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Abstract

A prominent application of quantum cryptography is the distribution of cryptographic keys
that are provably secure. Recently, such security proofs were extended by Vazirani and Vidick
(Physical Review Letters, 113, 140501, 2014) to the device-independent (DI) scenario, where
the users do not need to trust the integrity of the underlying quantum devices. The protocols
analyzed by them and by subsequent authors all require a sequential execution of N multiplayer
games, where N is the security parameter. In this work, we prove unconditional security of
a protocol where all games are executed in parallel. Besides decreasing the number of time-
steps necessary for key generation, this result reduces the security requirements for DI-QKD by
allowing arbitrary information leakage of each user’s inputs within his or her lab. To the best
of our knowledge, this is the first parallel security proof for a fully device-independent QKD
protocol. Our protocol tolerates a constant level of device imprecision and achieves a linear key
rate.

http://arxiv.org/abs/1703.05426v2


1 Introduction

Key Distribution (KD) is a task where two parties establish a common secret by communicating
through a public channel. It is a necessary step for symmetric key cryptography (i.e., for protocols
that require a shared secret) in a setting where a secure communication channel is initially not
available. Thus KD is a primitive foundational to information security.

Information theoretically secure KD is impossible for classical protocols (i.e., protocols that
exchange bits). Thus all classical solutions must necessarily rely on computational assumptions.
Widely used protocols, such as the Diffie-Hellman-Merkle key exchange protocol [11] and those
making use of digital signatures (e.g., as in the implementation of Secure Sockets Layer) all rely
on the computational security of public key cryptography. The hardness assumptions underlying
all known public key cryptography are mathematically unproven. The practical security of these
solutions are being challenged on the one hand by the rapidly increasing and widely available
high performance computing power, and on the other hand, by new insights into the design flaws.
For example, Adrian et al. [1] recently showed how Diffie-Hellman-Merkle could fail in practice.
A further threat to all widely used public-key-based KD protocols is that they are not secure
against quantum cryptanalysis. With universal quantum computer within sight [10] and quantum-
resilient protocols yet to emerge, these challenges call for alternative and fundamentally more secure
solutions for KD.

Quantum mechanics provides such a solution. The quantum key distribution (QKD) protocol of
Bennett and Brassard [7] and its several subsequent variants have been proved to be unconditionally
secure (i.e., against a computationally all-powerful adversary) [19, 18, 26, 25, 6]. Experimental
networks implementing QKD have been developed and deployed with increasingly large scales.
With the rapid advances of quantum information technologies, QKD protocols may be widely
adopted in the near future.

A major challenge for QKD (and other quantum information tasks) is that quantum information
is extremely fragile. How could a user of a QKD protocol be sure that the quantum devices
are operating according to the specifications? This consideration motivates the field of device-
independent (DI) quantum cryptography, pioneered by Ekert [13] and Mayers and Yao [20]. The
goal of DI quantum cryptography is to develop protocols and prove security in a strictly black-box
fashion, with the only trusted assumption being that quantum physics is correct and complete, and
that the users have the ability to restrict information transmission. The field has seen enormous
success in recent years, including the achievement of fully device-independent and robust security
proofs for QKD [30, 21, 3, 12, 2].

All the known secure DI-QKD protocols are sequential in the following sense. Alice and Bob
share a two-part quantum device D = (D1,D2), each of which is treated as a black box which
accepts classical inputs and returns classical outputs. Alice creates a random input X1, gives it
to her device D1, and receives an output A1. Meanwhile, Bob gives a random input Y1 to his
device D2 and receives an output B1. This process is repeated sequentially N times to obtain
X1, . . . ,XN , Y1, . . . , YN , A1, . . . , AN , B1, . . . , BN . (These data are then used to determine whether
a certain Bell inequality has been violated, and if so, these registers are then postprocessed using
information reconciliation and privacy amplification to obtain the final shared key.) The sequential
assumption means specifically that output Ai is recorded before the device gains knowledge of Xi+1.

The question addressed by the current paper is the following: is the sequential assumption in
DI-QKD necessary? We show that, in fact, it can be removed: we prove robust DI-QKD in a
more general model where there is no time-ordering assumption on the generation of the outputs
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A = (A1, . . . , AN ) and B = (B1, . . . , BN ). The devices may be treated as black boxes which receive
their input sequences X = (X1, . . . ,XN ) and Y = (Y1, . . . , YN ) all at once and return output
sequences A1, . . . , AN and B1, . . . , BN all at once (parallel repetition). In particular, we do not
require the assumption that Ai is independent of Xi+1. The only necessary assumption is that the
inputs X1, . . . ,XN are uniformly random conditioned on any information outside of Alice’s lab,
and the inputs Y1, . . . , YN are uniformly random conditioned on any information outside of Bob’s
lab.

Broadening the model for device-independence allows for more flexible implementations of quan-
tum key distribution — in particular, our result shows that before quantum key distribution takes
place, arbitrary interaction can be allowed between each player’s input sequence and his or her
device. (Indeed, the input sequences can even be re-used from previous experiments, provided that
they are completely unknown to the other player and the adversary when the protocol begins.)
Our model also allows for any of the Bell experiments in the DI-QKD procedure to be performed
simultaneously, which may open the door to faster implementations.

Our work addresses a general theoretical question: what are the minimal assumptions necessary
to generate a uniformly random secret between two players? The main result shows that, if we
can assume perfect private randomness and trusted classical computation for each player, then Bell
nonlocality itself is enough to generate shared keys of arbitrary length.

1.1 The protocol and technical statements

All DI protocols use nonlocal games as building blocks. For our protocol, we use the Magic Square
game.

Definition 1.1. The Magic Square game (MSG) is a two-player game in which the input al-
phabet for both players is X = Y = {1, 2, 3}, the output alphabet for the first player is A =
{000, 011, 101, 110} (the set of all 3 bit strings of even parity), and the output alphabet for the
second player is B = {001, 010, 100, 111} (the set of all 3 bit strings of odd parity). The inputs are
chosen according to a uniform distribution, and the game is won if the inputs x, y and the outputs
a, b satisfy ay = bx.

The Magic Square game has optimal quantum winning probability 1 and optimal classical
winning probability 8/9.

For our device model, we assume that Alice and Bob possess an untrusted two-part quantum
device D = (D1,D2). The device D1 receives input from the set XN , where N is a positive integer,
and gives an output in the set AN . The device D2 receives input from the set YN and yields output
in the set BN .

Our parallel DI-QKD protocol, MagicQKD, is given in Figure 1. Alice and Bob are the parties
who wish to share a key, and Eve is an adversary. It is assumed that the untrusted devices (D1,D2)
are initially in a pure state with Eve’s side information E (which is the worst-case scenario) and that
Eve has access to any communications between Alice and Bob during the protocol. The security
parameter N is the number of instances of Magic Square played. The parameter ǫ is a positive
rational number. In our proof we show that there is some fixed positive value ǫ := ǫ0 (not given
explicitly) such that the protocol achieves a positive linear rate of key distribution as N tends to
infinity.

Our security proof is based on the following assumptions for the protocol MagicQKD.
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Quantum Key Distribution Protocol (MagicQKD)

Parties: Alice, Bob, Eve

Parameters:
ǫ : A rational number from the interval (0, 1/2]
N : A positive integer such that Nǫ2 is an integer

Equipment:
D = (D1,D2): A two-part quantum device for playing N copies of the Magic Square

game
E: A quantum system (possessed by Eve) which purifies the initial state

of D.
Z: A noiseless authenticated public classical channel.

Procedure:

1. Alice chooses X1, . . . ,XN ∈ {1, 2, 3} uniformly at random, gives (X1, . . . ,XN ) to D1

as input, and records output (A1, . . . , AN ).

2. Bob chooses Y1, . . . , YN ∈ {1, 2, 3} uniformly at random, gives (Y1, . . . , Yn) to D2 as
input, and records output (B1, . . . , BN ).

3. Alice chooses a random permutation F : {1, 2, . . . , N} → {1, 2, . . . , N} and broadcasts
it to Bob. The players apply permutation F to {Xi}, {Yi}, {Ai}, {Bi}.

4. Alice broadcasts (X1, . . . ,XǫN ) and Bob broadcasts (Y1, . . . , YǫN ).

5. For each j ∈ {1, 2, . . . , ǫN}, Alice records the bit Rj := (Aj)Yj (that is, the (Yj)th bit
of Aj). For j ∈ {1, 2, . . . , ǫN}, Bob records the bit Sj := (Bj)Xj

.

6. Alice broadcasts (R1, . . . , Rǫ2N ) and Bob broadcasts (S1, . . . , Sǫ2N ).

7. If the average score at the Magic Square game on games 1, . . . , ǫ2N is below 1− ǫ, the
protocol aborts. Otherwise, the protocol succeeds, and Alice’s raw key consists of the
sequence (R1, . . . , RǫN ) and Bob’s raw key consists of the sequence (S1, . . . , SǫN ).

Figure 1: A protocol for key distribution.

Assumption 1. The behavior of the devices D1,D2 and the system E is modeled by quantum
physics.

Assumption 2. Alice and Bob have the ability to generate perfect private randomness at steps 1,
2, and 3.

Assumption 3. Any information broadcast by Alice is perfectly received by both Bob and Eve, and
any information broadcast by Bob is perfectly received by both Alice and Eve.

Assumption 4. Aside from broadcasts by the players, no information is transmitted from Alice’s
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laboratory (which contains D1,X,A,R) or from Bob’s laboratories (which contains
D2, Y,B, S) once the protocol has started.

Let AliceKey denote the raw key R1, . . . , RǫN possessed by Alice at the end of the protocol
MagicQKD, let BobKey denote the raw key S1, . . . , SǫN possessed by Bob, and let Eve denote all
information possessed by Eve at the conclusion of the protocol (including her side information E
and any information obtained by eavesdropping). Let Γ denote the final state of MagicQKD, and let
SUCC denote the event that the protocol succeeds. Then, the smooth min-entropy Hδ

min(AliceKey |
Eve, SUCC) measures the number of uniformly random bits that can be extracted from AliceKey
in Eve’s presence, while the smooth zero-entropy Hδ

0(AliceKey | BobKey, SUCC) measures the
least number of bits that Alice needs to publicly reveal in order for Bob to perform information
reconciliation and reconstruct AliceKey (see section 3 for details). Therefore, to show security
for a quantum key distribution protocol, it suffices to show that the difference between the former
quantity and the latter quantity is lower bounded by Ω(N), for some negligible error term δ := δ(N).

Our main result is the following.

Theorem 1.2. There exists a constant ǫ := ǫ0 > 0 and functions δ := δ(N) ∈ 2−Ω(N) and
R(N) ∈ Ω(N) such that the following always holds for protocol MagicQKD: either

P(SUCC) < δ (1)

or

Hδ
min(AliceKey | Eve, SUCC) −Hδ

0(AliceKey | BobKey, SUCC) ≥ R(N). (2)

The proof of this theorem is given in Subsection 5.2. This theorem establishes both robustness
and a linear rate for MagicQKD. (The data ǫ0, δ, R are are not given explicitly and are left for
future work.)

We note that in the protocol we have assumed that all entanglement shared by the devices
(D1,D2) is shared before the protocol begins. Practically this may be difficult, since it may require
a quantum memory size that grows with N . A model which requires less quantum memory is
shown in Figure 2, where the entanglement is periodically updated during step 1 of MagicQKD
from an outside entanglement source. (The source and its channels are both untrusted, and the
only assumption is that the communication is one-way.) Fortunately this case is also covered by
our analysis: a device which behaves as in Figure 2 is equivalent to one in which all transmissions
from the entanglement source are sent in advance, and are stored in the components D1 and D2.
This illustrates the generality of the parallel model.

If we measure time by the number of prepare-and-measure steps executed by the devices, then a
speed-up over sequential DI-QKD occurs in Figure 2 if the devices are capable of winning multiple
rounds of the Magic Square game at a single iteration. Quantifying how this speed-up affects the
key rate (and also how it increases demands on the devices) is a topic for further research.

1.2 Security analysis and proof techniques

In order to achieve secure parallel DI-QKD, there are two challenges that must be met simultane-
ously. The first is that the parallel scenario opens up the possibility of correlated cheating strategies
by the devices (with correlations going both “forward” and “backward” between rounds) and one
must show a linear amount of entropy in the key bits despite such strategies. The second is that
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entanglement
source

D1

D2

Figure 2: A device model in which Alice’s and Bob’s device receive entanglement from an external
source. The dashed arrows indicate public one-way communication.

the linear rate of entropy in the raw key must not only be positive; it must be larger than the
amount of entropy that is lost during information reconciliation.

To meet these challenges we made two specific choices in MagicQKD, which differentiate our
protocol from protocols for sequential DI-QKD. The first is that we use the Magic Square game,
which has special properties for parallel DI-QKD (discussed below). The second is that the raw
keys are only computed from a randomly chosen subset of the rounds. This allows us to decrease the
amount of information that is revealed to Eve during the protocol, and is a necessary assumption
for our security proof.

The central challenge when moving from the sequential setting to the parallel setting is the
possibility of new correlations in the behavior of D1 and D2 on separate games. These correlations
can have counter-intuitive properties: for example, Fortnow gave an example of a two-player game
G such that wc(G

2) > wc(G)2, where wc denotes the optimal score for classical players and G2

denotes the game G repeated twice in parallel (see Appendix A in [15]). The same could not
be true in the sequential setting – the optimal score for G repeated twice in sequence must be
exactly wc(G)2. Thus the parallel assumption opens up new demands for cheating and requires
new techniques.

A technique that has been highly successful for the parallel repetition problem is based on
bounding the amount of information that players learn about one another’s inputs when we condi-
tion on events that depend on a limited number of other games [24]. This technique was brought
into the quantum context in [8, 16, 9, 4], and allows the proofs of exponentially vanishing upper
bounds for the quantum winning probability of GN for certain broad classes of games. A useful
consequence of this technique, which is implicit in [8, 16, 9, 4], is that for some games G the be-
havior of parallel players on a randomly chosen subset of rounds cannot be much better than the
behavior of sequential players.

We apply this technique for parallel repetition to prove security for MagicQKD. Specifically,
we show that the collision entropy H2(AliceKey | Eve) (which, as a well known fact, provides a
lower bound on Hǫ

min(AliceKey | Eve)) can be expressed in terms of the winning probability of the
“doubled” version of the Magic Square game (MGuess) shown in Figure 5. In this expanded game,
players Alice, Bob, Alice′, and Bob′ try to win the Magic Square game while also trying to guess
one another’s inputs and outputs. By the techniques of [8, 16, 9, 4], the probability of winning this
doubled game on ǫN randomly chosen rounds in an N -fold parallel repetition is not much more
than the probability of winning ǫN instances of the games independently. This fact is the basis for
our security claim.

We also make use of a technique from sequential device-independent quantum cryptography
[21, 12]: each time players who are generating random numbers fail at a single instance of a game,
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we introduce additional artificial randomness to compensate for the failure (here represented by
the register T in Figure 6). This artificial randomness (which is useful for induction) is used only
for intermediate steps in the proof and is removed before the final security claim. This aspect of
the proof is important for proving noise tolerance in MagicQKD.

We note that our proof makes use of all of the following properties of the Magic Square game:
(1) it is perfectly winnable by a quantum strategy, (2) its input distribution is uniform, and (3)
an optimal strategy yields perfectly correlated random bits between Alice and Bob. (As a conse-
quence of (3), there is a positive rate of min-entropy in the raw key bits in MagicQKD, while the
communication cost for information reconciliation tends to 0 when the noise tolerance is lowered,
thus enabling a positive key rate.) The Magic Square game is the simplest game that we know of
which satisfies all of these properties. A natural next step is to study which other games can be
used for parallel DI-QKD.

After our result was publicized, Thomas Vidick [31] sketched an alternate proof of DI-QKD,
using a strengthened parallel repetition result that appeared after our result [5]. Vidick’s approach
uses the class of “anchored” games introduced in 2015 [4]. With this approach one can replace
Alice′ and Bob′ in MGuess with a single party, and a lower bound on Hmin (rather than H2)
follows via parallel repetition. The protocol in [31] is a version of our protocol which retains the
crucial features discussed above. A comparison between the rates achieved by these two approaches
is a topic for further research.

Organization. Section 2 establishes notation for our proofs. Section 3 provides the basis for
our interpretation of collision entropy as the winning probability of a “doubled” game. Section 4
defines the doubled Magic Square game and proves an upper bound on its winning probability. Sec-
tion 5 gives the proof of the central security claims. The appendix proves supporting propositions,
including the parallel repetition result derived from [8, 16, 9, 4].

2 Notation and Preliminaries

Some of the notation in this section is based on [27]. If T is a finite set, let Perm(T ) denote the set
of permutations of T . If t ∈ T , then we write can T r {t} to denote the complement of t, or if the
set T is understood from the context, we simply write t̂ for T r {t}.

Let D(T ) denote the set of probability distributions on the finite set T , and let S(T ) denote the
set of subnormalized probability distributions. If p, q ∈ S(T ) are subnormalized distributions let

∆(p, q) =
1

2

(
∑

t∈T

|p(t) − q(t)| + |x− y|
)

(3)

where x :=
∑

t∈T p(t) and y :=
∑

t∈T q(t) respectively. The function ∆ is a metric on S(T ).
If x1, . . . , xN and y1, . . . , yN are binary sequences, let Ham(x,y) denote the Hamming distance

between x and y. The following lemma will be useful in a later proof. For any t ∈ [0, 1], let H(t)
denote the Shannon entropy quantity: H(t) = −t log t− (1 − t) log(1 − t).

Proposition 2.1. For any c ∈ [0, 1/2] and any positive integer N , let Lc,N denote the number of
N -length binary strings whose sum is less than or equal to cN . Then, Lc,N ≤ 2NH(c).

Proof. We have Lc,N =
∑

0≤i≤cN

(
N
i

)
. The desired inequality is given in Theorem 1.4.5 in [29].
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2.1 Quantum states and operations

A quantum register (or simply register) is a finite-dimensional complex Hilbert space with a fixed
orthonormal basis. We use Roman letters (e.g., B) to denote quantum registers. Given two quantum
registers Q,Q′, we will sometimes write QQ′ for the tensor product Q⊗Q′.

If S is a finite set, an S-valued quantum register is quantum register that has a fixed isomorphism
with C

S . If Q is a quantum register, let L(Q),H(Q),P(Q),S(Q), and D(Q), denote, respectively,
the sets of linear, Hermitian, positive semidefinite, subnormalized positive semidefinite (trace ≤ 1)
and normalized positive semidefinite operators on Q. A state of Q is an element of D(Q). Elements
of S(Q) are referred to as subnormalized states of Q. A reflection is a Hermitian operator whose
eigenvalues are contained in {−1, 1}.

For any quantum register Q, the symbol IQ denotes the identity operator on I, and UQ denotes
the completely mixed state IQ/(dim(Q)).

If Q,Q′ are quantum registers, the set L(Q) has a natural embedding into L(Q⊗Q′) by tensoring
with IQ′ . We use this embedding implicitly: if T ∈ L(Q) and Φ ∈ D(Q⊗Q′), then T (Φ) denotes
(T ⊗ IQ′)Φ.

Note that if Q is a Q-valued register and R is an R-valued register, then any function f : Q → R
determines a process from Q to R via

Z 7→
∑

r∈R

|r〉 〈r| · 〈q|Z |q〉 . (4)

We may denote this process by the same letter, f .
A copy of a register Q is a register Q′ with the same dimension with a fixed isomorphism

Q′ ∼= Q. If Γ ∈ P(Γ) is a state, then the canonical purification of Γ is the projector Φ on Q⊗ Q′

onto the one-dimensional space spanned by
(√

Γ ⊗ IQ′

)
(
∑

i ei ⊗ ei) ∈ Q ⊗ Q′, where the sum is

taken over all standard basis elements ei. We then have ΦQ = Γ and ΦQ′
= Γ⊤ = Γ under the fixed

isomorphism Q ∼= Q′.
A measurement on a register Q is an indexed set {Mi}i∈I ⊆ P(Q) which sums to the identity.

A measurement strategy on Q is a collection of measurements on Q that all have the same index
set.

We will use lower case Greek letters (e.g., γ) to denote complex vectors, and either uppercase
Greek letters (e.g., Γ) or Roman letters to denote Hermitian operators on finite-dimensional Hilbert
spaces. If Γ is a Hermitian operator on a tensor product space W⊗V , then ΓV denotes the operator

ΓV := TrWΓ. (5)

Alternatively we may write ΓŴ for TrWΓ. If T is a projector on W , let

ΓT = (I ⊗ T )Γ(I ⊗ T ) (6)

and if Tr(ΓT ) 6= 0, let Γ|T = ΓT/Tr(ΓT ).
If R is a register whose values are real numbers, and ψ is a classical state of R, then Eψ[R]

denotes the expected value of R. If µ is a probability distribution on a finite set Z, and f : Z → R

is a function, then Ez←µ[f(z)] denotes the expected value of f(z) under µ.
If Φ is a positive semidefinite operator, then Φr denotes the operator that arises from applying

the function

f(x) =

{
xr if x > 0
0 if x = 0.

(7)
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to the eigenvalues of Φ.
We make free use of the following shorthands. If x1, . . . , xN is a sequence, then the boldface

letter x denotes (x1, . . . , xN ). If X1, . . . ,XN are quantum registers, then X denotes X1X2 · · ·XN .
We write Xi...j for the registers XiXi+1 · · ·Xj. If {Y j

i } is an array of registers, then Yi = {Y j
i }j

and Y j = {Y j
i }i. The expression Xî denotes the set {Xk}k 6=i.

2.2 Distance measures

If Γ1,Γ2 ∈ D(Q) for some quantum register Q, let

∆(Γ1,Γ2) =
1

2
‖Γ1 − Γ2‖1 (8)

F (Γ1,Γ2) =
∥∥∥
√

Γ1

√
Γ2

∥∥∥
1

(9)

P (Γ1,Γ2) =
√

1 − F (Γ1,Γ2)2. (10)

For Λ1,Λ2 ∈ S(Q), let [Λi] denote the density operator1 Λi ⊕ (1 − Tr(Λi)). Let

∆(Λ1,Λ2) = ∆([Λ1] , [Λ2]) (11)

F (Λ1,Λ2) = F ([Λ1] , [Λ2]) (12)

P (Λ1,Λ2) = P ([Λ1] , [Λ2]) (13)

The functions P (purified distance) and ∆ (generalized trace distance) are metrics on S(Q), and
∆ ≤ P ≤

√
2∆. If Λ1 and Λ2 are both pure, then P = ∆. Both quantities P and ∆ satisfy data

processing inequalities. (See Chapter 3 in [27]).

2.3 Games

An n-player nonlocal game G with input alphabets X 1, . . . ,X n and output alphabets A1, . . . ,An

is a probability distribution

p :
∏

i

X i → [0, 1] (14)

together with a predicate

L :
∏

i

X i ×
∏

i

Ai → {0, 1}. (15)

Such a game is free if p is a uniform distribution. Let GN denote the N -fold parallel repetition
of G (i.e., the game with input alphabets (X i)N , output alphabets (Ai)N , probability distribution
p(x) = p(x1) · . . . · p(xn), and predicate L(x,a) =

∧N
i=1 L(xi,ai)).

A measurement strategy for a gameG is a family {{Ma|x}a}x of A-valued measurements, indexed
by X , on a quantum register Q = Q1 ⊗ · · · ⊗Qn, where each measurement operator Ma|x is given
by

Ma|x = M1
a1|x1 ⊗ . . .⊗Mn

an|xn (16)
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The Parallel Repetition Process (Par)

Parameters:
N : A positive integer
G: An n-player game with input alphabet X = X 1 × . . .× X n

and output alphabets A = A1 × . . . ×An

{Ma|x}a,x: A measurement strategy for GN on an n-partite register C1 · · ·Cn
Φ: A state of C1 . . . Cn.

Registers:
{Ck | 1 ≤ k ≤ n}: Quantum registers (for players 1, 2, . . . , n, respectively)

{Xk
j | 1 ≤ j ≤ N, 1 ≤ k ≤ n}: Input registers (where Xk

j is X k-valued)

{Akj | 1 ≤ j ≤ N, 1 ≤ k ≤ n}: Output registers (where Akj is Ak-valued)

{Wj | 1 ≤ j ≤ N}: Score registers (bit-valued).

Procedure:

1. Prepare C in state Φ.

2. For each j ∈ {1, 2, . . . , N}, choose (x1j , . . . , x
n
j ) = (X1

j , . . . ,X
n
j ) at random according

to the input distribution for game G.

3. For each i, apply the measurement {Mai|xi}ai to the system Ci and record the result

in the registers (Ai1, . . . , A
i
N ).

4. Let Wi = 1 if the ith game has been won, and let Wi = 0 if the ith game has been
lost.

5. Choose a permutation σ ∈ Perm{1, 2, . . . , N} uniformly at random. Apply the per-
mutation σ to the registers {Xj}, the registers {Aj}, and the registers {Wj}.

Figure 3: A process defining the parallel repetition of a game.

where {M i
ai|xi}ai is a measurement on Qi.

It is helpful to describe a parallel repeated game as a process. In Figure 3, we introduce the
parallel repetition process Par(N,G,M,Φ) associated to a game G. The process Par includes a final
step which shuffles the different instances of the game according to a randomly chosen permutation.

For any G, let w(G) denote the supremum quantum score of G (i.e., the supremum of P(W1 = 1)
in Par(1, G,M,Φ) taken over all initial states Φ ∈ D(C) and all measurements strategies M).

We will typically refer to states arising from processes as follows: the initial state will be denoted
by Γ0, and Γi will refer to the state that occurs after step i. The symbol Γ will denote the final
state.

The following proposition asserts that if G is a free game, then the winning probability in a
small number of rounds in Par is not much better than that which could be achieved by sequential
players. This fact is implicit in the entropy approach to parallel repetition given in [8, 16, 9, 4].

1That is, the operator on Q⊕ C given by

[

Λi

1− Tr(Λi)

]

.
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Since we are not aware of a statement in the literature in the form that we will need, we have given
a proof in Appendix C (see Theorem C.6).

Proposition 2.2. Suppose that G is a free nonlocal game. Then, the registers W1, . . . ,WN at the
conclusion of process Par satisfy

P(W1 = W2 = . . . = Wk = 1) ≤
[
w(G) +OG(

√
k/N )

]k
. (17)

for any k ∈ {1, 2, . . . , N}.

For our purposes, it is crucial not only that the bound in (17) is an exponential function, but
also that its base approaches w(G) as k/N approaches zero.

3 Entropy quantities

Definition 3.1. Let QR be a bipartite quantum register, and let Γ be a subnormalized state of QR.
Then,

hmin(Q | R)Γ = min
σ∈S(R)
IQ⊗σ≥Γ

Tr(σ) (18)

h2(Q | R)Γ = Tr[Γ(ΓR)−1/2Γ(ΓR)−1/2]. (19)

Let

hδmin(Q | R)Γ = min
Γ′

hmin(Q | R)Γ′ (20)

where Γ′ varies over all subnormalized states of QR that are within distance δ from Γ under the
purified distance metric P .

Note that we can equivalently let the minimization in (20) be taken only over the the states of
QR that have trace no larger than Tr(Γ), since if Tr(Γ′) were larger than Tr(Γ), then the scalar
multiple [Tr(Γ)/Tr(Γ′)]Γ′ would be at least as close to Γ as was the original state Γ′ (see Lemma
A.1).

Definition 3.2. For any subnormalized state Λ of a quantum register T , let

h(T )Λ = 2Tr[Λ log Λ]. (21)

and let

h(Q | R) =
h(QR)

h(R)
. (22)

Additionally, we define some entropy quantities for probability distributions.

Definition 3.3. If p is a probability distribution on a set S, let

h(S)p =
∏

s∈S

p(s)p(s). (23)
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If q is a subnormalized probability distribution on a set S × T , let

h0(S | T )q =
(

max
t

|{s ∈ S | q(s, t) > 0}|
)−1

. (24)

Let

hδ0(S | T )q = max
q′

h0(S | T )q′ , (25)

where q′ varies over all subnormalized probability distributions on S × T such that ∆(q, q′) ≤ δ.

Similar to the definition of smooth min-entropy, in (25), we can equivalently assume that the
minimization is taken over distributions that are dominated by q (i.e., q′ ≤ q). For all the entropy
quantities specified so far in this subsection, we let H∗∗ (· | ·) = − log h∗∗(· | ·). (Thus, for example,
Hδ
min(Z | Y ) = − log hδmin(Z | Y ).)

If Γ is a classical-quantum state of a bipartite register ZQ, and B is a subset of the range Z of
Z, then ΓB := ΓPB

, where P : CZ → C
Z denotes the projector onto the subspace spanned by B,

and let Γ|B = Γ|PB
. When the state is implicit from the context, we may write

Hmin(Z | Q)B and Hmin(Z | Q,B) (26)

to denote, respectively,

Hmin(Z | Q)ΓB
and Hmin(Z | Q)Γ|B

, (27)

and we can use similar notation for the other conditional entropies defined above.
Some of the applications of these quantities are as follows. Assume that Z is a classical register.

The quantity Hmin(Z | Y ) (quantum conditional min-entropy) is a measure of the number of bits
that can be extracted from Z in the presence of an adversary who possesses Y (see, e.g., [28]). The
quantity H(Z | Y ) (von Neumann entropy) measures the number of bits that can be extracted
in the case in which multiple copies of the state ZY are available (see Chapter 11 in [23]). The
quantity H2(Z | Y ) is the conditional collision entropy. In the case where Y is a trivial register,
the quantity H2(Z | Y ) is the negative logarithm of the probability that two independent samples
of Z will agree. An interpretation of the case where Y is nontrivial will be explained in the next
subsection.

If Z, Y are classical registers with a joint distribution q, then the quantity H0(Z | Y ) is a
measure of the minimum number of bits needed to reconstruct the state Y from Z. This can be
understood as follows: let M > H0(Z | Y ), and let R = {r : Z → (Z2)

M} be a 2-universal hash
function family.2 Suppose that Alice possesses Z = z and Bob possesses Y = y, and Alice chooses
r ∈ R uniformly at random and reveals r and r(z) to Bob. Then, except with probability at most
2M−H0(Z|Y ), there will be only one value in the set {z | q(z, y) > 0} which maps to r(z) under r,
and thus Bob can uniquely determine z.

Collision entropy and min-entropy are related by the following proposition (see subsection 6.4.1
in [27]):

Proposition 3.4. For any quantum registers RS, any normalized classical-quantum state Γ of RS,
and any δ > 0,

Hδ
min(R | S)Γ ≥ H2(R | S)Γ − log(2/δ2). (28)

2That is, R is a family of functions such that for any distinct y1, y2 ∈ Y , the probability that r(y1) = r(y2) is no
more than 2−M when r is chosen uniformly at random from R.
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3.1 An operational interpretation of collision entropy for measurements on a

pure entangled state

If Γ is a classical-quantum state of a register ZY , then a common way to describe h2(Z | Y )Γ
is that it is the likelihood that an adversary who possesses Y can guess Z via the pretty good
measurement {(ΓY )−1/2ΓZ=z(Γ

Y )−1/2}z. We present an alternative interpretation which is useful
for measuring the randomness obtained from measurements on an entangled state. The following
proposition refers to the process Guess shown in Figure 4.

The Guessing Process (Guess)

Parameters:
Φ: A state of a register V

{Pj | j ∈ J } : A measurement on V

Registers:
V, V ′: Registers with a fixed isomorphism V ∼= V ′

J, J ′: J -valued registers

Procedure:

1. Prepare V V ′ in the canonical purification state of Φ.

2. Measure V with {Pj} and store the result in J .

3. Measure V ′ with {Pj} and store the result in J ′.

Figure 4: A process for guessing measurement outcomes via a purification

Proposition 3.5. Let Γ1,Γ2,Γ3 denote the states that occur after steps 1, 2, and 3, respectively,
in the process Guess(Φ, {Pj}j). Then,

PΓ3(J = J ′) = h2(J | V ′)Γ2 . (29)

Proof. The states
(
Γ2
)JV ′

and
(
Γ3
)JJ ′

are given by

(
Γ2
)JV ′

=
∑

j

|j〉 〈j| ⊗
√

ΦPj
√

Φ (30)

(
Γ3
)JJ ′

=
∑

j,j′

∣∣jj′
〉 〈
jj′
∣∣Tr[

√
ΦPj

√
ΦPj′ ] (31)

and thus

h2(J | V ′)Γ2 =
∑

j

Tr[
√

ΦPj
√

ΦΦ−1/2
√

ΦPj
√

ΦΦ−1/2] (32)

=
∑

j

Tr[
√

ΦPj
√

ΦPj ] (33)

= PΓ3 [J = J ′], (34)

as desired.
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4 The Magic Square Guessing Game

In this section we consider the 6-player game described in Figure 5. In this game, two pairs of
players (Alice and Bob, and Alice′ and Bob′) each play the Magic Square game and their inputs
and outputs are compared. There are also additional players Charlie and Charlie′ who receive a
random bit and always produce the same output letter. (Note that none of the outputs Bob′,
Charlie, and Charlie′ are used in the scoring rule — these players are present merely because their
inputs are used in the scoring rule.)

The Magic Square Guessing Game (MGuess)

Players: Alice, Bob, Charlie, Alice′, Bob′, Charlie′

Alphabets:
X = {1, 2, 3}: The input alphabet for Alice and Alice′

Y = {1, 2, 3}: The input alphabet for Bob and Bob′

Z = {0, 1}: The input alphabet for Charlie and Charlie′

A = {g1g2g3 ∈ {0, 1}3 |⊕ gi = 0}: The output alphabet for Alice and Alice′

B = {g1g2g3 ∈ {0, 1}3 |⊕ gi = 1}: The output alphabet for Bob and Bob′

C = {0}: The output alphabet for Charlie and Charlie′

Probability distribution:

p(x, y, z, x′, y′, z′) =
1

182
(uniform)

Predicate:

L = [(x, y, ay) = (x′, y′, a′y′)] ∧ [(ay = bx) ∨ (z = z′)].

The game is won if all three of the following conditions hold:

1. Alice and Bob’s inputs match those of Alice′ and Bob′.

2. Alice’s key bit matches that of Alice′.

3. Either z = z′ or Alice and Bob win the Magic Square game.

Figure 5: A game with 6 players.

In the game, Alice and Bob are attempting to win the Magic Square game, while Alice′ and Bob′

are simultaneously attempting to guess Alice’s input, Bob’s input, and Alice’s key bit. However, a
failure by Alice and Bob at winning the Magic Square game is forgiven if it happens that Charlie
and Charlie′ have the same output. (This last rule has the effect of making the game easier to win.
It underlies the robustness property of our security proof for MagicQKD.)
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It is obvious that w(MGuess) ≤ 1/9, since the probability that Alice’s and Bob’s inputs match
those of Alice′ and Bob′ is 1/9. We will prove that in fact w(MGuess) is less than 1/9 minus a
positive constant. This will be crucial for establishing a nonzero key rate for MagicQKD.

The proof of the next proposition is given in the appendix. Roughly speaking, the proposition
holds because rigidity for the Magic Square game [32] implies that any near-optimal strategy by
Alice and Bob involves Alice and Bob performing approximate Pauli measurements on two approx-
imate EPR pairs shared between them. The outcomes of such measurements are not guessable by
an outside party (even with entanglement). Therefore it is impossible for Alice and Bob to achieve
a near-perfect score at the Magic Square game while at the same time allowing Alice′ to guess
Alice’s outcomes.

Proposition 4.1. Let MGuess denote the game in Figure 5. Then,

w(MGuess) ≤ (1/9) − 0.00035. (35)

Proof. See Appendix B.

5 Security Proof

In the current section we give the proof of Theorem 1.2. Our approach can be roughly understood
as follows: our upper bound on the winning probability of MGuess implies, using parallel repetition,
that the collision entropy of Alice’s and Bob’s inputs X1...ǫNY1...ǫN together with Alice’s key bits
R1...ǫN is substantially more than that of Alice’s and Bob’s inputs alone (for small ǫ). It follows
that, even when we condition on X1...ǫNY1...ǫN and all of the adversary’s other information, an
amount of entropy that is linear in N remains in R1...ǫN (Proposition 5.5). On the other hand, a
classical statistical argument shows that the rate of noise between Alice’s key bits R1...ǫN and Bob’s
key bits S1...ǫN vanishes as ǫ → 0 (Proposition 5.6). Combining these facts allows us to deduce
inequality (2).

5.1 An Intermediate Protocol

In order to show that Alice’s raw key in MagicQKD is sufficiently random, we begin by analyzing
the entropy produced by the related protocol MagicKey in Figure 6. In MagicKey, we use an idea
from our previous work on randomness expansion [21, 22]: when Alice and Bob fail to win the
Magic Square game, we compensate by artificially introducing randomness. In [12], this artificial
randomness is represented by additional registers that have some prescribed entropy, and we adopt
the same style here (by including the registers T1, . . . , TN ). We use these auxilliary registers to
establish a lower bound on collision entropy, and the registers will subsequently be dropped.

We begin with the following proposition, which addresses the amount of collision entropy that
is collectively contained in Alice’s and Bob’s inputs, Alice’s key register, and the auxiliary registers
Ti.

Theorem 5.1. Let Γ be the final state of MagicKey. Then,

h2(X1...ǫNY1...ǫNR1...ǫNT1...ǫN | EF )Γ ≤ (w(MGuess) +O(
√
ǫ))ǫN . (36)

Note that in the above statement, we are conditioning not only on the register E but also on
the permutation register F .
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Proof. We prove this result via an application of Proposition 3.5. Upon an appropriate unitary
embedding, we may also assume E = C ′D′, where C ′,D′ are copies of C,D, and that Φ is the
canonical purification of ΦCD. Suppose that the process Par(N,MGuess,M,Φ) is executed with
the measurement strategy3

M = {Px
a ⊗Qy

b
⊗ I ⊗ Px′

a′ ⊗Qy′

b′ ⊗ I}, (37)

For any m-subset Z of {1, 2, . . . , N}, the probability that
∧
i∈ZWi = 1 after step 4 in the process

Par(N,MGuess,M,Φ) is the same as the value of

h2({XiYiRiTi | i ∈ Z} | E) (38)

after step 6 in MagicKey. The average of the former quantity over all (ǫN)-subsets is equal to the
value of P(W1 ∧W2 ∧ · · · ∧WǫN ) at the conclusion of Par(N,MGuess,M,Φ), while the average of
the latter quantity is equal to the expression on the lefthand side of (36). The desired result follows
from Theorem 2.2.

Next we deduce an upper bound on smooth min-entropy, focusing just on the registers R1...ǫNT1...ǫN .
For compatibility with later derivations, we will take the error parameter to be 2 exp(−ǫ4N).

Corollary 5.2. The following inequality holds:

H
2 exp(−ǫ4N)
min (R1...ǫNT1...ǫN | X1...ǫNY1...ǫNEF )Γ ≥ Ω(ǫ)N. (39)

Proof. By Proposition 3.4, we have

H
2 exp(−ǫ4N)
min (X1...ǫNY1...ǫNR1...ǫNT1...ǫN | EF )Γ ≥ ǫN [log

1

w(MGuess)
−O(

√
ǫ)] − 2(log e)ǫ4N

By Proposition 4.1, log[1/w(MGuess)] > log(1/9), and this bound can be simplified to

H
2 exp(−ǫ4N)
min (X1...ǫNY1...ǫNR1...ǫNT1...ǫN | EF )Γ ≥ N [(log 9)ǫ + Ω(ǫ)].

When we condition on the registers X1...ǫNY1...ǫ, whose support has size 9ǫN = 2Nǫ log 9, we obtain
the bound (39).

In the next subsection, we will address conditioning on the event SUCC. For the time being it
is helpful to condition on a related event. For any δ > 0, let WIN(δ) denote the event that the bit
strings R1...ǫN and S1...ǫN differ in at most δ(ǫN) places. (That is, WIN(δ) denotes the event that
the proportion of wins among the first ǫN rounds is at least 1 − δ.) Consider the event WIN(2ǫ).
We have

H
2 exp(−ǫ4N)
min (R1...ǫNT1...ǫN | X1...ǫNY1...ǫNEF )ΓWIN(2ǫ)

≥ Ω(ǫ)N. (40)

We assert that a lower bound in the same form holds when the registers T1...ǫN are omitted.

3Here the tensor product respects the following ordering of the players: Alice, Bob, Charlie, Alice′, Bob′, Charlie′.
Charlie and Charlie′ have trivial output, and we treat them as simply performing a unary measurement on a one-
dimensional register.
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The Magic Square Key Process (MagicKey)

Parameters:
ǫ : A rational number from (0, 1/2]
N : A positive integer such that Nǫ2 is an integer

{Pa|x ⊗Qb|y}: A measurement strategy for MagicSquareN on a bipartite system CD

Φ: A pure state of a tripartite system CDE.

Registers:
C,D,E: Quantum registers (possessed by Alice, Bob, and Eve, respectively)

X1, . . . ,XN : Alice’s input registers ({1, 2, 3}-valued)
Y1, . . . , YN : Bob’s input registers ({1, 2, 3}-valued)
A1, . . . , AN : Alice’s output registers ({000, 011, 101, 110}-valued)
B1, . . . , BN : Bob’s output registers ({001, 010, 100, 111}-valued)
R1, . . . , RN : Alice’s key bit register
S1, . . . , SN : Bob’s key bit register
T1, . . . , TN : Auxilliary bit registers

F : A Perm({1, 2, . . . , N})-valued register

Procedure:

1. Prepare CD in state Φ.

2. Choose x and y independently and uniformly at random from {1, 2, 3}N , and set
X := x and Y := y.

3. Measure C with {P a
x }a and store the result in register A.

4. Measure D with {Qb
y}b and store the result in register B.

5. For each i ∈ {1, 2, . . . , N}, set Ri to be equal to the (Yi)th bit of Ai, and set Si to be
equal to the (Xi)th bit of Bi.

6. For each i ∈ {1, 2, . . . , N}, if Ri 6= Si, then set Ti to be a independent coin flip.
Otherwise, set Ti to 0.

7. Choose a random permutation σ ∈ Perm{1, 2, . . . , N} and apply it to the registers
{Xi}, {Ai}, {Yi}, {Bi}, {Ri}, {Si}, {Ti}. Store σ in the register F .

Figure 6: A protocol for generating a shared key.

Corollary 5.3. The subnormalized state ΓWIN(2ǫ) satisfies

H
2 exp(−ǫ4N)
min (R1...ǫN | X1...ǫNY1...ǫNEF ) ≥ Ω(ǫ)N. (41)

Proof. The distribution of the registers T1...ǫN under the subnormalized state ΓWIN(2ǫ) is supported
only on binary strings of Hamming weight less than 2ǫ2N . Thus, by Proposition 2.1, these registers
are supported on a set of size less than or equal to 2H(2ǫ)ǫN . Therefore we can drop the registers
T1...ǫN from the lefthand side of (40) and and deduct H(2ǫ)ǫN from its righthand side, and the
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inequality is preserved. Since the term H(2ǫ)ǫN is dominated by Ω(ǫ)N , it may be ignored and
the desired result follows.

5.2 Device-Independent Quantum Key Distribution

We now turn our attention toward the protocol MagicQKD (Figure 1). We will prove that
MagicQKD generates a positive key rate. Our final statement will use the registers

AliceKey := R1···ǫN (42)

BobKey := S1···ǫN (43)

Eve := X1···ǫNY1···ǫNR1···ǫ2NS1···ǫ2NEF. (44)

The registers Eve denote the information possessed by Eve at the conclusion of MagicQKD.
We begin by translating Corollary 5.3 into a statement about the success event for MagicQKD.

Let SUCC denote the event that MagicQKD succeeds, and let SUCC ′ denote the event that
MagicQKD succeeds and the event WIN(2ǫ) occurs.

Lemma 5.4. The events SUCC ′ and SUCC satisfy

P(SUCC ∧ ¬SUCC ′) ≤ e−2ǫ
4N . (45)

Proof. We assume P(¬WIN(2ǫ)) > 0 (since otherwise the desired assertion is obvious). We have

P(SUCC ∧ ¬SUCC ′) = P(SUCC ∧ ¬WIN(2ǫ)) (46)

= P(¬WIN(2ǫ)) ·P(SUCC | ¬WIN(2ǫ)) (47)

We consider the second factor in (47). Let Wi denote the indicator variable for the event that the
ith game is won. After conditioning on ¬WIN(2ǫ), the only way that SUCC can occur is if the
average of the variables W1, . . . ,Wǫ2N exceeds that of W1 . . . ,WǫN by at least ǫ. By ([14], Theorem
1 and Section 6), if an ǫ2N -subset S is chosen at random from a set of Boolean values T of size
ǫN , then the probability that the average of S will exceed that of T by more than ǫ is at most
e−2ǫ

2(ǫ2N). This yields the desired bound.

As a consequence of Lemma 5.4, we have ∆(ΓSUCC ,ΓSUCC′) ≤ 2 exp(−2ǫ4N), and therefore
P (ΓSUCC ,ΓSUCC′) ≤

√
4 exp(−2ǫ4N) = 2 exp(−ǫ4N). Since SUCC ′ =⇒ WIN(2ǫ), ΓSUCC′ also

satisfies inequality (41) from Corollary 5.3. We therefore have by the triangle inequality that the
state ΓSUCC satisfies

H
4 exp(−ǫ4N)
min (R1...ǫN | X1...ǫNY1...ǫNEF ) ≥ Ω(ǫ)N. (48)

Conditioning also on the registers R1...ǫ2NS1...ǫ2N decreases the quantity on the lefthand side of (48)
by at most 2ǫ2N ≤ o(ǫ)N , and thus we obtain the following result.

Proposition 5.5. The state ΓSUCC at the conclusion of MagicQKD satisfies

H
4 exp(−ǫ4N)
min (AliceKey | Eve) ≥ Ω(ǫ)N. (49)
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Meanwhile, by definition, the registers AliceKey and BobKey in the state ΓSUCC′ differ in at
most 2ǫ2N places, and thus by Proposition 2.1, we have

H0(AliceKey | BobKey)SUCC′ ≤ NǫH(2ǫ) (50)

≤ No(ǫ). (51)

Applying Lemma 5.4 yields the following.

Proposition 5.6. The state ΓSUCC at the conclusion of MagicQKD satisfies

H
2 exp(−2ǫ4N)
0 (AliceKey | BobKey) ≤ o(ǫ)N. (52)

We can now prove our main result.

Proof of Theorem 1.2. Let

δ = 2e−ǫ
4N/3. (53)

If P(SUCC) ≥ δ, then, by Propositions A.3 and A.4 in the appendix,

Hδ
min(AliceKey | Eve, SUCC) −Hδ

0(AliceKey | BobKey, SUCC) (54)

≥ H
δ3/2
min (AliceKey | Eve)SUCC −Hδ2

0 (AliceKey | BobKey)SUCC − log(1/δ) (55)

≥ NΩ(ǫ) −No(ǫ) − [(log e)ǫ4N/3 + 1] (56)

≥ NΩ(ǫ), (57)

where in lines (55)–(56), we used the fact that the terms δ3/2 and δ2 are at least as large as the
respective error terms in Propositions 5.5 and 5.6. We now simply fix ǫ := ǫ0 > 0 to be sufficiently
small that the function denoted by Ω(ǫ) in (57) is positive, and the proof is complete.
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A Supporting Proofs for Entropy Measures

The following two lemmas bound the amount that the purified distance P (σ, λ) can increase under
scalar multiplication of the two states σ, λ. We address a case where the scalar multiplication makes
the trace of the two states equal, and also a case where scalar multiplication normalizes the larger
of the two states.

Lemma A.1. Let Q be a quantum register, let λ, σ ∈ S(Q), and let r = Tr(λ), s = Tr(σ). Suppose
that s ≥ r > 0. Then,

P ((r/s)σ, λ) ≤ P (σ, λ). (58)

Proof. Let Λ,Σ be the normalizations of λ, σ. Using the Cauchy-Schwartz inequality, we have the
following.

F (σ, λ) =
√

(1 − r)(1 − s) +
√
rs
∥∥∥
√

Λ
√

Σ
∥∥∥
1

(59)

=

√
(1 − r) + r

∥∥∥
√

Λ
√

Σ
∥∥∥
1

√
(1 − s) + s

∥∥∥
√

Λ
√

Σ
∥∥∥
1

(60)

≤
√

(1 − r) + r
∥∥∥
√

Λ
√

Σ
∥∥∥
1

√
(1 − r) + r

∥∥∥
√

Λ
√

Σ
∥∥∥
1

(61)

= F ((r/s)σ, λ), (62)

Inequality (58) follows.

Lemma A.2. Under the assumptions of Lemma A.1, the following inequality also holds.

P (σ/s, λ/s) ≤
√

(2/s)P (σ, λ). (63)

Proof. Note that the quantity

∆(cσ, cλ) = c ‖σ − λ‖1 + c |Trσ − Trλ| (64)

is linear in c. We have

P (σ/s, λ/s) ≤
√

2∆(σ/s, λ/s) ≤
√

(2/s)∆(σ, λ) ≤
√

(2/s)P (σ, λ), (65)

as desired.

Now we use Lemma A.2 to address how smooth min-entropy behaves under normalization.

Proposition A.3. Let σ ∈ S(QR) be a nonzero state, let Σ be its normalization, and let δ > 0.
Then,

Hδ
min(Q | R)Σ ≥ H

δ2Tr(σ)/2
min (Q | R)σ − log(1/Tr(σ)). (66)

Proof. Let s = Tr(σ). Find a state σ′ satisfying satisfying Tr(σ′) ≤ s and P (σ′, σ) ≤ δ2s/2 such
that

Hmin(Q | R)σ′ = H
δ2s/2
min (Q | R)σ. (67)
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(See the discussion following Definition 3.1.) The conditional min-entropy of σ′/s is then given by
the expression on the righthand side of (66), and by Lemma A.2,

P (σ′/s, σ/s) ≤
√

2P (σ′, σ)/s ≤ δ. (68)

Inequality (66) follows.

The next proposition similarly addresses how Hδ
0 behaves under normalization.

Proposition A.4. Let q be a nonzero subnormalized probability distribution on S × T , where S, T
are finite sets, and let s be the norm of q. Let δ > 0. Then,

Hδ
0(S | T )q/s = Hsδ

0 (S | T )q. (69)

Proof. This is immediate from the linearity of the distance function ∆.

B Proof of Proposition 4.1

Our proof builds off of steps from the proof of rigidity for the Magic Square game [32]. We will
reproduce the fact that any near-optimal strategy for the Magic Square must involve approximately
anti-commuting measurements, and use that fact to deduce inequality (35).

Let {F ax }, {Gby}, {F ′ax} be the measurements used by Alice, Bob, and Alice′, respectively, which
we will assume (without loss of generality) to be projective, and let Φ denote their shared state,
which we will assume to be pure: Φ = φφ∗. For i, j ∈ {1, 2, 3}, let Fij denote the reflection operator

Fij =
∑

a∈X
aj=0

F ai −
∑

a∈X
aj=1

F ai , (70)

define F ′ij similarly in terms of {F ′ax}, and let

Gij =
∑

b∈X
bi=0

Gbj −
∑

b∈Y
bi=1

Gbj . (71)

Note that Fij and Fik always commute and Fi1Fi2Fi3 = I, that Gij and Gkj always commute and
G1jG2jG3j = −I, and similar relationships hold for F ′ij .

Let

δ = P(AY 6= BX) (72)

δij = P(AY 6= BX | X = i, Y = j) (73)

and

ǫ = P(AY 6= A′Y ′ | X = X ′, Y = Y ′), (74)

ǫij = P(AY 6= A′Y ′ | X = X ′ = i, Y = Y ′ = j). (75)

Note that

P(L = 1) ≤ P(X = X ′, Y = Y ′)P(Z = Z ′ ∨AY = BX | X = X ′, Y = Y ′) (76)

= (1/9)(1 − δ/2), (77)
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and also

P(L = 1) ≤ P(X = X ′, Y = Y ′)P(AY = A′Y ′ | X = X ′, Y = Y ′) (78)

= (1/9)(1 − ǫ). (79)

Thus,

P(L = 1) ≤ (1/9) − (1/9) max {ǫ, δ/2} , (80)

and to complete the proof it suffices to find a general lower bound for max {ǫ, δ/2}.
Note that for any i, j ∈ {1, 2, 3},

P(AY 6= BX | X = i, Y = j) = (1 − φ∗Fij ⊗Gijφ)/2 (81)

= ‖φ− (Fij ⊗Gij)φ‖2 /4, (82)

and thus

‖φ− (Fij ⊗Gij)φ‖ = 2
√
δij . (83)

By similar reasoning,
∥∥φ− (Fij ⊗ F ′ij)φ

∥∥ = 2
√
ǫij. (84)

We exploit the approximate anti-commutativity relations for {Fij} which are proven in [32].
We have the following.

‖(F11F22)φ− (F11 ⊗G22)φ‖ ≤ 2
√
δ22

‖(F11F22)φ− (G22G11)φ‖ ≤ 2(
√
δ22 +

√
δ11)

‖(F11F22)φ− (G12G32G31G21)φ‖ ≤ 2(
√
δ22 +

√
δ11)

‖(F11F22)φ− (F21F31F32 ⊗G12)φ‖ ≤ 2(
√
δ22 +

√
δ11 +

√
δ32 +

√
δ31 +

√
δ21)

‖(F11F22)φ− (F21F33 ⊗G12)φ‖ ≤ 2(
√
δ22 +

√
δ11 +

√
δ32 +

√
δ31 +

√
δ21)

‖(F11F22)φ− (F21 ⊗G12G33)φ‖ ≤ 2(
√
δ22 +

√
δ11 +

√
δ32 +

√
δ31 +

√
δ21 +

√
δ33)

‖(F11F22)φ− (−F21 ⊗G12G13G23)φ‖ ≤ 2(
√
δ22 +

√
δ11 +

√
δ32 +

√
δ31 +

√
δ21 +

√
δ33)

‖(F11F22)φ− (−F21F23F13F12)φ‖ ≤ 2
∑

ij

√
δij

‖(F11F22)φ− (−F22F11)φ‖ ≤ 2
∑

ij

√
δij

‖(F11F22)φ+ (F22F11)φ‖ ≤ 2
∑

ij

√
δij .

By the concavity of the square root function, this yields

‖(F11F22)φ+ (F22F11)φ‖ ≤ 18
∑

ij

√
δij/9.

≤ 18

√∑

ij

δij/9

= 18
√
δ. (85)
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We also have the following, in which we make use of the approximate compatibility of the
measurements {Fij} and the measurements {F ′ij}.

∥∥(F11F22 ⊗ I)φ− (F11 ⊗ F ′22 ⊗ I)φ
∥∥ ≤ 2

√
ǫ11 (86)

∥∥(F11F22 ⊗ I)φ− (G11 ⊗ F ′22 ⊗ I)φ
∥∥ ≤ 2

√
ǫ11 + 2

√
δ22 (87)

‖(F11F22 ⊗ I)φ− (G11 ⊗ F22 ⊗ I)φ‖ ≤ 4
√
ǫ11 + 2

√
δ22 (88)

‖(F11F22 ⊗ I)φ− (F22F11 ⊗ I)φ‖ ≤ 4
√
ǫ11 + 4

√
δ22, (89)

Combining (89) via the triangle inequality with (85) (and using the fact that (F22F11 ⊗ I)φ is a
unit vector) yields

2 ≤ 18
√
δ + 4

√
ǫ11 + 4

√
δ22 (90)

By symmetry, we likewise have the following for any i, j, i′, j′ ∈ {1, 2, 3} with i 6= i′, j 6= j′:

2 ≤ 18
√
δ + 4

√
ǫij + 4

√
δi′j′ (91)

Averaging all such inequalities and exploiting the concavity of the square root function, we obtain

2 ≤ 18
√
δ + 4

√
ǫ+ 4

√
δ, (92)

which implies

1 ≤ 11
√
δ + 2

√
ǫ. (93)

From (93), we can compute a lower bound on max{ǫ, δ/2}. If ǫ ≤ δ/2, then,

1 ≤ 11
√
δ +

√
2δ (94)

which yields

δ/2 ≥ (1/2) · (11 +
√

2)−2, (95)

while if ǫ ≥ δ/2, similar reasoning yields

ǫ ≥ (1/2) · (11 +
√

2)−2. (96)

Therefore,

max{ǫ, δ/2} ≥ (1/2) · (11 +
√

2)−2. (97)

Substituting this value into (80), we find

P(L = 1) ≤ (1/9) − (1/18) · (11 +
√

2)−2 (98)

≤ (1/9) − 0.00035, (99)

as desired.
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C Randomly chosen rounds in parallel repetition of a free game

In this appendix, we prove that in a parallel repetition of a free game, the performance of the players
on a small number of randomly chosen rounds is not much better than their performance would
have been in a sequential scenario. Our proof is a rearrangement of elements from [8, 16, 9, 4].

For any state ρ of a bipartite system QR, the mutual information between Q and R and is given
by

I(Q : R)ρ = H(QR) −H(Q) −H(R). (100)

Let S(ρ‖σ) = Tr[ρ log ρ]−Tr[ρ log σ] denote the relative entropy function. The following relationship
holds:

I(Q : R)ρ = S(ρ‖ρA ⊗ ρB) (101)

(102)

Also, the relative entropy function is related to the purified distance as follows: if α, β are density
operators, then

P (α, β) ≤
√
S(α‖β). (103)

(This follows from, e.g., Lemma 5 in [17].)
Throughout this section, we assume that a free game G = (X ,A, p, L), with w(G) > 0, has

been fixed. (Thus we avoid any need to note the influence of G on error terms.)

C.1 Preliminaries

Our first result asserts (roughly) that if a state γ of a bipartite system TQ is dominated by a small
scalar multiple of a state that is uniform on T , then H(T | Q)γ must be close to log |T |.

Lemma C.1. Let γ be a classical-quantum state of a bipartite system TQ such that

γ ≤ λ(UT ⊗ γQ), (104)

where λ denotes a real number. Then,

H(T | Q)γ ≥ log |T | − 2 log(1/λ) (105)

Proof. We have H(T | Q)γ = H(T )γ − I(T : Q)γ . It is obvious that the quantity H(T )γ is at least
log |T | − log(1/λ) since the eigenvalues of γT do not exceed λ/ |T |. Thus we need only prove that
I(T : Q)γ ≤ log(1/λ).

We can write

I(T : Q) = S(γ‖γT ⊗ γQ). (106)

Note that the quantity

S(γ‖UT ⊗ γQ) − S(γ‖γT ⊗ γQ) (107)
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is equal to S(UT ‖γT ), which is nonnegative, and therefore

I(T : Q) ≤ S(γ‖UT ⊗ γQ). (108)

We therefore have the following, using the fact that the logarithm function is operator monotone:

I(T : Q) ≤ S(γ‖UT ⊗ γQ) (109)

= Tr[γ log γ] − Tr[γ log(UT ⊗ γQ)] (110)

≤ Tr[γ log γ] − Tr[γ log(γ/λ)] (111)

= log(1/λ), (112)

as desired.

By definition, if two pure bipartite states ψ, φ ∈ D(Q⊗ R) are such that P (ψQ, φQ) = δ, then
there is a unitary automorphism of R which maps φ to a state that is within ∆-distance δ from ψ.
The next lemma asserts that if these bipartite states have some additional structure, then we can
find such a unitary automorphism that is similarly structured.

Lemma C.2. Suppose that S, S′, Q,R are registers, where S is a copy of S′, and that ψ, φ are pure
states on SS′QR that are supported on Span{e⊗ e}⊗Q⊗R, where e varies over the standard basis
elements of S, S′. Let δ = P (ψSQ, φSQ). Then, there exists an S′-controlled unitary operator U on
S′ ⊗R such that ∆(Uψ, φ) = δ.

Proof. Write ψ = uu∗, φ = vv∗ with

u =
∑

e,f,g

(
me
fg

)
e⊗ e⊗ f ⊗ g (113)

v =
∑

e,f,g

(
nefg
)
e⊗ e⊗ f ⊗ g, (114)

where e, f, g vary over the standard basis elements of S,Q,R, respectively. The fidelity F (ψSQ, φSQ)
is then given by the expression

∑

e

‖(M e)∗(N e)‖1 , (115)

where M e = [me
fg]fg and N e = [nefg]fg denote linear operators from R to Q. Find unitary operators

U e : R→ R such that

Tr[U e(M e)∗(N e)] = ‖(M e)∗(N e)‖1 . (116)

Then, the controlled operator
∑

e ee
∗ ⊗ U e on S′ ⊗R satisfies the desired condition.

Now we prove a proposition about states that approximate the behavior of players in a free
nonlocal game. (The statement of this proposition is based in particular on the statement of
Lemma 4.3 in [9].)
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Proposition C.3. Let X,X ′ denote X -valued registers, let A denote an A-valued register, and let
Q = Q1Q2 · · ·Qn denote a n-partite register. Let ψ be a pure state of XX ′QA given by ψ = uu∗,

u =
∑

x∈X

√
µ(x) |xx〉 ⊗ ux, (117)

where µ is a probability distribution on X and each ux is a unit vector in QA, and suppose that

H(Xk | X k̂X ′
k̂
Qk̂Ak̂)ψ ≥ log

∣∣∣X k
∣∣∣− δ (118)

for all k ∈ {1, 2, . . . , n}. Then,

Eψ [L(X,A)] ≤ w(G) +O(
√
δ). (119)

Proof. Case 1: Assume that δ = 0.

Then, the state of Xk(XX ′QA)k̂ is uniform on Xk. Making use of Lemma C.2, we can find
unitary automorphisms Uk

xk→yk
on QkAk for any xk, yk ∈ X k such that

Ukxk→ykux1x2···xk···xn = ux1x2···yk···xn . (120)

The expected score Eψ [L(X,A)] can be achieved at the game G by having the n-players share some
state of the form uxu

∗
x with x ∈ X , receiving an input sequence y1 . . . yn ∈ X , each applying the

unitary Uk
xk→yk

to their subsystem, and then measuring Ak to determine their output. This is a

valid quantum strategy, and so Eψ [L(X,A)] cannot exceed w(G).

Case 2: General case.
Note that

I(Xk : (XX ′QA)k̂)ψ ≤ δ, (121)

or equivalently,

S(ψX
k(XX′QA)k̂‖ψXk ⊗ ψ(XX′QA)k̂) ≤ δ. (122)

Therefore

P (ψX
k(XX′QA)k̂ , ψX

k ⊗ ψ(XX′QA)k̂) ≤ O(
√
δ). (123)

Also, since H(Xk)ψ ≥ log
∣∣X k

∣∣ − δ and I(Xk : X1...(k−1)) ≤ δ, the chain rule implies H(X)ψ ≥
log |X |−O(δ), and therefore the distribution of µ is within purified distance O(

√
δ) from a uniform

distribution. Thus,

P (ψX
k(XX′QA)k̂ , UXk ⊗ ψ(XX′QA)k̂) ≤ O(

√
δ). (124)

We will reduce to Case 1 via the use of a “decoupling” procedure. Let Y, Y ′ denote X -valued
registers. Let Ψ be the state of XX ′Y Y ′AQ such that XX ′AQ are in state ψ and each register
Y kY ′k is in a Bell state. Consider the following two-step process carried out on the state Ψ by
player k. For simplicity, let Playerk = (XX ′Y Y ′AQ)k.
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1. (Swap.) Swap the state of the registers XkX ′k with the state of the registers Y kY ′k.

2. (Recover.) The state of the registers XkPlayerk̂ is now

(UXk) ⊗
(

ΨPlayerk̂
)
. (125)

Using inequality (124) and Lemma C.2, apply an X ′k-controlled unitary operator V k to
the register (X ′Y Y ′AQ)k to bring the registers Player1...n to a state that is within purified
distance O(

√
δ) from state Ψ.

Denote this process (which takes place on the registers Playerk) by the symbol Uk. The state

Uk(Ψ) is within purified distance O(
√
δ) from Ψ. At the same time — since the registers XkPlayerk̂

are not used in step 2 — we have H(Xk | Playerk̂) = log |X | under the state Uk(Ψ).
Applying the data processing inequality and the triangle inequality, the state

U1 ◦ U2 ◦ · · · ◦ Un(Ψ). (126)

is within ∆-distance O(
√
δ) from Ψ, and it also satisfies

H(Xk : Playerk̂) = log |X | (127)

for all k. The desired result therefore follows from Case 1.

C.2 The Pure Parallel Repetition Process

We study the parallel repetition process given in Figure 7 (PureParallel). This PureParallel process
is similar to the process Par in Figure 3, except that it assumes the strategy used by the players
involves a pure state and projective measurements, and that they obtain their input symbols from
a maximally entangled state.

For each i ∈ {1, 2, . . . , n} and t ∈ {1, 2, . . . , N}, let Playerit denote the registers of which player
i has knowledge at the conclusion of step (t+ 4):

Playerit = XiX ′
i
AiCiX î

1...tA
î
1...tP. (128)

Then, following our convention, Playerît denotes the registers of which players 1, 2, . . . , i − 1, i +
1, . . . , n have knowledge at conclusion of step (t + 4):

Playerît = X îX ′
î
AîC îXi

1...tA
i
1...tP. (129)

The next proposition asserts that, if the probability of winning the first t rounds is not too
unlikely, then these players possess only a limited amount of information about player i’s input
on the (t + 1)st round. The lower bound that we choose for the winning probability in the first t
rounds can be somewhat arbitrary; we will take it to be w(G)2t.

Proposition C.4. Suppose that P(W1...t = 1) ≥ w(G)2t in PureParallel. Then, for any i ∈
{1, 2, . . . , n}, the state Γt+4 that occurs after step t+ 4 satisfies

H(Xi
t+1 | Playerît,W1...t = 1) ≥ log

∣∣X i
∣∣−O(t/N). (130)
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Proof. Note that in the state Γt+4, the registers Xi are uniformly distributed relative toX îX ′ îAîC îP .
Since the conditional state Γt+4

|W1...t=1
satisfies

(w(G))2t · Γt+4
|W1...t=1

≤ Γt+4, (131)

we have by Lemma C.1 that

H(Xi | X îX ′
î
AîC îP,W1...t = 1) ≥ N log

∣∣X i
∣∣−O(t). (132)

The registers Xi
1...tA

i
1...t have a range of size 2O(t), and so when we additionally condition on them

we obtain

H(Xi
(t+1)...N | Playerît,W1...t = 1) ≥ N log

∣∣X i
∣∣−O(t), (133)

which implies

N∑

j=t+1

H(Xi
j | Playerît,W1...t = 1) ≥ N log

∣∣X i
∣∣−O(t). (134)

By permutation symmetry, the value of every term in the summation in (134) is the same.4 There-
fore,

H(Xi
t+1 | Playerît,W1...t = 1) ≥

[
N log

∣∣X i
∣∣−O(t)

]
/(N − t) (135)

≥ log
∣∣X i
∣∣−O(t/N), (136)

as desired.

We will use the previous proposition to prove by induction an upper bound on the probability
that W1...t = 1.

Proposition C.5. Suppose that P(WIN(t)) ≥ w(G)2t. Then,

P(W1...(t+1) = 1) ≤ P(W1...t = 1) · (w(G) +O(
√
t/N)). (137)

Proof. Consider the state of the PureParallel protocol after step t + 4. By Proposition C.4, the
expected value of the quantity

H(Xi
t+1 | Playerît,X1...t = x1...t, A1...t = a1...t, P = σ,W1...t = 1), (138)

when x1...t, a1...t, σ vary according to the distribution given by the state Γt+4
|W1...t=1

, is lower bounded

by log
∣∣X i
∣∣ − O(t/N). Additionally, the state of the registers Player1...nt when conditioned on any

such values X1...t = x1...t, A1...t = a1...t, P = σ, is a pure state. By Proposition C.3 and the concavity
of the square root function, the probability of the players winning the (t + 1)st game under the
distribution Γt+4

|WIN(t) is no more than w(G) +O(
√
t/N ), as desired.

4The permutation symmetry argument can be made explicit as follows. Let pjσ = P(W1...t = 1, P = σ). Let

sjσ := H(Xi
j | Playerî,W1...t = 1, P = σ) if pjσ 6= 0 (and otherwise, let sjσ = 0). Then, the terms of the summation in

(134) are the quantities
(
∑

σ
pjσs

j
σ

)

for j ∈ {t+1, . . . , N}. For any j, ℓ ∈ {t+1, . . . , N}, if we choose an N-permutation

α that maps j to ℓ and fixes {1, 2, . . . , t}, then pjσs
j
σ = pℓ(α◦σ)s

ℓ
(α◦σ), and so the quantities

∑

σ pjσs
j
σ and

∑

σ pℓσs
ℓ
σ are

the same.
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Theorem C.6. For any t ∈ {1, 2, . . . , N},

P(W1...t = 1) ≤ (w(G) +O(
√
t/N ))t. (139)

Proof. Let E denote the function represented by O on the righthand side of inequality (137). We
apply induction on t. The base case is obvious. For the inductive step, assume that

P(W1...t = 1) ≤ (w(G) + E(
√
t/N))t (140)

holds for a given value of t ∈ {1, 2, . . . , N − 1}. If P(W1...t = 1) < (w(G))2t , then

P(W1...(t+1) = 1) < (w(G))2t (141)

≤ (w(G))t+1, (142)

and there is nothing to prove. If P(W1...t = 1) ≥ (w(G))2t, then by Proposition C.5,

P(W1...(t+1) = 1) ≤ (w(G) + E(
√
t/N))t+1, (143)

which completes the proof.
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The Pure Parallel Repetition Process (PureParallel)

Participants: Players 1, . . . , n and a referee.

Parameters:
N : A positive integer
G: An n-player free game with input alphabet X and

output alphabet A
Φ ∈ D(C1 ⊗ . . .⊗ Cn): A pure n-partite state

{Ma|x = M1
a1|x1 ⊗ . . .⊗Mn

an|xn}a,x: A projective measurement strategy for GN

(where M i
ai|xi ∈ P(Ci)).

Registers:
{Aik}: Quantum registers (where Aik is Ai-valued, 1 ≤ i ≤ n, 1 ≤ k ≤ N)

{Xi
k}, {X ′

i
k}: Quantum registers (where Xi

k,X
′i
k are X i-valued, 1 ≤ i ≤ n, 1 ≤ k ≤ N)

{Wk}: Bit registers (1 ≤ k ≤ N)
P : A Perm({1, 2, . . . , N})-valued register.

Procedure:

1. Players 1, 2, . . . , N collectively prepare the register C in the state Φ.

2. For each i ∈ {1, 2, . . . , N}, the ith player prepares the registers {Xi
k}k and

{X ′ik}k so that Xi
kX
′i
k is in a Bell state for all k.

3. For each i ∈ {1, 2, . . . , N}, the ith player applies the process from XiCi to
XiCiAi given by the unitary map

∣∣xi
〉
|v〉 7→

∑

ai∈A×N

∣∣xi
〉 ∣∣∣M i

ai|xiv
〉 ∣∣ai

〉
.

4. The referee chooses a random permutation σ : {1, 2, . . . , N} → {1, 2, . . . , N},
stores it in P and broadcasts it to the players. Each player applies the per-
mutation σ to their registers Xi

1, . . . ,X
i
N , the registers X ′i1, . . . ,X

′i
N , and the

registers Ai1, . . . , A
i
N .

5. For each i, player i measures Xi
1, A

i
1 and announces their values. The referee

sets W1 := L(X1, A1).

6. For each i, player i measures Xi
2, A

i
2 and announces their values. The referee

sets W2 := L(X2, A2).

...

N + 4. For each i, player i measures Xi
N , A

i
N and announces their values. The referee

sets WN := L(XN , AN ).

Figure 7: A parallel repetition process with entangled inputs and a pure initial state.
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