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ABSTRACT 
This paper develops a two-stage grey-box modeling 

approach that combines manufacturing knowledge-based 

(white-box) models with statistical (black-box) metamodels to 

improve model reusability and predictability. A white-box 

model can use various types of existing knowledge such as 

physical theory, high fidelity simulation or empirical data to 

build the foundation of the general model. The residual between 

a white-box prediction and empirical data can be represented 

with a black-box model. The combination of the white-box and 

black-box models provides the parallel hybrid structure of a 

grey-box. For any new point prediction, the estimated residual 

from the black-box is combined with white-box knowledge to 

produce the final grey-box solution. This approach was 

developed for use with manufacturing processes, and applied to 

a powder bed fusion additive manufacturing process. It can be 

applied in other common modeling scenarios. Two illustrative 

case studies are brought into the work to test this grey-box 

modeling approach; first for pure mathematical rigor and 

second for manufacturing specifically. The results of the case 

studies suggest that the use of grey-box models can lower 

predictive errors. Moreover, the resulting black-box model that 

represents any residual is a usable, accurate metamodel. 

 

1. INTRODUCTION 
Smart manufacturing is becoming increasing possible as 

access to technology improves.  Industry is, and will continue 

to be, increasingly reliant on data and predictive analytics to 
improve overall process efficiencies [1]. With this trend, 

industry is now collecting data at never before seen rates in 

hopes of gaining competitive advantages related to their 

products and processes. Often data are collected without regard 

for their interrelation, and it is not readily apparent how the 

collected information can be used to improve system 

efficiencies. To address this issue, we investigate a novel 

metamodeling technique based on the context from which the 

data was acquired and the domain in which it is relevant. 

White-box modeling methods use knowledge such as rules 

and theories, to formulate models such as those that represent 

physical phenomena. Such classical white box modeling 

methods have been used for thousands of years. Newton’s Law 

or Euler–Bernoulli bending theory [2] is a classic example of a 

traditional physical model. Such models usually require 

comprehensive knowledge of the target system and are usually 

represented by parametric formulation. For instance, in 

manufacturing, physics-based models are often derived from 

theoretical analysis that mostly focuses on individual sub-

processes with idealized assumptions. In reality, the actual 

multi-physical system of manufacturing may involve numerous 

interactions among these sub-processes. Such complexity can 

be difficult to fully understand. For example, in additive 

manufacturing (AM), the isotherm migration method develops 

a thermal model to calculate the temperature on a powder 

surface being heated by a laser beam modeled as a point source 
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[3]. However, the complex inter-relationship between 

parameters of Powder Bed Fusion (PBF) processes renders 

these theoretical analyses insufficient for the needs of many 

practical applications [4].  

Metamodels, also known as surrogate models, are statistical 

models that use a “black-box” approach to represent unknown 

systems and hence do not require detailed knowledge of the 

underlying physical phenomena [5]. Metamodeling focuses on 

the input/output parametric values while ignoring the complex 

inter-relationships within the unknown system (i.e. the black-

box, which statistically approximates the relationships based 

purely upon data values). Rather than incorporating any 

physical knowledge, the predictability of metamodels 

completely relies upon statistical features such as sampling 

strategy and modeling algorithm. Metamodels can optimally 

reduce the inaccuracies that arise from incomplete knowledge. 

For example, an adaptive sampling method that iteratively 

updates the metamodel with a new sample data point can 

gradually refine the model’s predictive power [6, 7].  

Furthermore, predictability or efficiency of a metamodel 

can be improved by selecting the most suitable algorithm [8] 

and/or best combination of algorithms [9] in cases where it is 

not possible to acquire more data points.in the desired locations 

in the design space. Advanced modeling algorithms such as a 

dynamic Kriging method and artificial neural networks (ANN) 

[10] can significantly improve model efficiency and 

predictability for these types of inflexible datasets. However, 

such metamodels built by pure statistical approaches usually 

lack information about the model’s physical meaning and 

assumptions due to a large degree of data-dependency. 

Moreover, modeling inaccuracies might accumulate during the 

model construction process due to the lack of physical 

knowledge about the critical features of the represented system 

[5]. Thus, both white and black box approaches alone have 

accuracy limitations due to different reasons. 

Due to these intrinsic limitations in both approaches, a 

technique that can harness the advantages of both white and 

black box models while reducing their disadvantages is 

desirable for complex problems with understood subdomains. 

The modeling approach known as grey-box, or hybrid 

modeling, was invented to combine the benefits of domain 

knowledge and empirical information [11]. The models 

generated by this approach can obey general physical rules 

(white box) while optimizing the parameters from actual 

experimental data (black box).. Many of the newer and less 

established white box manufacturing physics-based models and 

numerical simulations may be founded on incomplete and/or 

inaccurate knowledge and idealized assumptions. For example, 

the previously mentioned isotherm migration model in AM 

does not account for the influence of powder particle size, part 

geometry, and environmental conditions [3]. The calculated 

solutions from current AM physics-based models are usually 

limited in the scope of what they describe, diminishing their 

predictive capability. Though AM metamodels can potentially 

avoid these errors, they usually require a large number of 

expensive samples and may not be reusable. Many examples in 

smart manufacturing have similar modeling challenges. These 

barriers potentially limit the adaptability of metamodeling in 

any manufacturing domain. Thus, neither approach can 

optimally construct robust, usable manufacturing models alone.  

This paper aims to develop a grey-box modeling approach 

which combines the benefits of traditional serial methods 

(where black and white box knowledge is applied sequentially) 

and parallel methods (where knowledge from black and white 

boxes is composed before being applied). The result is a hybrid 

combination of knowledge of physical phenomena and 

statistical information. To address the challenge of combining 

knowledge of physical phenomena with statistical information, 

a two-stage approach is used. The first stage deploys a serial 

grey–box approach to build a statistical black-box model to 

estimate the errors caused by the inaccuracies in a white-box. 

The second stage uses the model from the first stage to estimate 

the basic solution and the residual solution. The final solution is 

a combination of these two.    

Section 2 and 3 provide fundamental background 

knowledge relating to metamodeling and grey-box modeling 

techniques. Section 4 introduces this general algorithm of a 

two-stage grey-box modeling approach for additive or smart 

manufacturing. Case studies using a general mathematical 

example and a representative metal PBF AM problem are 

presented in Section 5. Section 6 discusses the results and 

identifies future work for this study. 

 

2. OVERVIEW OF METAMODELING TECHNIQUES 
This section briefly reviews the metamodeling techniques 

used in this work. Polynomial regression (PR) and Kriging 

methods were investigated in this study as they cover the 

spectrum of both parametric and non-parametric modeling 

algorithms [12]. PR is popular in that its model is represented 

by parametric formulation. The Kriging method, on the other 

hand, is an interpolation approach that uses positioning 

information for data estimation instead of conventional 

mathematical formulation. The general mathematical 

formulation of any metamodel can be expressed as:  

 

                       𝑦(𝑥̃) = 𝑓(𝑥̃) + 𝜀                                         (1) 

 

where y(x̃) represents the actual output for new point x̃ [13]. 

f(x̃)  is a known function derived statistically from data that 

produces the model estimate as a function of x̃, ε is any residual 

error, and x̃  represents the set of the independent input 

variables. For different modeling methods, the composition of 

each of these elements could be different.   

 

2.1 Polynomial Regression 

PR is a higher order variation of linear regression in which an 

nth order polynomial is used to formulate the relationship 

between the independent variables x and the outcome y [13]. It 

is popular in various engineering domains due to its efficiency. 

A second order quadratic polynomial function would have the 

form: 
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           𝑦̂ = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖
𝑘
𝑖=1 + ∑ 𝛽𝑖𝑖𝑥𝑖

2𝑘
𝑖=1 + ∑ ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗

𝑘
𝑗=1

𝑘
𝑖=1          

(2) 

 

where β0, βi, and βij are regression coefficients, and k is the 

number of design variables.  

 

2.2 Kriging 

Unlike parametric techniques that produce an actual 

formulation. Kriging methods are non-parametric methods that 

build their estimation based on the position of the samples. The 

basic assumption in kriging is that the estimating point 

(unknown point) can be represented by observed points (known 

points) based on spatial correlation [14]. The estimation process 

is completed by a variogram or so called spatial correlation 

functions [15, 16]. The general form of kriging estimation for 

an unknown predicted value of a point ZE for a single outcome 

is: 

 

                      𝑍𝐸 = 𝑍̅ + ∑ 𝜆𝑖(𝑍𝑖 − 𝑍̅)𝑛
𝑖=1                                (3) 

 

where Z̅  represents the regional mean value of the response 

and  λi  is the distance-correlated weight value, which is 

determined by the computation of spatial correlation.  

To approach the weight value, one should first compute the 

spatial correlation R between data points. The value of spatial 

correlation can be derived from: 

                      (4) 

 

where xi,l is the lth component of the ith vector xi [17]. 

R(θ, xi, xj) depends upon the location of points xi and xj, and 

the correlation parameter, θ . Kriging methods have multiple 

forms such as simple kriging, ordinary kriging, regression 

kriging, etc.[16]. In this paper, results from kriging models are 

obtained from the ordinary kriging method.  

 

The correlation matrix can then be formulated. A problem 

with n given data points can be presented as: 

 

(5) 
 

Similarly, the correlation vector B that presents the 

correlation between the new point xE and all given points is 

formulated as: 

 

                                               (6) 

 

The weight vector Λ = [λ1, λ2, … λn]T  can now be 

calculated by C and B: 

                                                                              (7) 

3. OVERVIEW OF GREY-BOX MODELS 
A grey-box model is a hybrid model that combines different 

types of models such as physics-based models, numerical 

simulation models and statistical models [18]. The term “grey-

box” stems from the mixture of white-box and black-box 

models. A conventional grey-box model uses a physical 

formulation to maintain the physical interpretation and uses 

data to estimate parameters [18]. In general, the basic structure 

of a grey-box model is inherited from knowledge and further 

improved by experimental data.  

     Grey-box model development can be summarized into three 

steps: 1) construct the foundation for the system with a 

simplified knowledge model; 2) determine the physical 

parameters from the description of the system behavior; 3) 

identify the value of model parameters from actual data [8]. 

The relationship between these three types of model and 

knowledge sources is shown in Figure 1. The proposed grey-

box metamodeling method was developed based upon this 

viewpoint. 

 
Figure 1. Relationships among physics-based white-box, 

statistics-based black-box, hybrid grey-box models and 

knowledge sources 

 

     Grey-box models can be generally classified into serial 

approach and parallel approaches [19, 20], which are shown in 

Figure 2. A serial approach aims to sequentially fill the gap 

between knowledge and experimental data. For example, the 

uncertainties raised from incomplete knowledge of a white-box 

model can be reduced by accompanying that model with actual 

data. A parallel approach, alternatively, aims to use both models 

L =C-1B
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together to estimate the correct results that would be difficult to 

approach by either a white or black-box model individually. A 

grey-box model with serial structure focuses on reducing the 

error between the prediction from physical model and actual 

result from experiments. For example, Duarte et al. [21] 

developed a hybrid modeling approach that combined 

knowledge and mechanistic, rather than statistical models, to 

improve traditional model performance. In this approach, the 

first model is built based on first-principles system behavior, 

and the second model estimates the residuals between real data 

and mechanistic predictions.  

A traditional grey-box model with parallel structure uses 

data to estimate the correct values of model responses which 

are difficult to approach given incomplete knowledge of 

phenomena [22]. For example, Psichogios et al. [19] hybrid 

neural network model utilizes a partial first principles model. 

This modeling approach combines available prior knowledge 

with an artificial neural network (ANN) to derive an estimator 

of unmeasured process parameters. This hybrid structure can 

interpolate and extrapolate much more accurately than a 

standard “black-box” ANN with significantly fewer training 

sample points to accompany the knowledge model.  

     The next section introduces the two-stage grey-box 

modeling approach developed for manufacturing problems in 

this study. To get the final prediction, the data serially flows 

into both types of grey-box models for the purpose of 

constructing the black-box model and estimating the residual. 

To demonstrate this approach, we chose a complex 

manufacturing process that we believe could particularly 

benefit. The AM-specific grey-box modeling approach that is 

introduced next in Section 4 is built upon both the Type II serial 

approach and parallel approach shown in Figure 2 based on 

current AM challenges.  

 

 
Figure 2. Basic grey-box modeling approaches 

4. GREY-BOX METAMODELING FOR AM 
Additive manufacturing (AM) and other smart 

manufacturing techniques are being widely used in various 

domains such as aerospace [23], medical devices [24] and 

energy systems [25]. However, many barriers and challenges, 

such as the large uncertainty of AM process results, have 

prevented its further adoption in industry [25]. The relationship 

between process parameters and mechanical properties are not 

fully understood for AM processes. For example, relative 

density, one of the major structural properties of the parts 

produced by metal PBF processes, depends upon multiple AM 

parameters such as laser power, scan speed, pulse frequency, 

and layer thickness [26]. Previous studies show that a typical 

metal PBF process consists of four general sub-systems 

classified by related physical phenomenon. Each sub-system 

can be further divided into multiple sub-processes [27]. A 

general AM process can involve more than fifty independent 

parameters [4]. For example, the melt pool sub-system is 

related to a number of factors that involve both thermal and 

fluid mechanics [28]. Though difficult, AM models built upon 

theoretical analysis, numerical simulation and statistical 

modeling have been developed for predictive purposes in recent 

years [7].  

The general procedure to construct an AM grey-box model 

by using the approach introduced in this paper is shown in 

Figure 3 and Figure 4. First, the method builds the white-box 

model from available prior knowledge. If knowledge was 

derived from theoretical analysis, the white-box model can be 

directly represented by a parametric formulation. Alternatively, 
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a parametric model can be derived through an approximation of 

a physics-based model using a formulation such as FEA for 

computational simplification. However, if the knowledge is 

based on a complex numerical simulation that requires high 

computational cost, the white-box model can be redesigned to 

be represented by some simplified parametric function such as 

a PR response surface model to more rapidly estimate a white 

box model using fewer sample points of that expensive data. 

The sampling data to construct that PR model could be 

collected by a technique such as space filling sampling (SFS) or 

sequential infilling sampling (SIS) [6] from data generated by 

an adequate number of simulations. It can be expected that the 

solution from the white-box model would contain large errors 

due to limited knowledge.  

The next step is to build a black-box model from additional 

information. Potential sources of the additional information 

could be actual experimental data or a higher fidelity simulation 

used to generate the data. The black box model captures both 

the discrepancy between a lower fidelity FEA type of model 

and the real process as well as the discrepancy between a high 

fidelity model (FEA model) and the simplified model. The 

input values of this additional data are entered into the 

constructed white-box model to calculate the corresponding 

output responses. This computational output from the white-

box model is next compared with the actual output values of the 

additional data to calculate each difference. This difference can 

be considered the white box model’s actual residual at that data 

location as shown in Figure 3. Since each pair of the 

computational output and the actual output has the same input 

variables, the residual value directly represents the accumulated 

errors caused by incomplete and/or imperfect knowledge used 

to construct the white box model. The black-box model is used 

here to evaluate the relation between input variables and the 

estimated residual.  

At this first stage, the serial grey-box structure is established 

based on the type II serial approach that is shown in Figure 2b: 

the output from the white-box becomes an intermediate input to 

the black-box. This serial grey-box approach is used to build a 

black-box model to estimate the residual value that cannot be 

derived from the white-box alone. That residual is the 

difference between the responses predicted by the white and 

black boxes. The inputs to the black box are those used to 

generate the white-box responses. The black-box model uses 

the kriging method to model the relationship between input 

variable values and residual response values. The kriging 

method is applied since this interpolation approach helps to 

avoid any significant intrinsic error in the resulting model [29]. 

Once the black-box is created, it can compute the estimated 

residual for any new data point. The approach, illustrated in 

Figure 3, establishes the black-box model used to derive the 

grey-box model created in the subsequent steps shown in 

Figure 4.  

 
Figure 3. General workflow of the first stage 

Figure 4 depicts the second stage of the process, wherein 

the white-box and black-box of the residual built in the first 

stage are composed to a parallel structure. It is considered a 

parallel structure because the given values of input variables are 

entered into white-box and black-box models simultaneously. 

The white-box in Figure 4 is the same as the one in Figure 3. 

However, at this grey-box modeling stage, the output from the 

white-box directly estimates the final solution in concert with 

the estimated residual from the black-box. For each new data 

point prediction, the output from the white-box is used as the 

basic solution. The residual solution from the black-box is the 

estimated residual for that same new data point. The final 

solution is the combination of basic solution with its estimated 

residual, or the results from both stages.  
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Figure 4. General workflow of the second stage 

To illustrate the proposed grey-box modeling method, two 

case studies are presented in the next section. The first, a 

classical mathematical example of a mystery function [5, 30] 

demonstrates the process of constructing grey-box models from 

pre-existing knowledge that can be expressed numerically. The 

second example illustrates the use of this grey-box modeling 

technique to predict the relative density resulting from an AM 

process and represented by actual experimental data. 

5. ILLUSTRATIVE CASE STUDIES 
To illustrate the method introduced in the prior section, two 

case studies are presented in this section. The mystery function 

examples in Section 5.1 illustrate the process of grey-box 

model construction for different types of knowledge.  

Maximum relative error magnitude (MREM) and average 

relative error magnitude (AREM) are used to represent the 

model predictability [7]. These two metrics are used to evaluate 

metamodel predictability because the combination of both 

metrics reveals both the overall predictability and the worst 

case of predictability of a metamodel in its design space. The 

formulation of MREM and AREM are: 

 

            𝑀𝑅𝐸𝑀 = max (
|𝑦𝑖−𝑦𝑖̂|

𝑦𝑖
)      (𝑦𝑖 ≠ 0)               (8) 

         𝐴𝑅𝐸𝑀 =
1

𝑚
(

∑ |𝑦𝑖−𝑦̂𝑖|𝑚
𝑖=1

𝑦𝑖
)     (𝑦𝑖 ≠ 0)                 (9) 

 
where yi is the observed value from given data, 𝑦̂ is the value 

predicted by the metamodel of the data points that were not 

selected to construct the metamodel, and m is the number of 

data points.  

 

5.1 Case studies: mystery function problem 

A classical mystery function [5, 30] is brought into this 

study to mimic a complex unknown system. The function f(x1, 

x2) that represents a nonlinear and complex system is used to 

generate experimental results used for model creation and 

assessment. The original equation of this mystery function is: 

 

𝑌 = 𝑓(𝑥1,  𝑥2) = 2 + 0.01(𝑥2 − 𝑥1
2)2 + (1 − 𝑥1) +

                           2(2 − 𝑥2)2 + 7 𝑠𝑖𝑛(
𝑥1

2
) 𝑠𝑖𝑛(

7𝑥1𝑥2

10
)                        

(10) 
 

x1 and x2 are two input variables and Y is the actual output. The 

true surface and contour plots of the original mystery function 

are shown in Figure 5. To illustrate the effectiveness of this 

method in Section 5.1.1, the original equation is manipulated to 

illustrate a scenario similar to that of an inaccurate white-box 

model representing model construction with incomplete prior 

knowledge. In this situation, a parametric formulation is 

accessible before constructing the grey-box. However, Section 

5.1.2 simulates a situation where the parametric white-box 

model cannot be directly derived from current knowledge. In 

that case, the prior knowledge was delivered by running a 

hypothetical simulation-based model, i.e. the manipulated 

function fk(x1, x2). These two examples illustrate how to use this 

grey-box modeling approach for different types of problems. 

 
Figure 5. (a) True 3D surface plot and (b) contour plot of the 

original mystery function 

5.1.1 Case study: theoretical physics-based formulation 

In this example, the available prior knowledge is assumed 

derived from theoretical analysis and represented by an 

inaccurate parametric formulation. In this paper, it is assumed 

that the white-box models are reasonable representations of the 

manufacturing phenomena being modeled, and no validation 

step was included in our approach. Thus, to mimic this 

condition, the original mystery function is manually 

manipulated to represent a white-box model as:  

 

𝑌̃ = 𝑓𝑘(𝑥1,  𝑥2) = 2 + 0.01(𝑥1 − 𝑥1
2)2 + (1 − 𝑥1) + 2(2 − 𝑥2)2 +

        7 𝑠𝑖𝑛(
𝑥1

2
) 𝑠𝑖𝑛 (

5𝑥1𝑥2

10
) − 0.4𝑥1 sin(2𝑥1) cos (𝑥2)                  (11) 

 

where subscript k indicates a function derived from knowledge. 

𝑌̃ is computational output from the white-box model fk(x1, x2). 

Plots of the white-box model are shown Figure 6 (earlier stage 

of grey-box modeling). After the manipulation, the 3D surface 
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maintains its general shape but several characteristics are 

changed, which can be observed in the figure. For example, the 

original local minima and maxima have shifted and the original 

sharp ridges became flatter. These changes result from the 

inaccurate white-box model. If we use the correct data from the 

original function to test current white-box model, the MREM 

and AREM are equal to 942.43 and 2.74, respectively. The 

large error indicates that the white-box model has very low 

fidelity and large predictive errors. 

 
Figure 6. (a) 3D surface and (b) contour plots of manipulated 

mystery function 

Though the white-box model has defects, it can contribute 

to a grey-box model. As mentioned in the last paragraph, the 

general information delivered from this white-box model is a 

reasonable representation of the level of knowledge to be 

expected from a white-box since the plots are generally similar 

to its original shape in that the local optima are still located 

close to their original positions. The next step is to add 

additional information to the initial, low fidelity prediction 

obtained from the white-box model. This high fidelity data is 

used alongside the low fidelity white-box prediction to build 

the black-box model. The additional information was generated 

from the original function using Latin Hypercube Sampling 

(LHS) [31] to generate 100 new data points. These additional 

data points represent an experimental or high fidelity model 

result as they were generated from the original function f(x1, 

x2), which is defined as a high fidelity system without 

significant error.  

 
Figure 7. Black-box model construction to estimate residual 

Figure 7 shows the process to construct the black-box model 

using the Type II serial approach (second stage of grey-box 

modeling). The input variables x1 and x2 are first entered into 

the white-box model fk(x1, x2) and used to calculate the 

computational output 𝑌̃ . The residual ε  is the difference 

between  𝑌̃ and actual output Y. The input variables (x1, x2) and 

the residual ε are next used to construct the black-box model 

Z(x1, x2) using the Ordinary Kriging method. The black box 

model is used to compute the estimated error 𝜀 ̃in subsequent 

steps. Table 1 shows some examples from the 100 data points 

for illustration of the process shown in Figure 8. For example, 

one of the additional data points (3.73, 0.98) has an actual 

output 6.1881. This input when entered into the white-box 

model yields a prediction of 8.1416. The actual residual ε is 

next derived based on ε = Y − 𝑌̃, which is equal to -1.9535. 

Once the black-box model is built from the residual values, it 

can estimate the residual of any unknown point from its input 

variable values. This estimated residual represents an expected 

difference between the white-box prediction and an unknown 

actual output. As a result, the final grey-box solution 𝑌̃𝑓𝑖𝑛𝑎𝑙  

should at any point be equal to 𝑌̃ − 𝜀.̃ This value combines the 

results from both stages, as shown in Figure 8. The white-box 

model in the parallel grey-box structure is the same one used in 

the prior serial approach. For any new point, the grey-box 

would combine basic solution 𝑌̃𝑛𝑒𝑤  and the estimated residual 

𝜀𝑛̃𝑒𝑤  to get the final solution at that point location. 

 

Table 1. Results at some sample data point locations 

Input 

(x1, x2) 

Actual output 

(y) 

Computational output 

(𝒀̃) 

Actual residual 

(𝛆) 

(3.73, 0.98) 6.1881 8.1416 -1.9535 

(4.48, 4.03) 9.3751 11.9010 -2.5258 

(0.23, 1.83) 3.0593 3.0066 0.0527 

(4.33, 2.98) 5.0025 4.7074 0.2951 
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Figure 8. Grey-box model construction 

 

One thousand randomly generated data points from the 

original mystery function were used to validate the resulting 

grey-box model. The grey-box model has reduced the initial 

white-box MREM from 942.24 to 2.7452 and AREM from 2.74 

to 0.0359. The 3D surface and contour plots shown in Figure 9 

are significantly improved and very close to the true plots of the 

original mystery function (Figure 5). 

 
Figure 9. (a) 3D surface and (b) contour plots for grey-box 

model built based on 100 additional data points. 

The grey-box constructed with 100 additional data points 

improved the initial white-box model globally. However, the 

MREM which represents the local error of the model remains 

higher than expected. It may be that the information provided 

by the additional dataset is insufficient. To further test the 

proposed method, Table 2 shows the MREM and AREM of 

grey-box models that are constructed with different numbers of 

additional data points. The top number of zero data points is a 

case where no data is available and the results are derived from 

the white-box model only. As shown, the model performance 

can decrease exponentially with more points in this process. 

Convergence criteria can be established to determine the 

desired accuracy.  

 

Table 2. Model performance of additional quantity of data 

Number of additional data MREM AREM 

0 942.4327 2.7451 

100 2.7452 0.0359 

200 0.9372 0.0030 

500 0.0019 0.0001 

 

5.1.2. Case study: simulation-based knowledge 

Many times, a theoretical physics-based parametric model 

is hard to access for complex problems. Simulation-based 

models have become more and more popular as basic reference 

points. Here, the initial knowledge-based parametric model fk is 

assumed to be no longer available. Instead, a hypothetical 

simulation model replaces the former parametric white-box 

model. As a result, the function fk(x1, x2) cannot be used to 

generate the data needed to directly construct a black-box 

model and a subsequent grey-box model. Thus, a simplified 

white-box model is necessary since it is costly to run a high 

fidelity simulation for each point. To address this issue, a PR 

model was built to represent the white-box model. The 

manipulated function in Section 5.1.1 was assumed to be the 

simulation model. 1000 simulated data points were generated 

from function fk(x1, x2) and were used to create the PR model 

using LHS. The reason that the manipulated function fk was 

employed instead of directly using the original mystery 

function is because the simulation-based model is also assumed 

to be low fidelity. The white-box model in PR form was 

generated as: 

 

𝑌̃𝑃𝑅 = 𝑓𝑃𝑅 (𝑥1, 𝑥2) = −0.3048 − 2.753𝑥1 − 0.228𝑥2 +
3.543𝑥1

2 + 1.973𝑥1𝑥2 + 8.582𝑥2 + 0.5552𝑥1
3 + 0.9604𝑥1

2𝑥2 +
0.9191𝑥1𝑥2

2 + 0.6433𝑥2
3 − 1.103𝑥1

4 − 0.7201𝑥1
3𝑥2 −

                 0.3864𝑥1
2𝑥2

2 − 0.5393𝑥1𝑥2
3 − 1.435𝑥2

4                         (12) 

 

The R2 value of this PR model is 0.7296. Comparing the 

PR white-box model to the original function yields an MREM 

of 846.6876 and an AREM of 1.9458. This indicates that this 

white-box model has poor predictability. This finding is 

reflected visually in the 3D surface and contour plots shown in 

Figure 10. In this figure, the shape is completely different from 

the original model (Figure 5). The ridges on the original surface 

disappeared.  Thus, it is necessary to use the additional data 

points to build the grey-box model. 
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Figure 10. (a) 3D surface and (b) contour plots of the initial 

white-box model 

The general updating process is similar to that shown in 

Section 5.1.1. The same 100 additional data points were used in 

this example compare the difference between results from 

Section 5.1.1 and Section 5.1.2. The Kriging black-box model 

was formulated by input variables and the corresponding 

residual values using the same procedure that was described in 

Section 2.2. The grey-box model was then developed by 

combining the PR and Kriging models by the process shown in 

Figure 8. The same validation process was executed to evaluate 

the model performance with the same validation dataset that 

was used in Section 5.1.1. The final MREM and AREM of this 

grey-box model are 3.4318 and 0.0506, which is slightly higher 

than using physics-based white-box model with same amount 

of additional data. The plots for this grey-box model are shown 

in Figure 2. The results from using additional data points are 

listed in Table 3.  

 

 
Figure 11. (a) 3D surface and (b) contour plots of the grey-box 

model built by simulation-based knowledge and additional 

actual data. 

 

Table 3. Model performance of additional data 

Number of additional data MREM AREM 

0 846.6876 1.9458 

100 3.4318 0.0506 

200 1.5988 0.0055 

500 0.0052 0.0001 

 

5.2 Case study: metal PBF problem 

This example uses the proposed method to build a grey-

box model for a realistic PBF problem. Louvis and associates’ 

experiments with a PBF process measured the relative density 

produced by different scan speed (v) and hatch spacing (d) for 

different aluminum alloy powders [32]. Relative density is the 

ratio of the actual part density to that of a completely filled 

solid with no porosity. The experimental results indicate higher 

relative density is generally produced by lower scan speed and 

closer hatch spacing. However, the relative density has unique 

behavior for specific powders and machines. For example, the 

density of AlSi12 and 6061 aluminum powder produced by the 

same parameters in different machines have different results 

[32], which indicates the a model built based on 6061’s data 

may not be accurate for AlSi12. Instead of building an 

expensive new model, this study uses the findings from 6061’s 

data to construct a grey-box model for AlSi12 for illustrative 

purposes. 

In this case, there is no available physics-based knowledge 

to build the white-box model since the only available prior 

knowledge is from historical experiments. Therefore, the prior 

experimental knowledge of 6061 powder [32] was used to build 

a PR model to serve as the white-box model for illustrative 

purposes just as was done in Section 5.1.2. The reported 

measurements from AlSi12 powder were used as the additional 

information. First, the 177 data points from the 6061 powder 

experiment were used to build the PR based white-box model. 

The resulting quadratic model was generated as: 

 

𝑌̃𝑃𝑅 = 𝑓𝑃𝑅 (𝑣, 𝑑) = 81.54 + 116.83𝑣 − 0.0127𝑑 −
                 0.079𝑣𝑑 − 332.39𝑣2 + 7082600𝑑2                          (13) 

 

The initial R2 value of this model is 0.953. The set of 36 

data points from the AlSi12 PBF experiment was divided into 

two sets. 80% (29 points) of the data was extracted from the 

initial dataset to use as additional information for grey-box 

construction. The remaining 20% (7 points) of the data set was 

used to validate the models. Table 4 lists the MREM and 

AREM for different types of models based on the data. The 7 

validation data points from the AlSi12 experiment were entered 

into all three types of models to evaluate and compare the 

predictive accuracy. The pure white-box is the PR model built 

using the 6061 powder experiment. The pure black-box model 

represents the model built with the 29 AlSi12 data points with 

kriging method. The grey-box represents the model built with 

input from both experiments using the same method presented 

in the prior sections. As shown, even though the pure white-box 

model has low predictive error, the model can be further 

improved by the grey-box modeling approach. The MREM of 

the original model is reduced from 0.0375 to 0.0238, which is a 

37% improvement. Compared to the pure black-box model, the 
MREM of the grey-box model reduced from 0.0485 to 0.0238, 

which is a 51% improvement after the completion of both 

modeling stages. 

 

Table 4. The performance of different types of models 

 MREM AREM 

Pure white-box 0.0375 0.0170 

Pure black-box 0.0485 0.0169 

Grey-box 0.0238 0.0134 
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6. DISCUSSION  
Effectively deploying predictive analytics in smart 

manufacturing is a challenge that many now face.  This 

challenge is highlighted in AM, where current AM models 

often lack comprehensive information, and where information 

could be either knowledge-based or statistically generated. The 

lack of the former is typically the result of an incomplete 

understanding of the physical processes of AM. The lack of 

empirical data, on the other hand, may be caused by the 

difficulty of instrumenting AM processes, and more generally, 

the expense of producing AM parts. Even as more and more 

empirical data is available in the coming years, it is still 

difficult to duplicate all the conditions and the model 

predictability for all data sets. The experimental results can 

exhibit noticeable differences even where the experiments are 

operated in similar AM processes with comparable process 

parameters. It is also very difficult to build the connection 

between simulations and actual experimental data. These 

difficulties result from the uncertainties in and complexities of 

AM processes. The uncertainties significantly reduce the utility 

of AM predictive models since a well-validated model from one 

dataset may be difficult to apply to other experimental 

conditions. 

The highlight of the two-stage grey-box modeling approach 

developed in this paper is that it can combine disparate 

knowledge and information together to produce an accurate 

hybrid model. To further extract the information from limited 

knowledge, this two-stage grey-box structure can functionally 

improve the predictive accuracy. In the example in Section 5.1, 

the original white-box model produced a large global 

predicative error, with an AREM over 200%. However, when 

updated with 100 additional data points, the grey-box approach 

reduced that same global error to less than 5%. These results 

suggest that the grey-box approach can improve the model even 

if the original knowledge-based model is very weak. Moreover, 

the results were derived from a highly nonlinear mathematical 

example which is even more complex than common AM 

problems. The 100 additional data points can sufficiently 

update the initial white-box model to a higher accuracy. 

However, a smaller sample size is expected in actual AM 

experiments. It is thus desirable to further reduce that sample 

size needed to achieve the higher model predictability. 

The involved metamodeling algorithms were used as 

primary candidates to build the grey-box in this paper. 

However, the general modeling process should have no bias to 

other black-box modeling techniques. Any suitable algorithm 

that can improve the model predictability might be introduced 

in future work.  

In grey-box modeling, the reusability of a model built on 

prior knowledge can be improved when combined with 

additional information about problem specific conditions. In 

Section 5.3, the case study investigated the performance of a 

grey-box model with two different PBF datasets generated with 

similar experimental conditions. The two experiments were 

completed in different PBF machines, with different metal 

powders, and unknown experimental conditions such as 

chamber temperature and layer thickness. Both the pure white-

box and black-box models resulted in a higher MREM than the 

combined grey-box model when predicting the other dataset. 

The grey-box model reduces the MREM by about 37% 

compared to the white-box model and 51% compared to the 

black-box model. Thus, the grey-box approach provides a 

reliable way to reuse the knowledge from one manufacturing 

case to another. 
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