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ABSTRACT 
 Recent studies have shown advantages to utilizing 

metamodeling techniques to mimic, analyze, and optimize 

system input-output relationships in Additive Manufacturing 

(AM). This paper addresses a key challenge in applying such 

metamodeling methods, namely the selection of the most 

appropriate metamodel. This challenge is addressed with 

domain-specific AM information, derived from physics, 

heuristics and prior knowledge of the process.  Domain-specific 

input/output models and their interrelationships are studied as a 

basis for a domain-driven metamodeling approach in AM. A 

metamodel selection process is introduced that evaluates global 

and local modeling performances, with different AM datasets, 

for three types of surrogate metamodels (polynomial regression 

(PR), Kriging, and artificial neural network (ANN)).  A salient 

feature of this approach is its ability to seamlessly integrate 

domain-specific information in the model selection process.  The 

approach is demonstrated with the aid of a metal powder bed 

fusion (PBF) case study and the results are discussed.  

 

1. INTRODUCTION 
 AM techniques have promising applications in such 

different domains as aerospace, medical devices, and heavy 

industry [1]. However, these often multi-physical processes are 

still not fully understood or controlled [2]. For example, in the 

powder bed fusion (PBF) process, the relative density of AM 

parts is affected by various user controllable parameters such as 

laser power, scan speed, or powder density[3].  In some 

instances, the hardness of AM parts might be different despite 

being produced by same machine using the same input 

parameters [4]. The difficult-to-predict performances of AM 

processes introduce significant uncertainty into quality control 

and engineering design [5]. To mitigate this uncertainty, 

researchers are seeking mathematical predictive models that can 

predict material properties prior to production by the 

manufacturing process. Pure physics-based models [Pal et al, 

2013], numerical simulation models [6], and metamodels [7] 

have been proposed to predict AM behavior. This paper 

discusses a novel method that leverages domain knowledge to 

improve the selection of metamodels for AM predictive 

modeling problems. 

Metamodels, also known as surrogate models, construct a 

model of a model to understand complex systems [8]. Unlike 

physics-based or numerical simulation models that often require 

detailed knowledge of internal processes such as problem 

physics [5], metamodeling techniques focus on the input/output 

relationships[9].  Metamodels can significantly reduce the cost 

of organizing knowledge for a poorly understood system. 

However, these models can introduce modeling uncertainties due 

to lack of representative process knowledge [10], a hindrance our 

domain-driven technique seeks to address. Indeed, some 

problem-specific knowledge is desired to select an appropriate 
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sampling strategy and account for system behaviors and 

sensitivity properties [11, 12], which can fundamentally affect 

model performance. 

The term model performance in this paper refers to 

predictability and efficiency that is believed to be correlated to 

data sets such as sample size, data gradient, and kurtosis [13]. 

Previous modeling selection frameworks have used information 

about data, called data features, to identify the optimal modeling 

algorithm for certain types of problem. “Data features” in this 

context are considered characterizations of how each parameter 

impacts the responses in a given domain. For example, Rice et 

al. proposed a model can use extracted characteristics and 

performance measurements such as normalized root mean square 

error (NRMSE) [13] and maximum relative error magnitude 

(MREM) [14] from a given dataset to select the optimal 

modeling algorithm from a set of candidates [15]. Cui et al.’s 

energy model recommendation framework uses dual 

performance evaluation criteria and criteria reduction methods to 

implement a meta-learning procedure for modeling algorithm 

selection [13]. While these well-established methods work for 

some general problems or problems in specific domains, they 

usually require significant work in data feature characterization.  

This paper aims to address AM predictive modeling 

challenges by constructing a specific-to-AM framework that 

looks to efficiently and accurately identify optimal 

metamodeling methods for given problems, prior to deeply 

investigating data features related to a specific domain. The term 

“domain” in this paper indicates the topic area to which the 

parameters apply. For example, laser power is a parameter in the 

AM thermal domain and powder density resides in the AM 

material domain, etc. In the following sections, we will first 

discuss the performance of metamodels with different domain-

inspired AM input/output parameters. Unlike Rice’s model that 

uses data features for algorithm recommendation, the method 

proposed in this paper focuses on using correlations between AM 

parameters to efficiently identify data features. An AM 

input/output correlation chart was developed to visually present 

the nonlinearity of different combinations of parameters. We 

introduce the domain-driven framework in Section 5. For 

demonstrative purpose, a case study based on AM datasets is 

presented in Section 6. The benefits of using this domain-driven 

approach are explained and further discussed in these sections. 

Section 2 provides a brief overview of predictive models in 

AM. Section 3 discusses parametric correlations in AM models 

based on a detailed literature review. The remaining sections are 

built upon the findings from Section 3. Section 4 provides a brief 

background of metamodeling algorithms. The three candidates 

presented in this paper are used to demonstrate the framework. 

The fundamental structure of the framework and an illustrative 

case study with empirical data from an AM process are 

introduced in Sections 5 and 6. Section 7 concludes with a 

comprehensive discussion of the early framework. 

2. OVERVIEW OF AM PREDICTIVE MODELING 
Porosity, relative density, surface roughness, geometric 

accuracy, hardness, and tensile strength are examples of critical 

properties that define AM product quality [1]. While important 

to physics based models, values of intermediate parameters such 

as melt pool width, penetration depth, and melting temperature 

cannot represent critical AM properties directly [16]. 

Advancement in AM processes and product design quality 

requires a clear understanding of the relationship between 

various AM input and output parameters. 

Several studies have explored the effect of AM process 

parameters on part performance [17]. Witherell et al (2014) 

analyzed the metal PBF process and divided it into four critical 

categories that summarize the complex inter-relationships 

between AM parameters [7]. In this approach, the PBF process 

is modeled as a set of sub-processes, including heat 

source/absorption model, a melt pool formation model and a 

solidification model, where each physical process also has 

multiple sub-processes. For example, Marangoni, capillary, and 

heat convection/conduction models are sub-sets of a larger melt 

pool model [18].  

Other studies focus on the details of sub-processes such as 

heat source/absorption and melt pool models. For instance, the 

isotherm migration method uses theoretical analysis to estimate 

the surface temperature of the powder bed, which can then be 

used to study phase changing during 3D printing [19]. Finite 

element analysis (FEA) can also simulate melt pool information 

[20, 21]. Ma et al (2015)’s 3D FEA model of melt pool for 

example used user controllable inputs (laser power, scan speed, 

powder density, etc.) to predict melt pool width and depth [22]. 

These studies contribute to improved AM process knowledge, 

but they do not completely characterize the full set of physical 

phenomena in an AM processes. As a result, there is interest in 

using robust and efficient design of experiments (DOEs) and 

metamodeling approaches to study AM problems. 

Metamodeling methods use a statistical approach that treats 

a complex system as a black box to avoid limitations stemming 

from lack of knowledge during model construction [8]. The data 

that is used to construct metamodels can be collected from 

computer simulations or actual measurements from DOE [23]. 

In general, one can improve the metamodel by adapting 

sampling strategies that are well suited to a specific problem 

[Shao et al, 2008], optimizing modeling parameters [24], and 

selecting a more appropriate modeling method [15].  

Optimal sampling can potentially inform a metamodel with 

information about the unknown system [25]. For example, Shao 

and Krishnamurty’s model updating method selects sample 

points that are closer to local optima to improve the predictive 

ability of a Kriging model [26]. Selection of modeling 

parameters can also affect the model performance within the 

same given sample set [27] [Yang et al, 2017]. Both methods 

assume that a pre-selected metamodeling algorithm is 

appropriate, which is not necessarily true. For example, it can be 

expected that a linear model would have difficulty producing 

accurate predictions for highly nonlinear problems regardless of 

sampling technique or model parameters. Model selection 

usually requires significant work to characterize potentially 

significant data features in a given dataset [13] or uses a 

complete, multi-stage adaptive sampling process [26].  
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A rapid model selection procedure that can potentially skip  

investigation processes, but still provides reliable solutions, is 

highly desirable. In this paper, an AM metamodeling algorithm 

selection framework is proposed to accomplish this goal. This 

paper builds on our recent efforts in metamodeling for additive 

manufacturing, focusing on efficiency, effectiveness and optimal 

sampling [14]. Specifically, this work provides a basis for 

domain-driven enhanced metamodeling by explicating and 

exploiting the unknown and complicated correlations in the 

system behavior using a priori knowledge of the domain being 

studied. 

 

3. ANALYSIS OF THE CORRELATION BETWEEN 
INPUT/OUTPUT OF PBF PROCESS 
This paper investigates a metamodel selection method that 

leverages pre-existing knowledge of parametric relations instead 

of pure data analysis. For an identical system under the same 

conditions, one might perceive that the basic relation between 

inputs and outputs is unchanged. The following beam bending 

example is introduced to explain this hypothesis. 

In the general case of any beam, when an analysis of beam 

bending is desired many of its characteristics may be unknown. 

For example, consider a large beam made of lattice of different 

orders of magnitude (Figure 1), with a load applied.  

Measurements of loading conditions can be taken, but not 

enough information can be obtained to perform a complete 

analysis due to the presence of too many variables. 

 

 
Figure 1.  Beam created with lattice. 

However, given the  loading and constraints, we can observe 

that the case behaves like a bending beam. While only partial 

measurements can be taken at micro and meso scales, we can 

make the hypothesis that it will perform according to beam 

theory at the meso and macro levels, thus making domain-

specific observations. These observations allow us to extrapolate 

measured values, based on a combination of measured results 

and expected macro performance.  

A similar situation is found in metal PBF processes in that 

they are very complex and involve a large number of parameters 

(more than 50) [1, 16]. The input/output relation is difficult to 

discern using theoretical analysis. If one considers every single 

PBF parameter, there are millions of combinations of different 

models. Thus, section 5 will introduce a domain-driven 

framework that uses past model performance to predict the 

appropriate modeling method for a new problem. The rest of this 

section will summarize parametric relations between AM 

parameters from the literature to construct the prerequisite 

knowledge for development of a model selection framework.  

Figure 2 shows 8 inputs and 6 outputs that have high 

occurrence in recent PBF literature. The relation between these 

parameters is currently marked as unknown due to lack of 

information.  

 
Figure 2. Infrastructure of principal AM inputs/outputs 

For single input cases, PBF parameters such as laser power, 

scan speed, and hatch spacing have highly linear correlations to 

certain outputs [29, 30]. For example, Tang et al (2003)’s metal 

laser sintering experiment indicates the surface roughness and 

tensile strength is linearly increased with laser power [31]. 

Similarly, tensile strength decreases monotonically with higher 

scan speed with other parameters held constant. From the same 

study, however, surface roughness was not linearly related to 

scan speed. With reduced layer thickness, scan speed and 

roughness instead had a slight nonlinear relation. Another study, 

using different materials but the same laser parameters, found 

scan speed and layer thickness have a linear relation to relative 

density when varied individually [32]. Such similar results using 

multiple materials suggests that relative density is linearly 

related to laser power, scan speed, and layer thickness [33]. 

Intermediate outputs such as penetration depth (not included in 

Figure 2) have also been shown to exhibit a linear relation with 

some parameters. Kruth et al (2003)’s laser sintering experiment 

found higher scan speeds produced a linearly decreasing layer 

thickness [34]. Some inputs, such as laser pulse frequency, have 

been found to have a highly nonlinear relation to relative density 

[35].  
Compared to the single input/output problem, the relations 

between variables become considerably more complicated when 

studying multiple input parameters. Tang et al (2003) found that 

the surface roughness is not linearly related to a combination of 

laser power and hatch spacing [31]. Similarly, when considering 

the relation of laser power and layer thickness to surface 

hardness, the relation is also nonlinear [32]. A similar, nonlinear 

relation is also observed in Morgan et al (2004)’s empirical result 

[35]. The simple linear relation between scan speed and relative 

density becomes significantly more complicated when pulse 

density is also varied. This evidence seems to imply that more 

variables generate larger uncertainties in PBF due to an increase 

in unknown interactions. However, other outputs such as the 

tensile strength are not that sensitive to the same combinations 

of inputs. The observed relation remains linear under a 

combination of factors. Thus, more inputs can increase PBF 

problem complexity but do not necessarily indicate increasing 

nonlinearity of the input/output relation. 
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 This paper focuses on the development of a general 

algorithm recommendation framework based on input/output 

parameters before deeply investigating physical interactions 

between PBF parameters. As such, it is necessary to understand 

the general factors that cause the uncertainty in PBF processes. 

Beaman et al (1997) first introduced the concept of energy 

density for AM, which is described by the Equation (1) [36]: 

                                                         (1) 

where Eρ is Energy density, P is laser power, r is beam radius, v 

is scan speed, and s is hatch spacing. 

Equation (1) indicates that higher laser power, lower scan 

speed, and closer hatch spacing produce higher energy density. 

More energy delivered to the powder usually means better 

melting conditions. Improved melting conditions will result in 

lower porosity and thus higher relative density. For example, 

Meier et al (2008)’s experiment with the metal laser sintering 

process shows the relative density increases from 69% to 99% 

with a power increase from 30W to 90W with other parameters 

held constant [37]. Another study [38] concluded higher energy 

density tends to produce a continuous melting track against 

irregular melt shape. These findings imply the linear relations 

may be more likely if the involved input/output parameters can 

be related to an overall energy density dependency.  

In contrast, nonlinear relations were found in studies on 

outcomes related to part microstructure.  Meier et al (2008) 

found surface roughness is not monotonically increased with 

scan speed, with the optimal roughness obtained in the middle of 

the range of scanning speeds tested [37]. Other research suggests 

that microstructure varies throughout the entire PBF part, and 

thus can be considered a local rather part-wide property.  Wang 

et al (2012) found the hardness tests at different 

locations/directions in the same AM part produce different 

results [4]. Similarly, studies of thermal conditions indicate that 

variation of thermo-physical properties of AM parts are 

complicated [39].  

Figure 3 summarizes the hypothetical relation of 

input/output correlations observed in the literature. The thick 

arrow in the middle of the figure represents the relation from 

linear to highly nonlinear. The arrow (right to left) on the top 

represents whether the input parameters can be classified as 

related to energy density or not. The bottom arrow (left to right) 

represents whether the outputs are in macro-scale or micro-scale.  

The observations performed in this section pertain to linearity of 

input/output relationships. Figure 4 illustrates the more general 

case to which these techniques may be applied.  

 
Figure 3. Hypothetical relation of input/output correlations 

 

 
Figure 4.General case to model input/output relationships 

 

Figure 3 can be used to summarize past literature results for 

the particular case of PBF. As discussed, laser power, layer 

thickness, and scan speed are input parameters that relate to 

energy density. Pulse frequency is located in the upper right 

corner since it is unrelated to energy density. For outputs, relative 

density is considered a high macro scale property as it depends 

on part width rather than local porosity. Surface roughness, 

however, relates more to AM microstructure. For the problem 

that involves the parameters in Figure 5(a), the link between 

inputs and outputs intersects with the bold arrow on the left. 

Figure 5(b) indicates pulse frequency and surface roughness 

have a highly nonlinear relation. Figure 5(c) and Figure 5(d)  

demonstrate the limitations in past research.  
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Figure 5. The use of AM input/output correlation chart 

Figure 5 visually summarizes the relation between different 

combinations of PBF parameters observed in the literature. 

However, it must be stressed that, like the literature, it only 

summarizes some of the parameters of interest, and might not be 

sufficient to guide metamodel selection, especially in the case of 

indeterminate parameter sets. A more rigorous mathematical 

solution is thus needed. Section 5 introduces a framework to 

recommend models based on mathematical computation.  

4. OVERVIEW OF METAMODELING TECHNIQUES 
This section reviews the metamodeling techniques that are 

applied in Section 5. PR, Kriging, and ANN techniques were 

used in this study as they cover both parametric and non-

parametric techniques [13]. However, the framework should not 

be limited to only these algorithms. These three were selected in 

this paper for demonstrative purposes. In general, any 

metamodeling technique can be considered as a candidate during 

the actual practice. 

A typical metamodel [40] can be expressed as: 

                          𝑦(𝑥̌) = 𝑓(𝑥̃) + 𝜀                                    (2) 

where y(x̃)  represents an unknown function, f(x̃) is a known 

function of x̃  derived statistically, and ε  is the error part. x̃ 

represents the set of the system’s independent input variables. 

For different modeling methods, the function represented by 

each part of the expression is different.  

 

4.1 Polynomial Regression (PR) 

The PR technique is a variation of linear regression in which 

an nth order polynomial is used to model the relationship between 

the independent variables x  and the outcomes y( x ) [40]. The 

method is popular in various engineering domains since it is fast 

and easy to use. A second order quadratic polynomial function 

has the form of: 

       𝑦̂ = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖
𝑘
𝑖=1 + ∑ 𝛽𝑖𝑖𝑥𝑖

2𝑘
𝑖=1 + ∑ ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗𝑗𝑖      (3) 

where β0, βi, and βij are regression coefficients, and k is the 

number of design variables.  

 

4.2 Kriging 

Unlike the parametric techniques producing an actual 

formula, the Kriging method as a non-parametric method builds 

its estimation based on the position of sample data. The 

underlying assumption of Kriging models is that an unknown 

point can be estimated from observed (known) points based on 

spatial correlation [41]. The estimation process is completed by 

a variogram or so called spatial correlation functions [42, 43]. 

The general form of a kriging estimation for an unknown 

predicted value of a point ZE for a single outcome is [44]: 

                                                  (4) 

where Z̅ represents the regional mean value of the response 

and. λ
i
  is the distance-correlated weight value, which is 

determined by the computation of spatial correlation. The value 

of spatial correlation can be derived from: 

                           (5) 

where xi,l is the lth component of the ith vector xi [44]. R(θ, xi, xj) 

depends on the location of points xi and xj, and the correlation 

parameter, θ. Multiple Kriging methods exist, including simple 

Kriging, ordinary Kriging, regression Kriging, etc. [43]. The 

ordinary Kriging method is used in this paper.  

 

4.3 Artificial Neural Network (ANN) 

ANN is a computational algorithm that mimics the central 

nervous system [45] and has been widely used for solving 

problems with complicated structures. A typical ANN model 

consists of an input layer, hidden layers, and an output layer [46]. 

Each layer consists of “neurons” that are connected across layers 

to transmit and deduce information. The optimal number of 

neurons and hidden layers may differ, and depends on the 

complexity of the problem. The structure of a simple ANN model 

[47] is shown in Figure 6, where x1 to x3 are input parameters, 

u1-4 are the neurons in the single hidden layer, and outputs y1 

and y2 are located in output layer.  
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Figure 6. Typical structure of a simple ANN model 

5. DOMAIN-DRIVEN MODEL RECOMMENDATION 
FRAMEWORK FOR AM 
An exhaustive search, which is also known as the generate 

and test method, is the most general problem solving technique 

for systematically enumerating all possible candidate algorithms 

and selecting the most appropriate candidate based on a set of 

criteria [48]. While it is a global optima algorithm, it is also 

extremely inefficient, especially for those problems with 

abundant candidates and/or large input datasets. In such cases, it 

may be more efficient to incorporate prior knowledge into the 

algorithm selection process. 

Many selection or recommendation techniques were 

developed to improve the efficiency of exhaustive search. Rice’s 

model [15], for example, can recommend the best candidate for 

a new instance based on previous model selection knowledge. It 

includes four spaces: the problem space P represents the datasets 

of learning instances; domain space F contains the 

characteristics; algorithm space A includes all candidate 

algorithms; performance space Y is the measured performance 

of instance P for each algorithm in A [15]. Rice’s model 

compares characteristics of a new instance to all previous 

examples and then assesses the suitability of each algorithm 

based on a set of rules or a selection algorithm. The model 

findings can be used to select the optimal algorithm from a given 

problem. Once the solution is derived, the performance in the 

new instance is added to the performance space Y, updating the 

model with a new point. In this way, a user can avoid 

exhaustively testing each candidate algorithm for a new instance 

[13].  

The proposed domain-driven method is built upon Rice’s 

algorithm selection method. However, instead of using data-

features to characterize the new dataset, this proposed AM 

framework uses AM knowledge to indicate a possible optimal 

option from candidate algorithms. This approach is 

fundamentally different than Rice’s method in that the result can 

be independent of the unfixed data strategy and rely on the 

relatively fixed knowledge of the physics of the problem. The 

AM characteristics used are the relations between input/output 

parameters discussed in section 3. The general workflow of the 

proposed framework is shown Figure 7. It requires sufficient 

knowledge to commence the selection process. Knowledge 

construction consists of collecting existing datasets, classifying 

the instances, and computing the performance of each candidate 

algorithm on each dataset.  The extracted information is then fed 

back into the current knowledge model and the system predicts 

a possible optimal metamodeling algorithm. Before proceeding 

to model construction with actual data, the newly calculated 

solution updates the knowledge model. Details of each critical 

step are discussed in the rest of this section. 

 
Figure 7. General workflow of the proposed framework of AM 

domain-driven modeling selection method 

5.1 AM characterization 

The AM characteristics mentioned at this stage are AM 

input/output parameters. At this step, all parameters are formed 

to input vector X of the selection framework: 

X = [𝑥1 𝑥2 𝑥3 … 𝑥𝑛 𝑦1 𝑦2 𝑦3 … 𝑦𝑚]𝑇 

where the x and y are the inputs and outputs respectively and are 

equal to 1 or 0. 1 indicates that the problem includes the 

parameter and 0 indicates the parameter is not considered. These 

vectors are the inputs to the learning process. For problems that 

have exactly the same outputs, y can be ignored. 

 

5.2 Performance measurement 

Measuring model performance of known datasets is critical 

to improving model selection accuracy. Two criteria were 

employed in the case study in section 6 to evaluate the modeling 

performance by a set of candidate algorithms. For global 

measurement, normalized root mean square error (NRMSE) [13] 

is used. Maximum relative error magnitude (MREM), on the 
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other hand, is used to evaluate the outstanding error of the 

models [14]. These were formulated as: 

         𝑁𝑅𝑀𝑆𝐸 = √∑ (𝑦𝑖−𝑦̃𝑖)2𝑁
𝑖=1

𝑁
/(𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛)               (6) 

         𝑀𝑅𝐸𝑀 = max (
|𝑦𝑖−𝑦̃𝑖|

𝑦𝑖
)                                           (7) 

Where 𝑦𝑖  (≠ 0)  is the actual observed value, 𝑦̃𝑖   is the 

estimated value from the metamodel, ymax/ymin are the 

maximum/minimum actual observation, and N is the total 

amount of validation samples. With NRMSE and MREM, the 

framework can make its recommendation based on both global 

and local performances of the datasets by assigning appropriate 

weights to each criteria. In this paper, all case studies consider 

the NRMSE and MREM criteria equally to not bias either way. 

However, in some cases, these two objectives could conflict. 

Under these circumstances, a user could deploy a weighted 

multi-criteria decision making formulation.  

 

5.3 Prediction process 

The prediction process of the proposed recommendation 

framework could be completed by either model-based or 

instance-based methods. Model-based methods build predictive 

models to determine the optimal modeling algorithm. The 

predictive selection is based on an input vector X (model 

variables) and the resulting modeling performance (model 

outcome). Once the model is built, the new instance with PBF-

related information in Xnew would then import to the model and 

calculate the predictive result. The model-based method is 

similar to what is discussed in Section 3. For example, the vector 

X is the input variable set of the recommended predictive model. 

The values of NRMSE and MREM then become the predictive 

results. Once the recommended model is built based on existing 

instances, the model can predict the NRMSE and MREM of 

candidate algorithms for a new problem. The user can decide 

which algorithm would be employed according to these 

indicators of model performance. 

An instance-based method by comparison solves the 

problem based on existing examples. It assumes an algorithm has 

similar performance on similar problems, where the similarity is 

measured by Euclidean distance between instance input and 

output vectors [Brighton et al, 2002]. The k-nearest neighbor (k-

NN) ranking approach as was employed in this study. The k-NN 
approach ranks the nearby k nearest examples for their similarity. 

However, the simplest case of k-NN is the closest neighbor 

example based on the comparison of the Euclidean distance of 

all examples, which also called as 1-NN. The formulation of 1-

NN is: 

                  𝑑𝑖𝑠𝑡(𝑖, 𝑗) = √(𝑎𝑖 − 𝑎𝑗)2,   𝑗 = 1, … , 𝑚             (8) 

 

Where ai represents the new instance aj represents the 

existing examples, and m is the total number of examples. In the 

case of the metamodeling algorithm, a set of datasets composed 

of input and output parameters would serve as the existing 

points, each of which has been characterized by a set of 

metamodels. By comparing the input parameters (aj) to those 

used in the new dataset, the user can then determine how similar 

the data is to a known dataset. At this point, users would simply 

compare the performance of various modeling algorithms in the 

existing examples. Thus, a likely best predictive modeling 

algorithm can be chosen without costly characterization of 

information and data features of the dataset. This saves the cost 

of testing all candidate algorithms individually, allowing the user 

to directly proceed to model construction and parameters 

optimization. A demonstrative example in the following section 

shows how the method works. 

6. DEMONSTRATIVE CASE STUDY 
A simple example was constructed from existing AM 

datasets (2 for constructing knowledge and 1 for verification) to 

illustrate the proposed AM domain-driven framework. Tang et al 

(2003)’s and Morgan et al (2004)’s metal PBF datasets were used 

to construct the knowledge base [31, 35]. The dataset from 

Chatterjee et al (2003)’s was selected to verify the selection 

accuracy [49]. The three datasets have the same output 

parameter, relative density. Because of this, the Y output vector 

is omitted, and the results obtained may potentially be more 

accurate since the knowledge is constructed from somewhat 

similar examples. 

The 1-NN method was used to predict the optimal modeling 

algorithm. The predicted algorithm was then compared to actual 

modeling results with all candidate algorithms to assess the 

predictive solution [49]. 

 

6.1 Knowledge construction 

The knowledge used for model predictions was composed 

of a small dataset with 15 samples [31] and a large dataset with 

105 samples [35]. They were selected to build the knowledge 

model because their similarities: 1) both are metal PBF process; 

2) both use similar experimental conditions; 3) they have the 

same output as the new dataset (relative density). The differences 

between them also provide opportunities for future model 

selection for new instances, namely: 1) they use different input 

parameters; 2) they use a different DOE strategy and 3) both have 

different variables that are not considered in DOE such as 

materials and specific machines. Thus, the knowledge base of 

these datasets is reasonable and has useful variation.  

For initial construction, we consider 6 independent input 

variables though neither dataset can cover the parameter of layer 

thickness. The two datasets overlap in individual parameters. 

The matrix of the inputs is shown in Table 1. Note, the order of 

input parameters that are in the table and elements in the vector 

are constantly fixed for a future prediction process. 

 

Table 1. The inputs matrix of given datasets 

 
Laser 

power 

Scan 

speed 

Powder 

density 

Layer 

thickness 

Pulse 

frequency 

Hatch 

spacing 

Tang 

(2003) 
1 1 1 0 0 1 

Morgan 

(2004) 
0 1 0 0 1 1 

 

Writing these inputs as input vecors: 
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𝑋𝑡𝑎𝑛𝑔 = [1 1 1 0 0 1]𝑇 

𝑋𝑚𝑜𝑟𝑔𝑎𝑛 = [0 1 0 0 1 1]𝑇 

The output vector Y is omitted in this case study since both 

knowledge and verification datasets have the same target output 

– relative density. 

Three algorithms were used to characterize both input 

datasets. A PR model was built using the pure quadratic 

regression method. The Kriging model is built by ordinary 

Kriging method and the Gaussian correlation function with 

maximum likelihood approach. The ANN model is defined with 

10 hidden layers. It should be noted that the candidate algorithms 

used in this case study are not meant to be exhaustive, but rather 

to represent a set of common modeling approaches. To calculate 

the performance, each original dataset is divided into training 

and testing sets with fixed ratio 80% and 20% using the Latin 

Hypercube based Minimum Euclidean Distance method [14]. 

For Tang et al (2003)’s dataset, PR works the best from three 

candidates as both NRSME (0.1580) and MREM (0.0220) are 

the lowest (Table 2). However, in the second dataset the Kriging 

model tested was found to be the best possible choice among the 

candidate algorithms. Thus, at a system level the knowledge base 

indicates: 1) while X=[1 1 1 0 0 1]T, recommend model=PR; 2) 

while X=[0 1 0 0 1 1]T, recommend model=Kriging. The future 

model selection process is built based on these rules. 

 

Table 2. Model performance of both datasets for three 

candidates 

 NRSME MREM 

PR Kriging ANN PR Kriging ANN 

Tang 

(2003) 
0.1580 0.1757 0.5603 0.0220 0.0230 0.1642 

Morgan 

(2004) 
0.2018 0.1332 0.3917 0.1055 0.0669 0.1866 

 

6.2 Modeling algorithm recommendation 

The verification dataset consisted of 13 samples 

manufactured using the metal PBF process [49]. Compared to 

the datasets in the knowledge model, the experiment used carbon 

steel powder instead of stainless steel or a copper alloy, and has 

the smallest sample size (13) and number of input variables (2). 

The two input variables were layer thickness and hatch spacing, 

resulting in an input vector of: 

𝑋𝑛𝑒𝑤 = [0 0 0 1 0 1]𝑇 

Based on 1-NN approach, the Euclidean distance between 

the new and former datasets are: 

dist(new, tang) = 2 

dist(new, morgan) = 1.732 

The knowledge model at this stage is likely insufficient due 

to a very limited number of example instances. Though it has 

these defects, the distance results show that the dataset is closer 

to Morgan’s data than Tang’s. Thus, the recommended algorithm 

would be a Kriging model. Once confirmed, the result can be 

used to update the current knowledge model with a new instance 

– while X=[0 0 0 1 0 1]T, and Y is relative density, the optimal 

candidate model is Kriging. Once this is done, the updated 

knowledge model was updated and can cover the aspect of layer 

thickness.  

For verification, the performance of each candidate model 

with the new dataset is shown in Table 3. All models were 

constructed using the same methods and model parameters as in 

the knowledge model datasets. Based on the performance 

measurement, Kriging model shows small advantages in both 

NRSME and MREM compared to the PR and ANN models. 

Thus, the result is consistent with the solution predicted using 

the framework.  

 

Table 3. Model performance for the new dataset 

 NRSME MREM 

PR Kriging ANN PR Kriging ANN 

Chatterjee 

(2003) 
0.3374 0.3186 1.0448 0.0282 0.0257 0.0681 

7. DISCUSSION AND FUTURE WORK 
The proposed AM domain-driven metamodeling 

recommendation framework has the potential to provide an 

efficient and reliable way to predict the optimal metamodel for a 

new problem. It is efficient as it can avoid exhaustively testing 

all possible candidate algorithms once a sufficient knowledge 

model is constructed. Moreover, the solution can help to direct 

future model construction when considering data-features that 

might allow the user to hone in from a broad class of algorithms 

to a specific one. The general framework was established based 

on the hypothesis that certain combinations of input/output 

parameters have consistent behavior. The predictive solution 

could be made more reliable if it were derived from a larger set 

of consolidated knowledge. A simple demonstrative case study 

that included three distinct metal PBF datasets shows the 

algorithm prediction process.  

Though the proposed framework shows a multiple of 

advantages in AM metamodeling problems, the details of the 

method need further improvement. The current set of candidate 

algorithms is limited; including only PR, Kriging, and ANN. 

While suitable for demonstration, this limited size of candidates 

potentially restrains higher model performance of new datasets. 

Furthermore, each model only has the basic modeling 

configuration without the ability for user modification. It may 

cause false results due to incomplete consideration of modeling 

options. For example, the finding that the ordinary Kriging 

model works better than a pure quadratic regression model does 

not mean that it also works better than a higher order PR model. 

Without consideration of the range of available algorithm types, 

the current framework may mislead the user. To overcome these 

disadvantages, more detailed metamodeling techniques should 

be added to the current framework. This work is being 

undertaken. 

Beyond adding more broad classes of algorithms, subclasses 

of algorithms also need to be considered for a more robust 

solution. For example, consideration of different Kriging 

methods might enrich the study. Simple Kriging, stochastic 

Kriging, and dynamic Kriging may further define the Kriging 

class in the set of candidates. In addition to adding more 
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algorithms, it may be useful to bring modeling guidelines into 

the framework. For example, such guidelines might indicate that 

ANN may not be well suited for use with small datasets. Such 

considerations may improve the predictive accuracy of the 

framework for a larger breadth of datasets.  

For the specific case of AM and the PBF process, algorithms 

for the AM characterization process also need further 

improvement. There are more than 50 independent variables in 

metal PBF process [1, 16]. This study has included less than 1/3 

of them. Another disadvantage is that the framework can only 

count categorical input/output vectors, rather than considering 

broad classes of inputs and the relative similarity between 

different types of variables. For example, in the review of the 

literature, variables relating to energy density were found to 

behave very similarly within a range of outputs. This is 

knowledge that might improve the model selection process. If 

included in the knowledge model, the system could possess 

greater insight when calculating the distance between instances. 

More robust parameter classification may thus be needed for 

more accurate prediction. Similarly, as research continues, the 

vectors can be further detailed and classified in multiple levels 

based on process knowledge and empirical data. For example, 

materials could be classified as 0 (single component), 0.5 

(multiple components without steel), or 1 (multiple components 

with steel), or using some other scheme to provide greater insight 

into problem similarity. However, development of reasonable 

methods requires a more comprehensive understanding of AM 

processes. 

All of this suggests the need for a hybrid approach that 

utilizes a combination of process-specific knowledge and 

experience, algorithmic knowledge and dataset-specific 

considerations. The process knowledge might consist of 

empirical input/output relations as in this paper, utilize 

knowledge of problem physics to assess the similarity of datasets 

and suggest several candidate classes of algorithm. Algorithmic 

knowledge might consist of a well defined model of broad 

algorithm classes and subclasses, and defined model and data 

attributes that affect their performance. Simple data features such 

as sample size and the utilized DOE methods could then be used. 

The most important challenge in our research currently is a 

lack of data to construct a more reliable knowledge model. In the 

case study, the naive knowledge model consists of only two 

instances. To improve the model, more AM knowledge is 

needed. In the current knowledge model, only empirical datasets 

can be used to build the knowledge model. Simulation models 

might be used to enhance the knowledge model. For example, 

Ma et al (2015)’s FEA model has 10 independent AM input 

variables, which may allow the framework to include a broader 

range of problem physics [22]. Formal information models may 

also contribute to better knowledge construction. More candidate 

metamodeling algorithms should be considered into such 

information models to not limit the overall performance. Recent 

development of an AM ontology might provide the basis for 

more effective utilization of process specific knowledge.  If this 

information can be utilized in a future version of the proposed 

framework, it can potentially boost its predictive ability and 

accuracy.  

ACKNOWLEGEMENT 
This material is based upon work supported by the National 

Science Foundation (NSF) under Grant No. 1439683, the 

National Institute of Standards and Technology (NIST) under 

Cooperative Agreement number NIST 70NANB15H320, and 

industry members of the NSF Center for e-Design.  

 

REFERENCES  

[1] Gibson, I., Rosen, D.W., and Stucker, B., 2010, "Additive manufacturing 

technologies," Springer, . 
[2] Tapia, G., and Elwany, A., 2014, "A Review on Process Monitoring and 

Control in Metal-Based Additive Manufacturing," Journal of Manufacturing 

Science and Engineering, 136(6) pp. 060801. 

[3] Kamath, C., El-dasher, B., Gallegos, G. F., 2014, "Density of Additively-

Manufactured, 316L SS Parts using Laser Powder-Bed Fusion at Powers Up 
to 400 W," The International Journal of Advanced Manufacturing 

Technology, 74(1-4) pp. 65-78. 

[4] Wang, Z., Guan, K., Gao, M., 2012, "The Microstructure and Mechanical 

Properties of Deposited-IN718 by Selective Laser Melting," Journal of 

Alloys and Compounds, 513pp. 518-523. 
[5] Huang, Y., Leu, M. C., Mazumder, J., 2015, "Additive Manufacturing: 

Current State, Future Potential, Gaps and Needs, and Recommendations," 

Journal of Manufacturing Science and Engineering, 137(1) pp. 014001. 

[6] Yang, L., Peng, X., and Wang, B., 2001, "Numerical Modeling and 

Experimental Investigation on the Characteristics of Molten Pool during 
Laser Processing," International Journal of Heat and Mass Transfer, 44(23) 

pp. 4465-4473. 

[7] Witherell, P., Feng, S., Simpson, T. W., 2014, "Toward Metamodels for 

Composable and Reusable Additive Manufacturing Process Models," 
Journal of Manufacturing Science and Engineering, 136(6) pp. 061025. 

[8] Wang, G. G., and Shan, S., 2007, "Review of Metamodeling Techniques in 

Support of Engineering Design Optimization," Journal of Mechanical 

Design, 129(4) pp. 370-380. 

[9] Jin, R., Du, X., and Chen, W., 2003, "The use of Metamodeling Techniques 
for Optimization Under Uncertainty," Structural and Multidisciplinary 

Optimization, 25(2) pp. 99-116. 

[10] Hoffman, F. O., and Hammonds, J. S., 1994, "Propagation of Uncertainty in 

Risk Assessments: The Need to Distinguish between Uncertainty due to 

Lack of Knowledge and Uncertainty due to Variability," Risk Analysis, 14(5) 
pp. 707-712. 

[11] Kothari, C.R., 2004, "Research methodology: Methods and techniques," 

New Age International, . 

[12] Holman, J.P., and Gajda, W.J., 1994, "Experimental methods for engineers," 

McGraw-Hill New York, . 
[13] Cui, C., 2016, Building Energy Modeling: A Data-Driven Approach, . 

[14] Yang, Z., Eddy, D., Krishnamurty, S., 2016, "Investigating Predictive 

Metamodeling for Additive Manufacturing," ASME 2016 International 

Design Engineering Technical Conferences and Computers and Information 

in Engineering Conference, Anonymous American Society of Mechanical 
Engineers, pp. V01AT02A020-V01AT02A020.  

[15] Rice, J. R., 1976, "The Algorithm Selection Problem," Advances in 

Computers, 15pp. 65-118. 

[16] Frazier, W. E., 2014, "Metal Additive Manufacturing: A Review," Journal of 

Materials Engineering and Performance, 23(6) pp. 1917-1928. 
[17] Olakanmi, E., Cochrane, R., and Dalgarno, K., 2015, "A Review on 

Selective Laser Sintering/Melting (SLS/SLM) of Aluminium Alloy 

Powders: Processing, Microstructure, and Properties," Progress in Materials 

Science, 74pp. 401-477. 

[18] Xiao, B., and Zhang, Y., 2007, "Marangoni and Buoyancy Effects on Direct 
Metal Laser Sintering with a Moving Laser Beam," Numerical Heat 

Transfer, Part A: Applications, 51(8) pp. 715-733. 



 10                                               Copyright © 2017 by ASME 

[19] Devesse, W., De Baere, D., and Guillaume, P., 2014, "The Isotherm 

Migration Method in Spherical Coordinates with a Moving Heat Source," 
International Journal of Heat and Mass Transfer, 75pp. 726-735. 

[20] Roberts, I., Wang, C., Esterlein, R., 2009, "A Three-Dimensional Finite 

Element Analysis of the Temperature Field during Laser Melting of Metal 

Powders in Additive Layer Manufacturing," International Journal of 

Machine Tools and Manufacture, 49(12) pp. 916-923. 
[21] Contuzzi, N., Campanelli, S., and Ludovico, A., 2011, "3 D Finite Element 

Analysis in the Selective Laser Melting Process," International Journal of 

Simulation Modelling, 10(3) pp. 113-121. 

[22] Ma, L., Fong, J., Lane, B., 2015, "Using design of experiments in finite 

element modeling to identify critical variables for laser powder bed fusion," 
International Solid Freeform Fabrication Symposium, Anonymous 

Laboratory for Freeform Fabrication and the University of Texas Austin, TX, 

USA, . 

[23] Palmer, K. D., 1998, Data Collection Plans and Meta Models for Chemical 

Process Flowsheet Simulators, . 
[24] Siah, E. S., Sasena, M., Volakis, J. L., 2004, "Fast Parameter Optimization 

of Large-Scale Electromagnetic Objects using DIRECT with Kriging 

Metamodeling," IEEE Transactions on Microwave Theory and Techniques, 

52(1) pp. 276-285. 

[25] Shao, T., 2007, "Toward a structured approach to simulation-based 
engineering design under uncertainty," ProQuest, . 

[26] Shao, T., and Krishnamurty, S., 2008, "A Clustering-Based Surrogate Model 

Updating Approach to Simulation-Based Engineering Design," Journal of 

Mechanical Design, 130(4) pp. 041101. 

[27] Zhao, D., and Xue, D., 2011, "A Multi-Surrogate Approximation Method 
for Metamodeling," Engineering with Computers, 27(2) pp. 139-153. 

[28] Bauchau, O., and Craig, J., 2009, "Structural Analysis,"Springer, pp. 173-

221. 

[29] Gong, H., Rafi, K., Gu, H., 2014, "Analysis of Defect Generation in Ti–6Al–

4V Parts made using Powder Bed Fusion Additive Manufacturing 
Processes," Additive Manufacturing, 1pp. 87-98. 

[30] Raghunath, N., and Pandey, P. M., 2007, "Improving Accuracy through 

Shrinkage Modelling by using Taguchi Method in Selective Laser 

Sintering," International Journal of Machine Tools and Manufacture, 47(6) 
pp. 985-995. 

[31] Tang, Y., Loh, H., Wong, Y., 2003, "Direct Laser Sintering of a Copper-

Based Alloy for Creating Three-Dimensional Metal Parts," Journal of 

Materials Processing Technology, 140(1) pp. 368-372. 

[32] Kempen, K., Yasa, E., Thijs, L., 2011, "Microstructure and Mechanical 
Properties of Selective Laser Melted 18Ni-300 Steel," Physics Procedia, 

12pp. 255-263. 

[33] Louvis, E., Fox, P., and Sutcliffe, C. J., 2011, "Selective Laser Melting of 

Aluminium Components," Journal of Materials Processing Technology, 

211(2) pp. 275-284. 
[34] Kruth, J., Wang, X., Laoui, T., 2003, "Lasers and Materials in Selective 

Laser Sintering," Assembly Automation, 23(4) pp. 357-371. 

[35] Morgan, R., Sutcliffe, C., and O'neill, W., 2004, "Density Analysis of Direct 

Metal Laser Re-Melted 316L Stainless Steel Cubic Primitives," Journal of 

Materials Science, 39(4) pp. 1195-1205. 
[36] Beaman, J. J., Barlow, J. W., Bourell, D. L., 1997, "Solid Freeform 

Fabrication: A New Direction in Manufacturing," Kluwer Academic 

Publishers, Norwell, MA, 2061pp. 25-49. 

[37] Meier, H., and Haberland, C., 2008, "Experimental Studies on Selective 

Laser Melting of Metallic Parts," Materialwissenschaft Und 
Werkstofftechnik, 39(9) pp. 665-670. 

[38] Ciurana, J., Hernandez, L., and Delgado, J., 2013, "Energy Density Analysis 

on Single Tracks Formed by Selective Laser Melting with CoCrMo Powder 

Material," The International Journal of Advanced Manufacturing 

Technology, 68(5-8) pp. 1103-1110. 
[39] Mills, K.C., 2002, "Recommended values of thermophysical properties for 

selected commercial alloys," Woodhead Publishing, . 

[40] Box, G.E., and Draper, N.R., 1987, "Empirical model-building and response 

surfaces," Wiley New York, . 

[41] Simpson, T. W., Booker, A. J., Ghosh, D., 2004, "Approximation Methods 
in Multidisciplinary Analysis and Optimization: A Panel Discussion," 

Structural and Multidisciplinary Optimization, 27(5) pp. 302-313. 

[42] Shan, S., and Wang, G. G., 2010, "Survey of Modeling and Optimization 

Strategies to Solve High-Dimensional Design Problems with 

Computationally-Expensive Black-Box Functions," Structural and 

Multidisciplinary Optimization, 41(2) pp. 219-241. 
[43] Cressie, N., 2015, "Statistics for spatial data," John Wiley & Sons, . 

[44] Sacks, J., Welch, W. J., Mitchell, T. J., 1989, "Design and Analysis of 

Computer Experiments," Statistical Science, pp. 409-423. 

[45] Rosenblatt, F., 1958, "The Perceptron: A Probabilistic Model for 

Information Storage and Organization in the Brain." Psychological Review, 
65(6) pp. 386. 

[46] Yegnanarayana, B., 2009, "Artificial neural networks," PHI Learning Pvt. 

Ltd., . 

[47] Shanmuganathan, S., and Samarasinghe, S., 2016, "Artificial neural network 

modelling," Springer, . 
[48] Narendra, P. M., and Fukunaga, K., 1977, "A Branch and Bound Algorithm 

for Feature Subset Selection," IEEE Transactions on Computers, 26(9) pp. 

917-922. 

[49] Chatterjee, A., Kumar, S., Saha, P., 2003, "An Experimental Design 

Approach to Selective Laser Sintering of Low Carbon Steel," Journal of 
Materials Processing Technology, 136(1) pp. 151-157. 

  


	Proceedings of the ASME 2017 International Design Engineering Technical Conferences &
	Computers and Information in Engineering Conference
	IDETC/CIE 2017
	August 6-9, 2017, Cleveland, Ohio, USA
	DETC2017-67807
	Zhuo Yang, Thomas Hagedorn, Douglas Eddy, Sundar Krishnamurty, Ian Grosse
	Peter Denno, Yan Lu, Paul Witherell
	Abstract
	Figure 1.  Beam created with lattice.
	Figure 2. Infrastructure of principal AM inputs/outputs
	Figure 3. Hypothetical relation of input/output correlations
	Figure 4.General case to model input/output relationships
	Figure 5. The use of AM input/output correlation chart
	Figure 6. Typical structure of a simple ANN model
	6.1 Knowledge construction
	Table 1. The inputs matrix of given datasets
	6.2 Modeling algorithm recommendation
	Table 3. Model performance for the new dataset
	ACknowlegement
	References

