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Abstract In this paper, we report a high-resolution neutron Compton scattering study
of liquid 4He under milli-Kelvin temperature control. To interpret the scattering data,
we performed Quantum Monte Carlo calculations of the atomic momentum distribu-
tion and final state effects for the conditions of temperature and density considered in
the experiment. There is excellent agreement between the observed scattering and ab
initio calculations of its lineshape at all temperatures. We also used model fit functions
to obtain from the scattering data empirical estimates of the average atomic kinetic
energy and Bose condensate fraction. These quantities are also in excellent agreement
with ab initio calculations. We conclude that contemporary Quantum Monte Carlo
methods can furnish accurate predictions for the properties of Bose liquids, including
the condensate fraction, close to the superfluid transition temperature.
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1 Introduction

Bose condensation plays an important role in contemporary quantum many-body
physics. It is generally believed to provide the microscopic basis for superfluidity
in bulk liquid 4He [1–3]. On this view, the local order parameter of the normal-to-
superfluid phase transition is a macroscopic wavefunction describing themotion of the
condensate. The spontaneously broken gauge symmetry produces many fundamental
properties of superfluid 4He, such as its two-fluid hydrodynamics, critical exponents,
and quantization of circulation. Recent interest in Bose condensation encompasses
a broad range of topics [4], including dilute atomic gases [5], solid state excitations
[6–11], nonlinear optical systems [12,13], neutron stars [14], and gravitation [15–17].
Among these Bose-condensed systems, bulk superfluid 4He represents the strongly
interacting limit due to the steeply repulsive core of its interatomic potential.

The study of Bose broken symmetry in superfluid 4He is therefore a subject of fun-
damental interest in quantum many-body physics. The only known physical property
of liquid 4He that can provide direct information about the existence and magnitude
of its Bose condensate is the atomic momentum distribution n(k). Hohenberg and
Platzman originally proposed that neutron Compton scattering be used to measure
the momentum distribution n(k) of liquid 4He [18]. Their proposal stimulated many
experimental efforts to determine the Bose condensate fraction n0 and average atomic
kinetic energy 〈EK〉 throughout the phase diagram of 4He [19–23]. Several groups
have performed measurements of n(k) using the high fluxes of epithermal neutrons
available at modern spallation sources. This includes the MARI [24–29], PHOENIX
[30–34], and eVS [35] spectrometers.

The first ab initio calculations of n(k) at finite temperatures were carried out using
the Path Integral Monte Carlo method [36–38]. However, this pioneering study was
limited by the small system size, resulting in significant finite-size rounding of the
superfluid phase transition. Improvements in Quantum Monte Carlo methods, based
upon the continuous space worm algorithm [39,40], now permit much larger system
sizes to be studied. This makes available a more detailed theoretical picture, partic-
ularly for temperatures close to Tλ, than was possible previously. However, the new
theoretical predictions for the temperature dependence of the Bose condensate fraction
n0 have yet to face a strenuous test.

In this paper, we present a comprehensive theoretical and experimental study of the
momentum distribution n(k) of bulk liquid 4He under saturated vapor pressure. We
performed high-resolution neutron Compton scattering measurements of liquid 4He
under fine temperature control using the Wide Angular Range Chopper Spectrometer
(ARCS) at the Spallation Neutron Source [41]. To interpret the scattering data, we
performed Quantum Monte Carlo (QMC) calculations of the atomic momentum dis-
tribution n(k) by means of the continuous space worm algorithm. We accounted for
corrections to the Impulse Approximation (IA) by using the theories of Silver [42,43]
and Carraro–Koonin [44,45]. These calculations were performed for the exact same
conditions of temperature and density as the experimental ones. We find that there
is excellent agreement between the ARCS data set and ab initio predictions of the
scattering.
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The paper is organized as follows. In Sect. 2, we review the conceptual framework
of neutron Compton scattering and describe the theoretically expected scattering.
Section 3 provides the details of the experimental setup, instrument characterization,
and data treatment. Section 4 presents the experimental data without any reference
to theoretical models. In Sect. 5, we compare our experimental data to theoretical
predictions.We also usemodel fit functions to obtain empirical estimates of the average
atomic kinetic energy 〈EK〉 and condensate fraction n0 as a function of temperature.
The scattering data collected by the PHOENIX group is re-analyzed using the present
models. Lastly, we state our main findings in the Conclusion.

2 Theoretical Background

2.1 One-Body Density Matrix

The formal definition of Bose condensation in a strongly interacting system is given in
terms of the one-body density matrix ñ(s) [1,3]. This quantity is the expectation value
of the product of a particle creation operator at s and a particle annihilation operator
at the origin: ñ(s) = 〈�†(s)�(0)〉. At zero temperature, ñ(s) measures the overlap in
the many-body wavefunction of the system when a particle is removed from the origin
and then placed some distance s away. A system is Bose-condensed if and only if
ñ(s) approaches a constant value, n0, as s → ∞. The atomic momentum distribution
n(k) is the Fourier transform of the one-body density matrix ñ(s). Accordingly, the
Bose condensate appears in n(k) as a δ-function located at k = 0 with an integrated
intensity of n0.

The one-body density matrix ñ(s) of an interacting Bose system as a function of
temperature can be computed from first principles, i.e., directly from a microscopic
Hamiltonian making use of a realistic potential to describe the interaction among
atoms, by means of Quantum Monte Carlo simulations. In particular, the worm algo-
rithm (WA) in continuous space [39,40], based on Feynman’s space-time formulation
of quantum statistical mechanics [46], has emerged over the past decade as a power-
ful methodology, allowing one to calculate accurate equilibrium thermodynamics of
Bose systems. The values of the physical estimates can be regarded as exact, at least
for practical purposes, as the statistical and systematic uncertainties (the latter arising
from the finite size of the simulated system) affecting them can be rendered in practice
negligibly small with the typical computing resources available nowadays.

Because this numerical technique, which is by now fairly well established, is exten-
sively described elsewhere [39,40], we do not review it here. Rather, wemerely furnish
the relevant technical details. The results presented here were obtained by simulating
an ensemble of N = 256 4He atoms enclosed in a cubic vessel, with periodic boundary
conditions. We used the standard microscopic model of 4He, based on the Aziz pair
potential [47,48]. In principle, a more complete microscopic description of the system
should include contributions to the potential energy associated not just with pairs,
but also with, e.g., triplets of atoms. Indeed, such contributions are known to play an
important role when it comes to reproducing theoretically the experimental equation
of state of liquid 4He, but their effect of the single-particle dynamics (e.g., the kinetic
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Fig. 1 QMC calculations of the one-body density matrix ñ(s) of liquid 4He under saturated vapor pressure:
1.09K (purple), 1.40K (blue), 1.65K (cyan); 1.80K (dark green), 2.00K (light green), 2.10K (yellow),
2.35K (orange), 2.65K (red), 4.2K (open circles). Errors are smaller than symbol size (Color figure online)

energy) has been shown to be relatively small [49,50]. Thus, the neglect of three (and
higher) body terms in the Hamiltonian, in a theoretical calculation aiming mainly at
reproducing the value of the condensate fraction, is widely regarded as justified.

Our simulations are carried out at fixed density, using a canonical variant of the
WA [51,52]; the values of the density corresponding to the various temperatures (in
the range 0.5 ≤ T ≤ 2.65 K) are taken from Ref. [53]. We report results extrapolated
to the limit of vanishing imaginary time step τ (see Ref. [40] for details). In general,
results obtained with τ = 1/640 K−1 are indistinguishable from the extrapolated
ones, within the statistical uncertainty of the calculation. We estimate the potential
energy contribution arising from particles outside the main simulation cell by setting
the pair correlation function g(r) to unity outside the cell; which is an excellent
approximation for the system size utilized in this work. The value of the ground
state energy extrapolated to temperature T = 0 is −7.182 ± 0.013 K per 4He atom,
indistinguishable from the estimate at the lowest temperature considered here (T = 0.5
K), within statistical uncertainties.

Figure 1 plots the calculated one-body density matrix ñ(s) for the conditions of
our experiment. Differences between the normal and superfluid phases are evident. In
the normal fluid, ñ(s) decays toward zero at large s; in the superfluid, ñ(s) reaches a
constant value n0 at large s. The condensate fraction n0 varies rapidly just below Tλ

and approaches a constant value around 1 K. The estimate at T = 1.09 K is 0.075(2),
which is consistent with that of Ref. [40]. The extrapolated T = 0 value is 0.076(2),
also consistent, within the quoted statistical uncertainties, with the estimate provided
in Ref. [49]. In general, the estimates furnished here are consistent with those of
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Ref. [40], but the ones offered here were obtained for the values of the density and
temperatures of the present experiment.

The average atomic kinetic energy 〈EK〉 is given by the curvature of ñ(s) at s = 0.
Specifically, 〈EK〉 = −(h̄2/2m)∇2ñ(s), the Laplacian being evaluated at s = 0.
Theoretical predictions for the average kinetic energy 〈EK〉 and condensate fraction
n0 are given in Tables 1 and 2, respectively.

2.2 Neutron scattering and the Incoherent Approximation

Here we review the theoretical basis for neutron Compton scattering studies of liquid
4He [18,21,22]. One measures the double-differential scattering cross section in an
inelastic neutron scattering experiment:

d2σ

d�dE
= b2coh

kf
ki

S(Q, E). (1)

Here bcoh is the coherent scattering length of 4He and ki (kf ) is the incident (final)
neutronwavevector. There is no incoherent contribution to the scattering from changes
in the spin state of the 4He nucleus(binc = 0). The dynamic structure factor S(Q, E)

Table 1 Values of the average
atomic kinetic energy 〈EK〉
estimated from the ARCS data
set

T (K) 〈EK〉 (K) QMC (K)

1.090(10) 14.3(3) 14.17(2)

1.400(10) 14.4(5) 14.32(2)

1.650(4) 14.6(6) 14.46(2)

1.800(4) 14.6(4) 14.66(2)

2.000(4) 14.9(6) 15.08(3)

2.100(4) 15.2(3) 15.39(5)

2.35(3) 16.6(1.3) 16.09(2)

2.650(15) 16.4(5) 16.22(1)

Table 2 Values of the
condensate fraction n0 estimated
from the ARCS data set

T (K) Model A Model B QMC

1.090(10) 0.073(2) 0.070(4) 0.075(2)

1.400(10) 0.071(6) 0.073(6) 0.069(2)

1.650(4) 0.051(13) 0.05(2) 0.063(2)

1.800(4) 0.061(3) 0.056(3) 0.056(2)

2.000(4) 0.039(6) 0.043(10) 0.041(2)

2.100(4) 0.034(3) 0.032(4) 0.034(2)

2.35(3) – – 0

2.650(15) 0.000(1) 0.002(3) 0

4.20 – – 0
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of a quantum liquid is the Fourier transform of its time-dependent density–density
correlation function.

S(Q, E) = 1

2π N

∫ +∞

−∞
ei Et/h̄〈ρ(Q, t)ρ†(Q, 0)〉dt. (2)

We may distinguish between two different regimes of Q and E transfer. At low
Q(<4Å−1), the measured scattering is dominated by coherent interference between
particles and hence the collective excitations (the phonon-roton modes) of the liquid
are observed [54,55]. At high Q(>10Å−1) the coherent interference between differ-
ent particles is canceled by rapid phase variations. The scattering is now dominated by
single-particle excitations. Therefore, the incoherent approximation is used to reduce
the dynamic structure factor to

S(i)(Q, E) = 1

2π

∫ +∞

−∞
ei Et/h̄〈e−Q·r(t)eiQ·r(0)〉dt. (3)

At high Q, the central moments of the scattering obey the following sum rules [56]:

Normalization:
∫ +∞

−∞
S(Q, E)dE = 1. (4)

f -sum rule:
∫ +∞

−∞
(E − ER)S(Q, E)dE = 0. (5)

ω2-sum rule:
∫ +∞

−∞
(E − ER)2S(Q, E)dE = 4

3
ER〈EK〉. (6)

Here ER = h̄2Q2/2m is the recoil energy of a helium atom.

2.3 Impulse Approximation

The Impulse Approximation (IA) assumes that the kinetic energy transferred by an
incident neutron to an individual helium atom during a scattering event is so large that
the potential energy of the atom in both its initial and final states may be neglected.
The IA is valid at infinite Q so long as the interatomic potential does not contain a hard
core. Within the IA, S(i)(Q, E) reduces to an integral transform of the momentum
distribution n(k):

SIA(Q, E) =
∫

n(k)δ

(

E − h̄2Q2

2m
− k · Q

m

)

dk. (7)

Here n(k) is the atomic momentum distribution. When the IA is satisfied, a constant
Q cut of the dynamic structure factor SIA(Q, E) consists of a single peak symmetric
about the recoil energy ER = h̄2Q2/2m. The width of the peak is proportional to the
product of Q and the width of n(k). The sum rules of incoherent scattering also apply
at infinite Q, as the IA is a special case of the incoherent approximation.
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Typically, the scattering data is presented and analyzed in terms of theWest scaling
variable Y and the neutron Compton profile J (Y, Q) [57]. These quantities are defined
as follows:

Y = m

h̄2Q

(

E − h̄2Q2

2m

)

. (8a)

J (Y, Q) = h̄2Q

m
S(Q, E). (8b)

If the IA is valid, then the neutronComptonprofile JIA(Y ) is related the atomicmomen-
tum distribution n(k) by a Radon transform [23]. The atomic momentum distribution
of a Bose-condensed fluid may be expressed as a sum: n(k) = n0δ(k)+n∗(k), where
the δ-function singularity is due to the condensate. Expressing 7 in terms of the scaling
variable Y yields:

JIA(Y ) = n0δ(Y ) + 2π
∫ ∞

|Y |
kn∗(k)dk. (9)

There are several advantages to analyzing the scattering data in terms of the scaling
variable Y . First, the neutronCompton profile J (Y, Q) is a one-dimensional projection
of the momentum distribution n(k). In the IA, the Y -scaling variable has the physical
interpretation of being the component k‖ of the atomicmomentum that is parallel to the
momentum transferQ from the incident neutron k‖ = k ·Q̂. TheWest scaling variable
Y is also the Fourier conjugate of the distance s traveled by a recoiling helium atom.
Second, if J (Y, Q) is overplotted formultiple values of Q, then the points will collapse
on to a single curve. Such behavior is necessary, but not sufficient, to demonstrate the
applicability of the IA.

The scattering in the IA-limit is obtained from the one-body density matrix ñ(s)
by a Fourier cosine transform. Figure 2 compares JIA(Y ) at 1.09 K and 2.65 K. The
most striking feature of JIA(Y ) in the superfluid phase is the δ-function singularity at
Y = 0.

2.4 Final State Effects

The straightforward predictions of the IA turn on the assumption that a target helium
atom recoils freely from the impact of a high energy neutron. However, the interatomic
potential has a steeply repulsive core at short distances, making interactions of the
recoiling atom with its neighbors important even at high Q. The resulting deviations
from the IA are known as Final State Effects (FSE). Hohenberg and Platzman argued
that the FSE broadening is governed by the 4He-4He scattering cross section σ(Q)

[18,58]. They estimated that the condensate peak would be broadened by an amount
roughly equal to ρσ(Q), where ρ is the number density of the liquid. For Q = 30Å−1,
the broadening is on the order of 0.7Å−1, which is not small compared to the expected
width of JIA(Y ), namely ≈ 2Å−1. At intermediate Q, one observes oscillations in
the recoil peak position and width that track the glory oscillations of σ(Q). These
Compton defects have been interpreted as evidence that FSE are in fact governed by
σ(Q) [19,59].

123



J Low Temp Phys (2017) 189:158–184 165

-4 -2 0 2 4
0.0

0.2

0.4

0.6

0.0

0.5

1.0

1.5

-4 -3 -2 -1 2 3 4 -4 -20 1 0 2 4
0.0

0.2

0.4

0.6

J IA
(Y

)[
Å
]

Y [Å-1]

(a)

R
(Y

,Q
)[
Å
]

Y [Å-1]

(b)

J E
X
P(
Y
,Q

)[
Å
]

Y [Å-1]

(c)

Fig. 2 a Expected IA-scattering JIA(Y ) at temperatures of 2.65 and 1.09K. b Comparison of final state
effect functions R(Y, Q) at Q = 27.0Å−1 and a liquid number density ρ = 0.02187Å−3. Curves Hard
Core Perturbation Theory (blue); Carraro–Koonin theory (red).c The expected scattering JEXP(Y, Q) at
T = 1.09 Kwhen the IA is broadened by final state effects and instrumental resolution (Color figure online)

Several theoretical approaches to understanding final state effects have been pro-
posed. In general, these approaches fall into one of three categories. The first treat final
state effects as a convolution with the IA-scattering. This approach has been followed
by Gersch and Rodriguez [60–63], Silver [42,43,64], Carraro and Koonin [44,45] and
Glyde [22]. A second approach, which has been used by Sears [57], treats final state
effects as an additive correction to the IA-scattering. Finally, there are theories that
treat final state effects by other methods such as alternate scaling variables [65]. A
detailed comparison of these theories is beyond the scope of this work, but further
discussion may be found elsewhere [22,66–68].

We will focus on the theories that treat final state effects in terms of a broadening
function:

JFS(Y, Q) =
∫ +∞

−∞
JIA(Y ′)R(Y − Y ′, Q)dY ′. (10)
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where R(Y, Q) is the final state broadening function. Such theories can be separated
into two classes: those that calculate R(Y, Q) a priori from known quantities, such as
the interatomic potential and pair-distribution function, and thosewhere the parameters
of R(Y, Q) must be obtained from the scattering. We examine the theories of Silver
and Carraro and Koonin since they provide concrete, testable predictions for the form
of R(Y, Q).

The sum rules for incoherent scattering place constraints on the neutron Compton
profile J (Y, Q) and the FSE function R(Y, Q). These rules require that J (Y, Q) and
R(Y, Q) both be normalized to unity and have a zero firstmoment. The secondmoment
of these functions must satisfy:

∫ +∞

−∞
Y 2 J (Y, Q)dY = 2m

3h̄2 〈EK〉. (11a)

∫ +∞

−∞
Y 2R(Y, Q)dY = 0. (11b)

The ω2-sum rule implies that the second moment of R(Y, Q) is identically zero. This
means that R(Y, Q) cannot be represented by a simple, positive-definite function,
such as a Gaussian or a Lorentzian. Instead, R(Y, Q) must assume both positive and
negative values. The effect of convoluting JIA(Y )with R(Y, Q) is not only to broaden
the condensate peak, but also to redistribute intensity around the spectrum so that the
second moment of the scattering is unaffected.

Silver developed a model lineshape RS(Y, Q) for the FSE corrections in liquid
4He using Hard Core Pertubation Theory [21,42,43]. The theory takes the interatomic
potential and pair-distribution function as inputs. An intuitive picture underlies Silver’s
theory. Before the scattering event, each helium atom is located near the minimum
of the potential well generated by its nearest neighbors and far from the repulsive
cores responsible for final state effects. During the impact of a high energy incident
neutron, the recoiling helium atom travels a distance s, over which it may encounter
the steeply repulsive cores of its neighbors. On this theory, the scaling variable Y
is conjugate to the recoil distance s, although Y is no longer identical to k‖. The
FSE broadening function RS(Y, Q) is related to the Fourier transform of the classical
scattering probability of suffering no collisions as a function of the travel distance s.

Carraro and Koonin developed an alternative theory RCK(Y, Q) for FSE correc-
tions [44]. The starting point of their calculation is a Jastrow approximation to the
many-body wavefunction of liquid 4He. They calculate the propagator for a single
atom moving at a high Q within the static potential generated by the instantaneous
configuration of background atoms, and the result is averaged over many configu-
rations distributed according to the variational wavefunction. As in Silver’s model,
the scaling variable Y has the physical interpretation of being the Fourier conjugate
variable to the travel distance s. Here, we use an improved scheme whereby the back-
ground atoms are distributed according to a better approximation to the exact ground
state than afforded by a Jastrow wavefunction. Details are given in Ref. [45]. We have
calculated RS(Y, Q) and RCK(Y, Q) using the Aziz potential [47].
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These final state effect theories are designed for the ground state. We assume that
the temperature dependence of the Compton profile JFS(Y, Q) in Eq. 10 is restricted
to the factor JIA(Y ′), through the one-body density matrix ñ(s).

Figure 2b compares the predictions of the Silver and Carraro–Koonin at a wavevec-
tor Q = 27.0Å−1 and the equilibrium number density ρ = 0.0217Å−3. Both models
consist of a central peak and damped oscillatory tails which are both positive and
negative. They obey the normalization, f -sum rule, and ω2-sum rule conditions. The
central peak of RCK(Y, Q) (FWHM ≈ 0.8Å−1) is broader than that of RS(Y, Q)

(FWHM ≈ 0.6Å−1). The oscillatory tails of the two theories are out of phase, and
they have different frequencies and amplitudes.

The expected intrinsic scattering JFS(Y, Q) is obtained by convoluting the QMC
calculations of JIA(Y ) with the FSE broadening functions. Figure 2c illustrates the
anticipated scattering, including the effects of instrumental resolution, at T = 1.09 K
and Q = 27.0Å−1. Despite obvious differences between the Silver and Carraro–
Koonin theories, their predictions are similar. The lineshape is broad and featureless:
the condensate peak has entirely disappeared. Small differences in the predicted line-
shape will be undetectable in the presence of statistical noise. The only practically
observable difference between the Silver and Carraro–Koonin theories occurs near
Y = +2Å−1.

Finally, we note the IA is approached slowly as a function of Q in liquid 4He.
The atom–atom scattering cross section σ(Q) in a liquid composed of infinitely hard
spheres is independent of Q. In such an idealized liquid, the neutron Compton profile
J (Y, Q) would Y -scale even though the IA-limit would never be reached [69]. The
real interatomic potential of liquid 4He does not contain an infinitely hard core. Nev-
ertheless, the interatomic potential is exponentially repulsive at short distances. As a
result, the 4He-4He scattering cross section σ(Q) varies as log Q, apart from glory
oscillations [43,58]. Therefore, Y -scaling should hold, to good approximation, over a
limited range in Q, although the scaling function will not be JIA(Y ).

3 Experimental Approach

3.1 Experimental Details

We carried out a neutron Compton scattering study of liquid 4He using the
ARCS spectrometer [70–72] at the Spallation Neutron Source. This instrument is
a direct geometry, time-of-flight spectrometer. Incident neutron energies between 15–
5000meV are available from the decoupled poisoned water moderator. A T0 chopper,
operating at a frequency of 180Hz, blocks the burst of prompt radiation released from
the sourcewhen the protons hit the target. An incident neutron energy (Ei = 710meV)
is chosen by time-of-flight using the phase of a Fermi chopper rotating at 600Hz,
placed just upstream of the sample. The sample was enclosed in a cryostat which will
be described shortly. Neutrons that scatter off of the sample traverse an oscillating
radial collimator on their way to the detector array. There are two low efficiency beam
monitors, one located after the Fermi chopper and another located just before the beam
stop. The beam profile observed at these monitors is used to determine the initial neu-
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tron energy Ei and moderator emission time t0. Complete details of the instrument
are provided in Refs. [70,71].

The aforementioned sample environment consisted of an orange cryostat coupled
with a custom 1K insert. The orange cryostat cooled the insert to a temperature <3K.
The custom insert then provides a base temperatures of approximately 1K and tem-
perature stability of <1mK. It consists of Al-6061 sample cell that is mechanically
mounted to a 1 K pot built from oxygen-free high conductivity copper. Both are
enclosed within an aluminum vacuum can isolating them from the exchange gas of
the orange cryostat. The liquid 4He within the sample cell had a height of 5.08 cm and
a diameter of 2.54cm. We estimate that the beam transmission is approximately 94%
given the sample geometry. Two temperature control packages, consisting of a heater
and a germanium semiconductor thermometer, were attached to the insert, one to the
1 K pot and the other to the bottom of the sample cell. The temperature stability was
obtained by operating each package on an independent temperature control loop. Each
thermometer was calibrated to ±4mK . Furthermore, the temperature dependence of
the observed vapor pressure of the liquid 4He in the sample cell was consistent with
the semiconductor thermometry.

We collected data at a series of different sample temperatures T = 1.090(10),
1.400(10), 1.650(4), 1.800(4), 2.000(4), 2.100(4), 2.35(30), and 2.650(15) K with
measurement periods varying between 2 and 15h. The background scattering due to
the sample environment and empty sample can was measured at 2.7(1)K. The quoted
errors in the sample temperature represent whichever quantity is larger, either the
systematic uncertainty in the temperature scale or the random uncertainty from the
stability of the cryogenics. No thermal gradient was observed between the bottom of
the sample cell and the 1K pot above it.

An event-based data acquisition system stores the data as list of time stamps and
pixel locations. Histogramming the raw data occurs during reduction and at this step
we filtered out events that occurred when the sample temperature was outside of our
stability criteria [73]. The data, as counts versus time-of-flight, was then normalized
to the proton charge on target to remove variation in source output. The measured
double-differential cross section d2σ/d�d E is transformed to the neutron Compton
profile J (Y, Q) using theMantid andDAVE software packages [74,75]. The scattering
data J (Y, Q) between 20.0Å−1 ≤ Q ≤ 27.5Å−1 were analyzed in steps of 0.5Å−1

each having a widths of ±0.2Å−1.
We used two independent methods to determine the absolute intensity scale for the

neutron Compton profile J (Y, Q). One approach is to measure the total scattering off
a standard vanadium foil having the same dimensions as the lateral surface area of the
sample can, and scaling the observed double-differential cross section d2σ/d�d E of
the sample accordingly. Taking the microscopic scattering cross section of vanadium
to be 421.0 mbarn/sR, the normalization factor was determined by integrating the
scattering over energy transfers −150 meV ≤ E ≤ 685 meV and scattering angles
10◦ ≤ φ ≤ 135◦. In the second approach, we numerically integrated the neutron
Compton profile J (Y, Q) and imposed the zeroth moment sum rule. This method
of setting an absolute intensity scale implicitly assumes that all of the nonzero parts
of J (Y, Q) are observed. The two methods typically produced consistent absolute
intensity scales in the range of 1–10%.

123



J Low Temp Phys (2017) 189:158–184 169

When comparing the experimental data to theoretical models, we allow for a small
shift Yc in the theoretical predictions to ensure that the f -moment sum rule is satisfied.
If the energy scale were perfectly defined, then Yc would be exactly zero. However,
uncertainties in the incident neutron energy Ei , moderator emission time t0, lengths of
flight paths, and other instrument parameters can introduce small shifts to the energy
scale. Typical values for Yc are on the order of 0.01Å−1 which is less than a bin width
in Y and small compared to the resolution width.

3.2 Instrumental Resolution

We calculated the instrumental resolution function I (Y, Q) using a realistic Monte
Carlo ray tracing simulation of the scattering experiment [76,77]. The simulations
were carried out using the McStas software suite [78,79]. The input to the simula-
tion includes the spectrum of the decoupled water moderator, the known instrument
parameters, sample geometry, and a sample kernel. There were 2.8 × 1012 incident
neutron pulses simulated for this calculation. The output of the simulation includes
both the incident beammonitors and the scattering measured at the detector bank. The
output of the simulation, as counts versus time-of-flight, receives the same treatment
as the real scattering data. The effective instrumental resolution function I (Y, Q) is
determined from the output of the simulation by deconvoluting the known sample
kernel from the simulated scattering.

An accurate description of the time-structure of the incident neutron pulse is nec-
essary for a reliable determination of I (Y, Q). We found that the McStas model
reproduces the time-of-flight profiles observed by the incident beam monitors. This
indicates that the instrument simulation faithfully describes the velocity-time distri-
bution of neutrons as they emerge from the moderator and pass through the Fermi
chopper.

Recent calculations of the instrumental resolution function I (Y, Q) of ARCS used
an ideal δ-function scatterer for the sample kernel [80]. Instead, we have chosen to base
our sample kernels on previous Quantum Monte Carlo calculations of n(k) [36,81].
The Isotropic_Sqw sample component was used as it allowed us to easily change
models [82].

We found that the effective resolution function I (Y, Q) could be described as a
single Gaussian in Y . The full-width at half-maximum of I (Y, Q) decreases roughly
linearly from 1.05Å−1 at Q = 20Å−1 to 0.50Å−1 at Q = 27.5Å−1. Our calculated
resolution functions I (Y, Q) agree with the ‘observed’ ones reported in Ref. [80].

The observed Compton profile JEXP(Y, Q) is obtained by convoluting the intrinsic
scattering with the instrumental resolution function:

JEXP(Y, Q) =
∫ +∞

−∞
JFS(Y

′, Q)I (Y − Y ′, Q)dY ′ (12)

Both the instrumental resolution I (Y, Q) and FSE function R(Y, Q) have the effect
of smearing sharp features in JIA(Y ).
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3.3 Background Subtraction and Multiple Scattering Corrections

The sample-independent background scattering was measured at 2.7(1)K. The signal
is due to scattering from the sample cell, insert vacuum can, tails of the orange cryostat,
and dark counts. At the wavevectors considered in the data analysis, 20.0Å−1 ≤ Q ≤
27.5Å−1, the helium recoil peak is either mostly or completely separated from the
elastic Bragg scattering and heavy element recoil lines present in the background. The
signal-to-background ratio in the region of the helium peak is very high.

We find that a sample-dependent residue remains after the subtraction of the back-
ground signal. This component of the measured signal is due to the multiple scattering
of neutrons. It is approximately constant with scattering angle and forms a broad band
in the energy spectrum, being centered at 300meV and having a FWHM of 380meV.
The intensity of the multiple scattering is only a few percent of the intensity of the
helium peak.

Here we make the assumption that the multiple scattering is isotropic and additive.
Because the multiple scattering at low Q is clearly separated from the helium recoil
line,wefit themultiple scattering component at low Q to a smooth curve and subtracted
this smooth curve from the experimental data at all values of Q.

4 Experimental Results

Figure 3 plots the neutron Compton profile J (Y, Q) observed at Q = 27.0Å−1 as a
function of temperature. The observed scattering J (Y, Q) consists of a single, non-
Gaussian peak containing no sharp features or oscillations. The overall width of the
scattering,≈2Å−1, is dominated by quantum-mechanical zero-point motion. It is also
much broader than the instrumental resolution width, 0.55Å−1, at this Q.

We find that the scattering is only weakly dependent on temperature in the nor-
mal fluid phase. When the temperature is reduced below Tλ, the scattering J (Y, Q)

becomes visibly narrower and more peaked. This increase in scattering at small Y
below Tλ is consistent with the existence of a Bose condensate peak located at Y = 0
which has been broadened by finite instrumental resolution and FSE. However, as
shown below, the scattering data is also consistent with models that do not include a
Bose condensate. The scattering data does not, by itself, prove that a Bose condensate
is present below Tλ.

Y -scaling behavior is observed at all temperatures considered in this study. To
illustrate, Fig. 4 overplots the scattering in the normal and superfluid phases. In both
cases, the scattering clearly collapses onto a single curve.

One might be tempted to conclude from this fact that the IA-regime has been
reached in this experiment. We stress that Y -scaling is a necessary, but not sufficient,
condition for the IA. Because FSE in liquid 4He vary as log(Q), they are expected
to not change appreciably over less than a decade in Q. As a result, the scattering
data obeys Y -scaling to good approximation, even though the scaling function is not
JIA(Y ).
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Fig. 3 The neutron Compton
profile J (Y, Q) at Q = 27Å−1.
The different temperature data
sets have been vertically offset
by 0.1Å. The solid lines
represent our QMC calculations
folded with the instrumental
resolution function I (Y, Q) the
final state effect function
R(Y, Q) of Carraro–Koonin.
Throughout the paper, error bars
on the scattering data represent
one standard deviation (Color
figure online)
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5 Discussion

5.1 Lineshape Comparison

Theoretical calculations of the momentum distribution n(k) may be checked for their
consistency with the scattering data, even if the Bose condensate peak does not appear
as a distinct feature in J (Y, Q). To make the most stringent possible test, one should
compare the entire predicted lineshape for J (Y, Q)with the neutron Compton scatter-
ing data. The solid lines in Fig. 3 are obtained when our QMC calculations of JIA(Y )

are convoluted with final state effects RCK(Y, Q) and instrumental resolution I (Y, Q).
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Fig. 4 Test of Y-scaling at (a) 2.650(15)K and (b) 1.090(10)K. Points: Q =
23.0Å−1(purple), 24.0Å−1(blue), 25.0Å−1(green), 26.0Å−1(orange), 27.0Å−1(red) (Color figure
online)

We have allowed the amplitude and center position Yc of the predicted scattering to
vary, but not the shape of the peak. As can be seen, there is excellent agreement
between the predicted and observed lineshapes at all temperatures. The same level of
agreement is obtained at other values of Q. This convergence between ab initio pre-
dictions and the measured scattering is strong evidence that a Bose broken symmetry
is responsible for the superfluid phase transition of liquid 4He.

Inmaking this comparison, we are testing the combination of the QMC calculations
and the Carraro–Koonin theory. The scattering data, when corrected for instrumental
resolution, only provides information about JFS(Y, Q). It does not provide information
about the IA-scattering JIA(Y ) or FSE function R(Y, Q) considered separately. If
one assumes that the FSE function R(Y, Q) is known, then one may test theoretical
predictions for the IA-scattering JIA(Y ) against the data. Below we will introduce
parameterized models for JIA(Y ) which permit empirical estimates for the average
kinetic energy 〈EK〉 and Bose condensate fraction n0.

On the other hand, one may turn this problem around, assuming that JIA(Y ) is
known and test different theories for R(Y, Q) against the scattering data. Now we
assume that our QMC calculations of JIA(Y ) are correct. The solid lines in Fig. 5
compared the predicted scattering according to the Silver andCarraro–Koonin theories
with the experimental data at T = 1.09K and Q = 27.0Å−1. Overall, both theories
are in excellent agreement with the scattering data. Statistical noise and instrumental
resolution effects make these theories indistinguishable for most values of Y .

123



J Low Temp Phys (2017) 189:158–184 173

0.0

0.1

0.2

0.3

0.4

0.5

J(
Y
,Q

)[
Å
]

-4 -3 -2 -1 0 1 2 3 4

-4 -3 -2 -1 0 1 2 3 4

-0.050
-0.025
0.000
0.025
0.050

Y [Å-1]

Fig. 5 The neutron Compton profile J (Y, Q) at Q = 27.0Å−1 and T = 1.090(10) K is compared to
theoretical predictions based on two different final state effect theories. Main panel experimental points
(black circles); QMC calculations folded with Carraro–Koonin theory (red) and with HCPT (blue) Lower
panel difference curves (Color figure online)

Nevertheless, it is clear from the residuals shown in Fig. 5 that the Carraro–Koonin
theory offers a better description of the scattering data near Y = +2Å−1. The theoret-
ical neutron Compton profile in this Y range is particularly sensitive to the final state
effect function. For instance, using the R(Y, Q) from Ref. [63], there is good general
agreement with the experimental data at Q = 23.0Å−1 but neutron Compton profile
is underestimated for Y ≥ 1.5Å−1.

We find that Silver’s theory underestimates the scattering near Y = +2Å−1 at other
temperatures T and values of Q as well. For comparison, we note that the PHOENIX
group adopted Silver’s model FSE function in their comprehensive study of the 4He
phase diagram [32,33]. Those authors also found a small systematic deviation near
Y = +2Å−1 when RS(Y, Q) was used to analyze the scattering data. Because the
deviation was found not to depend upon the phase, temperature, density, or geometry
of the sample, they attributed the small difference to the form of their model RS(Y, Q)

[33].

123



174 J Low Temp Phys (2017) 189:158–184

5.2 Empirical Estimates of 〈EK〉

Another approach to analyzing the scattering data is to define a parameterized model
for the momentum distribution n(k). The values of the adjustable parameters are
estimated by means of a least-squares fit to the experimental data, taking into account
the broadening of the IA-scattering by instrumental resolution I (Y, Q) and final state
effects R(Y, Q). One thereby extracts several parameters from the experimental data,
such as the average kinetic energy 〈EK〉 or the Bose condensate fraction n0, to compare
to theoretical predictions.

We first employ the phenomenological model developed by Sosnick et al. [31,33]
to obtain empirical estimates for 〈EK〉 as a function of temperature. Their model
momentum distribution n(k) consists of a sum of two Gaussians:

n P (k) =
2

∑

i=1

A′
i

(2πσ 2
i )3/2

e−k2/2σ 2
i (13)

where the integrated intensities, A′
1 and A′

2, add to unity. This is a physically reasonable
model for a cold quantum liquidwhere both particle statistics and zero-pointmotion are
important. It satisfies physical constraints such as being normalized, positive-definite,
isotropic, and symmetric about k = 0. The IA-scattering in this model is also given
by a sum of two Gaussians:

J (P)
IA (Y ) =

2
∑

i=1

Ai

(2πσ 2
i )1/2

e−(Y−Yc)
2/2σ 2

i + aY + b (14)

The two Gaussians are locked to a common center Yc. We have included the lin-
ear background in order to account for any multiple scattering that is not fully
removed by our subtraction procedure. The average kinetic energy is given by:
〈EK〉 = (3h̄2/2m)(A1σ

2
1 + A2σ

2
2 )/(A1 + A2).

The observed neutron Compton profile J (Y, Q)was fit using the phenomenological
model J (P)

IA (Y ) at allwavevectors Q and temperatures T . Figure 6 plots a representative
fit to the scattering data at Q = 26.5Å−1 and T = 1.800(4) K. The scattering data
has been plotted as log (J (Y, Q)) vs Y 2 to illustrate each Gaussian component in
the fit. The small linear background due to multiple scattering has been subtracted.
Typical values of χ2 are close to one, and the difference curves reveal no systematic
discrepancies between the model and the scattering data.

Figure 7 illustrates the kinetic energies 〈EK〉 extracted from J (Y, Q) as a function
of Q. The observed kinetic energy is constant with Q, as required by the ω2-sum rule.
The best estimate for the kinetic energy 〈EK〉 is obtained by combining the results
of these measurements at each Q by means of a weighted average. Experimental
estimates for the average kinetic energy 〈EK〉 are listed in Table 1. Equivalent results
for 〈EK〉 are obtained when J (P)

IA (Y ) is broadened only by the instrumental resolution
function and when it is broadened by both the resolution and final state effects. This is
due to the fact that 〈EK〉 is determined by only the intrinsic (i.e., resolution corrected)
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Fig. 6 The observed scattering at Q = 26.5Å−1 and T = 1.800(4) K. The red curve is the result of fitting
to the phenomenological model JIA(Y ) as described in the main text. The dashed and dash-dot lines are
the two Gaussian components. The value of χ2 is 1.006 (Color figure online)

second moment of the scattering. Therefore, these empirical estimates may be viewed
as model-independent.

Theoretical and experimental values for the average kinetic energy 〈EK〉 of liq-
uid 4He under SVP are shown in Figure 8. The QMC calculations predict that 〈EK〉
increases from 14.17(2) K at 1.09 K to 15.39(5) K at 2.100K. The kinetic energy
increases rapidly through the superfluid phase transition at Tλ, reaching a relatively
constant value of ≈16.2K in the normal liquid. The QMC calculations are in excel-
lent agreement with the ARCS data set presented in this paper, as well as previous
investigations using the MARI [25,26] and eVS [35] spectrometers.

The measured scattering from liquid 4He is consistent with many possible forms
for the momentum distribution n(k). In Sect. 5.1, we showed that ab initio calculations
of J (Y, Q) are in agreement with the observed scattering. These calculations predict
a finite Bose condensate fraction n0 in the superfluid phase. However, the observed
scattering is also consistent with models that do not incorporate a Bose condensate
in the superfluid phase, such as the phenomenological model. This is consistent with
the PHOENIX and MARI groups who both report that their scattering data may be
fit to models where n0 is zero [26,31]. Sivia and Silver have shown that the problem
of directly inverting the scattering data J (Y, Q) to a unique momentum distribution
n(k) is ill-posed [83]. Prior knowledge in the form of a physical model is necessary
to obtain empirical estimates of the condensate fraction n0.
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Fig. 7 Experimental estimates for the average atomic kinetic energy 〈EK〉 obtained from the phenomeno-
logical model JIA(Y ): a 1.090(10)K, b 1.800(4)K, c 2.100(4)K, and d 2.650(15)K. The best estimate for
〈EK〉 at each temperature is shown by a horizontal red line (Color figure online)

5.3 Empirical Estimates of n0

In this section, we obtain empirical estimates of the Bose condensate fraction n0 as
a function of temperature. We introduce two different parameterized expressions for
the IA-scattering JIA(Y ) that explicitly incorporate a Bose condensate. Both models
are broadened by instrumental resolution I (Y, Q) and final state effects RCK(Y, Q)

when fitting the scattering data.

Model A: Expansion in Orthogonal PolynomialsThefirstmodel represents themomen-
tum distribution n(k) as the sum of a δ-function singularity plus a non-Gaussian peak
[23].

n(k) = n0δ(k) + (1 − n0)
e−k2/2σ 2

(2πσ 2)3/2

(

1 +
∞
∑

n=2

an(−1)n L1/2
n

(

k2

2σ 2

)

)

(15)
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Fig. 8 The average atomic kinetic energy 〈EK〉 of liquid 4He under saturated vapor pressure. Experimental
estimates: present ARCS study (circles), MARI [25,26] (diamonds), and eVS [35] (triangles). Our QMC
predictions are shown as red triangles, the line being a guide to the eye (Color figure online)

Here L1/2
n is an associated Laguerre polynomial of order n. When transformed into

the Y -coordinates, Model A has the following form:

JIA(Y ) = n0δ(Y − Yc)

+(1 − n0)
e−(Y−Y c)2/2σ 2

√
2πσ 2

[

1 +
∞
∑

n=2

an
1

22nn! H2n

(

Y − Yc

σ
√
2

)

]

+ aY + b

(16)

Here Hn is the Hermite polynomial of order n. An overall scale factor is also included
to allow for uncertainty in the absolute intensity scale. The second moment of the
scattering is equal to (1 − n0)σ

2. Nonzero values of the expansion coefficients {an}
do not affect the second moment of JIA(Y ). Again, we include a linear background to
account for residual multiple scattering in the tails of J (Y, Q).

When fitting the scattering data, we have kept n0, σ , and as few expansion coeffi-
cients {an} needed to obtain a χ2 of approximately unity. Only terms up to a4 were
kept.

Model B: Cumulant Expansion The second model represents the momentum dis-
tribution n(k) in terms of a cumulant expansion [22]. The momentum distribution is
expressed as a sum of three terms:

n(k) = n0(δ(k) + f (k)) + A1n∗(k) (17)
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The first term is the δ-function singularity of the condensate itself. The second term,
n0 f (k), is the weaker singularity produced by the coupling of virtual phonons with
the condensate.

f (k) = 1

(2π)3

mc

2h̄ρ

1

k
[2N (ch̄k) + 1] e−k2/k2c . (18)

Here, m is the mass of a helium atom; ρ is the number density of the liquid; c is the
phonon velocity; and N is the Bose population factor. If h̄ck � kB T , then f (k) is
proportional to 1/k; if h̄ck � kB T , then f (k) is proportional to 1/k2. The exponential
e−k2/k2c is introduced ad hoc to smoothly cut off the contribution of f (k) outside the
phonon region. Following the literature [22], we fix kc = 0.5Å−1.

The third term A1n∗(k) is the momentum distribution of the atoms above the con-
densate. They are described by a cumulant expansion:

ñ∗(s) = exp

[ ∞
∑′

n=2

αn
(is)n

n!

]

≈ exp

[

−α2s2

2! + α4s4

4! − α6s6

6!
]

(19)

Here ñ∗(s) is the Fourier transform of n∗(k). The prime indicates that only terms with
even n contribute. The coefficients αn of the expansion are the statistical cumulants
of n∗(k).

There is no simple analytic expression for JIA(Y )when terms up to α6 are retained.

JIA(Y ) = n0(δ(Y − Yc) + f (Y − Yc)) + A1 J
∗
(Y − Yc) + aY + b (20)

Here the overbar signifies the result of transforming f (k) and n∗(k) into the Y -scaling
variable. The adjustable parameters describing the momentum distribution are: n0, α2,
α4, and α6.

Overlap between the models These two models for JIA(Y ) appear to treat the uncon-
densed part of the momentum distribution n(k) very differently. However, there is a
special case where they are exactly equivalent. If the higher order cumulants are small,
then ñ∗(s) can be approximated as follows:

ñ∗(s) ≈ exp

[

−α2s2

2

](

1 + α4s4

4!
)

(21)

In this particular case, the characteristic function ñ∗(s) transforms analytically:

J ∗
IA(Y ) = 1√

2πσ 2
exp

[

− Y 2

2σ 2

] (

1 + δ

8

(

1 − 2Y 2

σ 2 + Y 4

3σ 4

))

(22)

Here σ 2 = α2 and δ = α4/α
2
2. This expression, Eq. 22, is equivalent to keeping only

H4 in Eq. 16 with δ = 3a2.
We have used the full expression in Eq. 20 to fit the scattering in almost all of the

data sets. However, given the statistical noise in the 1.40K data measurements, we
have used Eq.22 to represent the uncondensed part of n(k).
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Fig. 9 The observed scattering for Q = 26.5Å−1 is fit to Model B at a 2.650(10)K and b 1.090(10)K.
From the fit shown in a, we find that n0 = 0.000(9), α2 = 0.90(2)Å−2, and χ2 is 0.975 at this Q.
Meanwhile, the fit shown in b yields n0 = 0.068(7), α2 = 0.87(3)Å−2, and χ2 is 0.866 for this Q (Color
figure online)

Results of the Fits We fit the scattering data J (Y, Q) at all temperatures T using
Model A and Model B, with the exception of the 2.35K data set, where the statistical
precision of the data is too low to obtain a meaningful estimate of n0. Figure 9 shows
representative fits to the scattering data using Model B. Typical values of χ2 are close
to unity and the residuals do not indicate any systematic discrepancies between the
model curve and the scattering data.

Figure 10 plots the values of n0 and α2 obtained at T = 1.090(10) K. The observed
values of the condensate fraction n0 and second cumulant α2 are independent of
Q. The best estimate for these quantities is obtained by taking a weighted average
over all values of Q. For this temperature, we obtained n0 = 0.070(4) and α2 =
0.859(10)Å−2. The average kinetic energy 〈EK〉 is 14.2(2)K, which is consistent
with the result of the phenomenological model.

Empirical estimates for the condensate fraction n0 obtained from the ARCS data set
are listed in Table2. We have also carried out the same analysis upon the PHOENIX
data sets [31,33]. These results are shown in Table 3. Consistent results are obtained
from the ARCS and PHOENIX data sets when common models are used to analyze
the scattering data.

Figure 11 plots empirical estimates of n0 obtained from the ARCS, MARI, and
PHOENIX spectrometers. These values are compared with our present (QMC) esti-
mates for n0, which are obtained by averaging the value of the one-body density
matrix ñ(s) at distances above 7Å. Also shown is a ground state QMC prediction [49].

123



180 J Low Temp Phys (2017) 189:158–184

20 22 24 26 28
0.50

0.75

1.00

1.25

α 2
[Å

-2
]

Q [Å-1]

20 22 24 26 28
-0.05

0.00

0.05

0.10

0.15

0.20

n 0

Fig. 10 Experimental estimates for the condensate fraction n0 and the second cumulant α2 obtained from
the T = 1.090(10) K data set using Model B described in the text. The best estimate for each quantity is
shown by a horizontal red line (Color figure online)

Table 3 Values of the
condensate fraction n0 estimated
from the PHOENIX data set

T (K) Model A Model B

0.32 0.071(9) 0.070(5)

1.00 0.069(9) 0.070(5)

1.50 0.069(9) 0.065(5)

1.80 0.045(9) 0.055(5)

2.00 0.042(14) 0.033(5)

2.30 0.000(2) 0.000(19)

2.80 0.001(4) 0.000(4)

3.50 0.000(1) 0.000(11)

Another recent theoretical calculation places the ground state value slightly higher,
namely n0 = 0.0801(22) [84]. At low temperatures, the condensate fraction is close
to 7.5%. No significant temperature dependence is observed below 1.1 K. However,
above 1.1 K, the condensate fraction n0 decreases rapidly toward zero as the transition
temperature Tλ is approached. In the normal fluid phase, the condensate fraction n0 is
zero.

The relationship between the phonon-roton spectrum and the Bose condensate
in superfluid 4He is presently an open question. Giorgini et al. [85] proposed that
the thermal excitation of rotons is the chief mechanism driving the depletion of the
condensate as the temperature approaches Tλ. According to their theory, the ground
state value of the condensate fraction n0(0) is driven by the smallness of the ratio
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Fig. 11 The Bose condensate fraction n0 of liquid 4He under saturated vapor pressure. Experimental
estimates: present ARCS study (circles), MARI (diamonds), and our re-analysis of the PHOENIX data set
(squares). Theoretical points: current QMC estimates (red triangle), Reptation QuantumMonte Carlo (blue
triangle), and the GPS theory (solid black line) (Color figure online)

3kB Tλm/h̄2Q2
R ≈ 0.15, where QR is the roton wavevector. If ρn(T ) is the normal

fluid fraction at temperature T , then they predict that the temperature dependence of
the condensate fraction n0(T ) is:

n0(T ) = n0(0)

(

1 − T

Tλ

ρn(T )

)

(23)

The solid line in Fig. 11 is obtained by setting n0(0) equal to 7%. There is good
agreement between the experimental data and the predictions of Eq. 23.

The estimated values of n0 obtained from the eVS (now VESUVIO) instrument, a
nuclear resonance foil spectrometer, have not been shown in Fig. 11. The eVS group
[35] reports that n0 is zero at 2.5K. They also claim that the condensate fraction
n0 increases from 0.10(4) at 1.9K to 0.15(4) at 1.3K. Their values for n0 in the
superfluid phase are inconsistent with the ARCS, PHOENIX, and MARI data sets, as
well QMC predictions, at the level of 1σ . We believe that the origin of this discrepancy
is the comparatively coarse energy resolution that was available to the eVS group. For
example, those authors note that the use of the U-foil analyzer produces a resolution
function I (Y, Q) having a central Gaussian width of 1.53Å−1 and Lorentzian tails
of width 1.46Å−1 when Q = 152Å−1. This excludes the possibility of a detailed
lineshape analysis as the intrinsic width of the scattering is approximately 2Å−1.
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6 Conclusions

In this paper, we presented a coordinated experimental and theoretical study of the
momentum distribution n(k), including the Bose condensate, of liquid 4He as the
superfluid transition temperature is approached. To make a rigorous comparison, the
measurements were conducted under fine temperature control and Quantum Monte
Carlo calculations of the momentum distribution n(k) and final state effects R(Y, Q)

were performed for the temperature and density conditions of the experiment.
We find that there is excellent agreement between the observed neutron Comp-

ton profile J (Y, Q) and ab initio predictions of its lineshape. We also used model fit
functions to obtain empirical estimates of the Bose condensate fraction n0 and aver-
age kinetic energy 〈EK〉 as a function of temperature. These quantities, too, are in
agreement with theoretical estimates. They also provide independent confirmation of
the low temperature estimates obtained by the MARI group. We have compared the
final state effect theories of Silver and Carraro–Koonin with our scattering data. While
both theories are in good overall agreement with the observed J (Y, Q), the Carraro–
Koonin theory provides an improved description of the scattering in the wings of the
data. Finally, upon re-analysis, we find that the ARCS and PHOENIX data sets yield
consistent values of n0 when analyzed according to the models discussed in this paper.

The convergence between the scattering data and Quantum Monte Carlo calcula-
tions is a compelling confirmation that accurate theoretical values of n0 can be obtained
using the continuous space worm algorithm, even as the temperature approaches Tλ.
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