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Abstract. To facilitate root cause analysis in the manufacturing in-
dustry, maintenance technicians often fill out “maintenance tickets” to
track issues and corresponding corrective actions. A database of these
maintenance-logs can provide problem descriptions, causes, and treat-
ments for the facility at large. However, when similar issues occur, dif-
ferent technicians rarely describe the same problem in an identical man-
ner. This leads to description inconsistencies within the database, which
makes it difficult to categorize issues or learn from similar cause-effect re-
lationships. If such relationships could be identified, there is the potential
to discover more insight into system performance. One way to address
this opportunity is via the application of natural language processing
(NLP) techniques to tag similar ticket descriptions, allowing for more
formalized statistical learning of patterns in the maintenance data as a
special type of short-text data. This paper showcases a proof-of-concept
pipeline for merging multiple machine learning (ML) and NLP techniques
to cluster and tag maintenance data, as part of a broader research thrust
to extract insight from largely unstructured natural-language mainte-
nance logs. The accuracy of the proposed method is tested on real data
from a small manufacturer.

1 Introduction

Multiple industries often use root cause analysis (RCA) techniques to diagnose
the underlying cause(s) of problems (Shrouti et al., 2013). Within the man-
ufacturing industry, there are a variety of RCA techniques that are utilized:
Six Sigma, including DMAIC (Define, Measure, Analyze, Improve, Control) and
DFSS (Design-For-Six-Sigma) (BOUTI and KADI, 1994), Failure Mode and
Effect Analysis (FMEA) (Liu et al., 2013), and fishbone diagrams, also known
as Ishikawa diagrams (Juran and Godfrey, 1999) are just a few. While there
are many techniques, instances of RCA are often problem-specific studies, where
results are not readily available for wide retrieval in future studies. A framework
was developed previously in Brundage et al. (2017) to help alleviate this issue,
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providing mechanisms for accessing previous problems to aid in diagnosing the
root cause. However, the developed framework relies on readily structured de-
scriptions of causes-effects-treatments; generally such patterns are derived from
raw information tracked via a Computerized Maintenance Management System
(CMMS). Such clearly structured information is rarely found in practice, as tech-
nicians often inconsistently record informal prose rather than clearly filling in
discrete fields for causes, effects, and treatments. Such inconsistencies make it
difficult to perform diagnosis procedures. This paper begins to address that issue
by providing NLP and ML techniques to prepare, clean, and tag the data for
use in the diagnosis framework. It is aimed at cases where a CMMS may not be
properly implemented, or in a well managed CMMS to help capture in-explicit
information from any free form descriptions or comments within the system.

2 Motivation

Using NLP techniques in a maintenance data-set, unlike the more popular ap-
plications of NLP that have huge amounts of casual and/or complete-sentence
phrases (such as Yelp R© reviews or a Twitter R© feed), requires treatment of doc-
uments generally smaller in nature, which at times have entries with fragmented
sentence structure or are written in domain-specific shorthand. In addition, to
the authors’ knowledge, no definitive corpus or thesaurus of maintenance log
terms and terminology currently exists that spans all companies in an industry
setting. Nor, in many cases, would one be appropriate, as each company — or
even each work site — will often develop their own short hand vocabulary and
“tribal knowledge” set that could be meaningless to anyone not immersed in
that environment. This work seeks to provide a method for working within these
environments in order to characterize and categorize often dissimilar entries.

The authors envision a mature information extraction tool as autonomously
tagging and structuring extracted information from the short, often fragmented
entries that are common characteristics of many industrial maintenance logs.
Achieving such vision would require both additional data sets, as well as com-
parative analysis with a wider breadth of existing NLP and ML techniques. The
following is presented as a preliminary proof of concept (PoC), articulating the
basic road map shown in Fig 1. The result of this PoC expresses the viability of
implementing computer–augmented maintenance history analysis.

3 Methodology

Solutions to classification problems are generalized based on their method of
training: supervised, semi-supervised, or unsupervised. This paper uses a su-
pervised classification, meaning that pre-defined ground truth labels must be
assigned to a training set by an “expert”, and a trained model can then be
used to predict labels for previously unseen entries. The data set used in this
work consists of 779 hand-labeled entries from a manufacturing company’s actual
maintenance log over the period of several months.
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Fig. 1. An overview of the information extraction pipeline for maintenance log text,
as used in this work.

3.1 Process Overview

Using text-mining methods in general, and specifically NLP as implemented
here, requires several components:

1. Data collection and labeling
2. Text preprocessing and language embedding (vectorization)
3. Classification model training and validation

This process is summarized briefly in Fig. 1. The data set of 779 entries was man-
ually labeled from short form problem descriptions to train a classifier (Sec. 3.2).
To represent the logs numerically, vectorization was done using a version of
Topic modeling closely related to Latent Semantic Analysis (Sec. 3.3). Finally,
a Support Vector Machine (SVM) was trained to label documents based on the
provided training set (Sec. 3.4).

3.2 Data Collection and Labeling

Each of the 779 entries was tagged with ground-truth “effect” labels via an “ex-
pert human classifier”. During this “data labeling” step, the expert was tasked
with tersely describing the observed “effect” of a problem recorded in the original
log. For example:

Log Text Conveyor belt between machine and wash conveyor worn
Effect Label Conveyor Belt Failure

A total of 352 unique target “effect” labels were given by the expert, with the
most common label occurring 39 times. A significant number of entries, 270
entries, have a unique label that is not repeated within the data set. To aid
in classification quality for the more “important” effects, those with less than
4 occurrences, are re-labeled as “miscellaneous” or “uncharacterized”. Placing
these “uncharacterized” labels in the training set helps to solidify the model’s
recognition of high-frequency effects, and avoid prediction in areas of high un-
certainty. In effect, one could interpret an uncharacterized label as any entry
that is “not significantly represented” within the model1. Using a vector of zeros

1 This may be viewed as equivalent to a form of outlier detection (or noise filtering),
where the labels used frequently by the expert are considered “useful” for classifica-
tion of future problems.
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to represent these “not significantly represented” labels improves classification
accuracy of identified labels by around 50%, while also providing well-defined
identification of labels either unlike any in the training set, or those that the
model is highly uncertain about. Any new or uncertain labels identified by the
model could then be delivered to a user for better expert identification, and
subsequent inclusion into a retrained model.

3.3 Text Preprocessing and Vectorization

To train a classifier on the labeled data, a numeric representation of the text-
based maintenance logs (the documents) is needed. This semantic language em-
bedding is done in two steps: 1) preprocess the text to cleanse it of non-useful
artifacts, and 2) vectorize the processed text into manageable form by using a
topic model.

Raw-text Preprocessing Cleaning each query (i.e. each issue as described
in a string of words) by removing extraneous punctuation and inconsequential
words (a.k.a. stop words) (Leskovec et al., 2014) is common practice in NLP
techniques. After cleaning, the string is parsed into words and phrases up to N
words long and placed in sparse word frequency matrix via the Bag of Words
(BoW) technique. During the construction of this matrix, common pluralizations
of words are combined (i.e. treated as a single entry) and tokens that have a very
low occurrence rate within the corpus (less than 3 instances) are removed. In this
context, a token is a word, or group of ordered words (phrase) that appear in the
corpus. This dimensionality reduction aids both in convergence and processing
time for the language embedding and classification algorithms.

Language Embedding To create a numeric feature space, useful for computer-
ized classification, this work loosely follows the process used in Latent Semantic
Analysis (Dumais, 2004). The entire set of text (the corpus) is represented as
a term-document Matrix, a frequency-based vectorization of word occurrence
(BoW, as referred earlier).

To reduce the dimensionality of this corpus word-frequency feature space, a
reduced-rank Principal Component Decomposition was performed, and the top
n-largest principal components were retained so that the rank-n approximation
had 90% variance retention. One interpretation of each of the n the principal
component vectors is as a weighted combination of words/phrases forming a
topic in the corpus. Thus the name, “Topic Model”.

Finally, due to very low term-overlap between maintenance topics within this
corpus, the document vectors were weighted by the most common token found
elsewhere in the corpus. This was done with an ordinary-least-squares (OLS)
mapping, essentially a prediction on how a phrase would be most commonly
talked about in the rest of the corpus. The authors hypothesize that this might
take advantage of the natural structure of maintenance-like data, and prelimi-
nary results suggest accurate performance under this weighting scheme.
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3.4 Classification: SVM Model

The last phase of the presented method is to train a supervised classifier on the
expert diagnostic tags provided for each training entry. Here, a Support Vector
Machine (SVM) classifier was selected for this task, which has been previously
shown to have excellent ability in text classification (Joachims, 1998).

Data is randomly split into train- and test-groups, allowing the SVM to learn
on a subset of the data, and then be validated by predicting labels on another,
smaller subset (see Sec. 4.1 for a discussion on the effect of training-set size).
The classifier was trained against binary vectors representing the target “ground
truth” label. Upon subsequent input, it outputs a relative likelihood for each of
the possible category labels, and assigns the most probable label to that input.

As a modification to the default labeling, if none of the potential labels had
a relative likelihood 0.5 (50% likely) or more, the input was deemed too far away
from previous training vectors and therefore an “uncharacterized set entry”. This
“uncharacterized set” labeling is crucial for identifying labels that are not well
characterized in the model so that they can be further analyzed by the expert
and retrained into the model, when Human-in-the-Loop training is possible.

4 Results

The results presented in this section enumerate classification performance aver-
aged over twenty trials where the designation of training, testing, and validation
samples are randomized between tests. The influence of training set size on
performance is detailed, though this is recognized as only a small subset of con-
trollable parameters in this model. A broad-sensitivity study, though outside the
scope of this work, is a crucial part of future work (Sec. 5).

Fig. 2. The effects on classification accuracy of the fraction of data used for training the
SVM. Mean number of correct and incorrect labellings over 20 trials are shown against
the lower axis for each training-fraction setting. Additionally, the overall prediction
accuracy is shown against the upper axis with 1σ uncertainty bars.
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4.1 Training Set Size

To determine the robustness of the described method to the availability of train-
ing data, the SVM was trained on varying proportions of the data selected at
random (see Fig. 2). Each increase in the proportion of training data is anal-
ogous to a human manually tagging entries marked by the algorithm as un-
known, and/or correcting any observed mislabeling, then iteratively retraining
the model. In this way we can simulate Human-in-the-Loop training. Note that
as this data-set is finite in size, when an increasing amount (e.g. 80%) is used
for training, the total number of validation instances or examples reported in
the results must drop (e.g. to 20%) corresponding to the total available entries.

For this work, an “uncharacterized set entry” is a label that has too few (or
zero) examples in the training set to be confidently characterized by the classifi-
cation model. Intuitively, as the percentage of training examples increases, this
number of “uncharacterized set entries” will likely decrease somewhat. However,
for this data-set, and likely any coming from real world industry maintenance
logs, there is a base level of these rarely occurring entries. Thus as important as
it is to correctly classify or label those entries that can be characterized by the
model, it is equally important to identify those that cannot. This not only low-
ers misclassification chances, it also allows such entries to be flagged for further
investigations by an external human operator, who can then correctly label and
add it to the model.

It is important to note that the classifier’s ability to correctly identify well-
documented labels (i.e. ones not in the “uncharacterized set”) is relatively in-
variant across training-set sizes. This implies that, once the model has learned
which labels are reliable, its confidence level in predicting them — and by exten-
sion, its performance — is likely to remain consistent, even as new information is
added to the model. In other words, these results imply that once any arbitrary
label obtains enough entries to be able to be characterized by the model, the
expected correct classification rate of that label is consistent, regardless of what
the label actually is. Thus adding additional labeled examples is more about
extending the model coverage than improving performance; although intuitively
performance should also somewhat improve.

In addition, the model is able to correctly isolate the“uncharacterized set
entries” not previously seen in the training data, but this ability decreases with
a broader selection of labeled entries in the training set. This indicates that, as
more of the feature space is populated, an entry must be further away from any
known labels to be identified as unknown. Consequently, a dynamic, rather than
static threshold of confidence when classifying “uncharacterized set entries” as
outliers may be more appropriate for this type of discrimination. Lowering the
confidence criteria for labeling “uncharacterized set entries” from 50% to 40% in
one of the tests caused an average increase of 3% in correct classification, but
also a drop of 6% in the correct identification of “uncharacterized set” labels.
Significant improvement might come from re-defining the confidence threshold
on-the-fly, or defining it in a feature-specific manner.
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As shown in Fig. 2, the increased total accuracy at lower levels of training
data is driven by the model’s increased ability to identify unknown entries. This
should not lead one to assume that less training data is a favorable; rather, this
reaffirms the need to accurately identify the “uncharacterized set entries” at
higher proportions of training data, where the total feature space becomes more
populated. As the well-characterized areas—the “known” areas of the feature
space–become more dense, the “uncharacterized set” areas become harder to
distinguish. Additional investigations into methods for managing and mitigating
this effect will be part of on going work, perhaps utilizing more crisp kernel
models in the classification algorithm, or other similar techniques

Additional investigations on n-gram parsing (Brown et al., 1992) and rare
token exclusion have been performed, but a full review is left out due to space
constraints. In brief, it was found that additional complexity added via n-gram
parsing was unnecessary, likely due to the domain-targeted language of the data
set. Conversely, regulating the minimal word token occurrence frequency did
seem to have a significant effect on the model’s performance. Removal of highly
superfluous or infrequent terms aided classification through dimensionality re-
duction with indications that, for a given data set, there is an optimal occurrence
frequency band to include in the model. Further investigations into the gener-
alization to a broader range of data sets of these findings as well as additional
areas of inquiry are left for future work.

5 Conclusions & Future Work

Virtual mountains of historic maintenance logs representing an untold wealth
of diagnostic knowledge exist throughout industry. Without proper tools and
techniques to analyze and contextualize that data, the usefulness of these main-
tenance logs is severely limited. Presented in this work is a proof-of-concept
algorithmic framework for characterizing one aspect of that data. By categor-
ically labeling the generally free form and fragmented text patterns associated
with industrial maintenance logs, historical commonalities and recurring prob-
lem areas can readily be identified and targeted for process improvement.

The methodology detailed in this work is shown on a preliminary case study
to consistently categorize and label a free form maintenance log entry from a
set of known labels with over 70% accuracy. Additionally, the algorithm can
correctly identify log entries as unique (or potentially needing better labeling)
with over 85% accuracy.

Work in this area is a fertile ground for many avenues of continuing and fu-
ture research. Especially apparent is the need for a broad overview of available
methods for training and classifying natural-language texts in the form of main-
tenance logs. Automated selection of an optimal model for prediction of labels
in a given industry or use case is crucial to ensure the best performance. Com-
paring other quantitative representations for language, like Word2Vec semantic
embedding, will provide an excellent means of discovering maintenance-specific
patterns in the text logs. In addition, the efficient utilization of domain-expert
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knowledge will be crucial in implementing systems like this one, leading to a
more dynamic ability to parse data with Human-in-the-Loop system schemes.

The authors believe a set of guidelines for selecting appropriate algorithms
based on amount and quality of data, as well as the desired outputs, could ac-
celerate maintenance information utilization. Taking advantage of information
hidden in maintenance logs could help bolster productivity, improve mainte-
nance practices, and ultimately save time and money wasted on patching trivial
symptomatic problems instead of focusing on the root cause.
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