation and direct simulation for the square-well fluid discussed in the text. Simulations were performed at
T∗ = 1.35 and extrapolated to T∗ = 1.20, 1.15, 1.10, and 1.05. Results were averaged over 4 independent replicates and standard errors are smaller than symbol
size. (a) Saturation properties obtained from direct simulation and extrapolation. Direct simulation results when kinetic effects were neglected are visually
identical to those obtained when they are accounted for (red) and so are not shown for clarity. (b) Saturation density vs. chemical potential for the cases in
(a), with corresponding symbols. (c) Saturation pressure vs. chemical potential for the cases in (a), with corresponding symbols. (d) Macrostate distributions at
coexistence for T∗ = 1.05.
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V. CONCLUSIONS

We have derived a method for extrapolating the macrostate
distribution obtained via flat-histogram multicomponent grand
canonical Monte Carlo simulations from one temperature
to another. The derivation presented here is generalized to
include the case when kinetic energy contributions are explic-
itly included in the system’s partition function (total-energy
extrapolation). Generally speaking, the inclusion of kinetic
effects has a number of disadvantages over the case when they
are factored out of the system’s canonical partition function
a priori and neglected (as in configurational extrapolation).
First, the reference state of the fluid changes when extrapolat-
ing ln Π(Ntot) to different temperatures. Although this is not
too cumbersome to handle appropriately, it is a complication
that may be avoided by simply disregarding the kinetic effects
to begin with. Furthermore, even when changes in the reference
state(s) are appropriately treated, the Taylor series expansion
of the macrostate distribution tends to converge more slowly
when kinetic effects are included than when they are neglected.
Intuitively, one may attribute this to the additional terms in
each coefficient (derivative) of the Taylor series, which are
required to account for the temperature dependence of the
kinetic energy. As a result, the magnitude of the coefficients
tends to be larger, and thus a greater error is introduced upon
truncation to finite order.

In the limiting case of a single-component ideal gas, a
first order expansion is actually exact when kinetic effects are
neglected, while it is only approximate when kinetic effects are
included. As a result, truncation beyond first order introduces
no error in the former but always a finite amount in the latter.
However, due to the nature of the Taylor series expansion, this
error may be masked by shifting the chemical potential, beyond
just adjusting the reference state appropriately. Consequently,
it appears that the observable properties of many fluids may
still be parameterized accurately by the total-energy extrapola-
tion method, though the chemical potential corresponding to a
given thermodynamic state will contain some amount of error
that depends on the order of the expansion. This error tends
to be significantly smaller, often less than simulation uncer-
tainty, in configurational extrapolation where kinetic effects
are disregarded.

In conclusion, as it is generally not necessary to account
for kinetic effects during Monte Carlo simulations (a change
in reference states may be handled after the fact), we do
not recommend incorporating them when implementing our
method. However, when this is unavoidable, e.g., in the case
where such data are already available or these effects must
be included for other purposes, the method we have pre-
sented here may be employed to predict ln Π(Ntot) at a
desired temperature from simulations performed at a different
one.

ACKNOWLEDGMENTS

N.A.M. gratefully acknowledges support from a National
Research Council postdoctoral research associateship at the
National Institute of Standards and Technology. N.A.M. would
also like to thank Daniel W. Siderius for fruitful discussions
and for pointing out simplifications in the methodology. J.R.E.

acknowledges support from the National Science Foundation,
Grant No. CHE-1362572.

APPENDIX: EXAMPLE CALCULATION

Here we provide a step-by-step example of how to apply
our extrapolation procedure to data obtained from a flat-
histogram grand canonical Monte Carlo simulation. We explic-
itly illustrate this for the square-well system we reported in
Sec. IV D at saturation conditions. Depicted in Fig. 3 are the
three stages involved in this procedure. Here we have per-
formed a simulation in which kinetic effects were explicitly
accounted for and where we set µ = −5. First, we reweight
the macrostate distribution from µ = −5 to µ ≈ −3.949 at a
fixed value of β = 1/1.35 (1 → 2) using Eq. (5). Note that
the reference state of the fluid is irrelevant here because we
are subtracting two chemical potentials at the same temper-
ature, which causes these terms to cancel out. Subsequently,
we extrapolate in temperature to a final state of β = 1/1.20
(2→ 3) using the equations given in Sec. III up to second
order. The net result corresponds to the extrapolation esti-
mate of saturation conditions at T ∗ = 1.20, which are essen-
tially identical to direct simulations in this particular case
(cf. Fig. 2).

Since the reference state of the fluid changes throughout
this procedure, we explicitly detail the value of the activity,
z = exp (βµ)Λ−3, at each stage in Table I. For this example,
we explicitly took m = h2/(2π) such that Λ =

√
β. When

simulations are performed at T ∗ = 1.20 where kinetic effects
are not accounted for (i.e., effectively setting Λ = 1 so that
µref = 0), then the saturation point corresponds to µeff = µ −
µref = µ ≈ −3.621. Indeed, when kinetic effects are accounted
for, µeff ≈ −3.621 also corresponds to saturation, except now
µ ≈ −3.949, since µref = 3 ∗ 1.20 ∗ ln

√
1/1.20 ≈ −0.328.

Note that βµeff = ln z. It is worth reiterating that in the case
where kinetic effects are neglected, µeff = µ, which does not
change from 2→ 3, whereas when the effects are included, µ
is constant while µeff is not.

Here, we chose to first reweight and then extrapolate the
distribution. However, the order may be reversed. Consider a

FIG. 3. Reweighting (1 → 2) and subsequent extrapolation (2 → 3) of
the macrostate distribution from T∗ = 1.35 to saturation conditions at T∗

= 1.20 for the square-well fluid considered in Sec. IV D when kinetic effects
have been accounted for. The exact conditions of each curve are reported in
Table I.
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TABLE I. Conditions corresponding to each stage in the manipulation of
ln Π(N) depicted in Fig. 3 originally obtained at T∗ = 1.35 for the square-
well fluid studied in Sec. IV D. In this simulation, kinetic effects have been
accounted for explicitly.

(1) (2) (3)

β 1/1.35 1/1.35 1/1.20
µ �5 �3.949 �3.949
ln z �3.254 �2.475 �3.017
µeff �4.392 �3.341 �3.621

pure component system that is first reweighted from (β0, µ0) to
(β0, µf ) then extrapolated to (βf , µf ); in that case, neglecting
the grand canonical quantities as described in Sec. IV C, the
final macrostate distribution may be expressed as

ln Π(N ; βf , µf ) ∼

Reweighting︷                                         ︸︸                                         ︷[
ln Π(N ; β0, µ0) + β0

(
µf − µ0

)
N

]

+

Extrapolation︷                    ︸︸                    ︷(
µf N − Ũ

)
∆β + · · ·

= ln Π(N ; β0, µ0) +
(
βf µf − β0µ0

)
N

− (βf − β0)Ũ + · · · . (A1)

Here, we have only written the expression up to first order
since higher orders are independent of the value of µ. Simi-
larly, if one first extrapolates from (β0, µ0) to (βf , µ0) and then
reweights to (βf , µf ), we obtain an identical expression

ln Π(N ; βf , µf ) ∼

Extrapolation︷                                                 ︸︸                                                 ︷[
ln Π(N ; β0, µ0) +

(
µ0N − Ũ

)
∆β + · · ·

]

+

Reweighting︷             ︸︸             ︷
βf

(
µf − µ0

)
N

= ln Π(N ; β0, µ0) +
(
βf µf − β0µ0

)
N

− (βf − β0)Ũ + · · · . (A2)

However, although the order of extrapolation and reweighting
may be reversed, we suggest that it is better practice to perform
the extrapolation as the last step in any manipulation. This is
intuitive since reweighting is “exact,” whereas extrapolation
inevitably introduces some finite amount of error.
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