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Exactly solvable models have played an important role in establishing the sophisticated modern
understanding of equilibrium many-body physics. Conversely, the relative scarcity of solutions for
nonequilibrium models greatly limits our understanding of systems away from thermal equilibrium. We
study a family of nonequilibrium models, some of which can be viewed as dissipative analogues of the
transverse-field Ising model, in that an effectively classical Hamiltonian is frustrated by dissipative
processes that drive the system toward states that do not commute with the Hamiltonian. Surprisingly, a
broad and experimentally relevant subset of these models can be solved efficiently. We leverage these
solutions to compute the effects of decoherence on a canonical trapped-ion-based quantum computation
architecture, and to prove a no-go theorem on steady-state phase transitions in a many-body model that can
be realized naturally with Rydberg atoms or trapped ions.
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The understanding of equilibrium many-body physics in
both classical and quantum systems has relied heavily on
exact solutions of simplified models. For example, solu-
tions of the classical and quantum (transverse-field) Ising
models have elucidated the structure of classical and
quantum phase transitions, respectively [1,2], and the
connections between them. For quantum systems that are
not in thermal equilibrium, such solutions are compara-
tively scarce, though important progress has been made
in numerous specialized models that (a) are isolated and
one dimensional or harmonic [3–7], (b) impose nontrivial
dissipation on otherwise free bosons or fermions [8–16],
(c) impose highly fine-tuned dissipation [14,17], or (d)
are coupled to an environment only at a boundary [18–21].
On the other hand, interacting quantum spin systems that
are dissipative in the bulk and driven so that they do not
thermalize are expected to exhibit a variety of behaviors
not found in equilibrium, including unusual multicritical
points [22], new critical exponents [23], and the existence
of zero-entropy entangled steady states [24–27]. Moreover,
such systems play a central role in the theory of quantum
computation in the presence of decoherence. While recent
experimental advances have enabled the controlled study
of such physics in systems ranging from exciton-polariton
fluids [28–32] to trapped ions [33,34] to Rydberg gases
[35–37], the minimal microscopic models expected to
capture the essential qualitative physics—many-body
quantum master equations [23]—continue to pose severe
challenges to existing theoretical techniques.
In this Letter, we investigate a broad and experimentally

relevant class of driven-dissipative many-body spin models,

some of which can be viewed as dissipative analogues of the
transverse-field Isingmodel (TFIM), and show that they can
be solved efficiently. The TFIM captures a characteristic
feature of low-temperature quantum systems more gener-
ally: Even at zero temperature, the ordering associatedwith a
classical Hamiltonian (the Ising model) can be frustrated
by the persistence of quantum fluctuations induced by the
transverse field (Fig. 1, left panel). Specifically, the trans-
verse field favors a zero-temperature density matrix that
does not commute with the Ising Hamiltonian. As a result,
energy minimization forces the system to develop quantum
correlations, and—except in certain very special circum-
stances, e.g., nearest-neighbor interactions in one dimension
(1D)—one must resort to approximate methods or sophis-
ticated numerics [38–40] to calculate system properties. The
models we consider realize a nonequilibrium analogue of
this scenario, in which a classical Hamiltonian is frustrated
by the presence of dissipative fluctuations (Fig. 1, right
panel) [25,41,42]. Strikingly, we find that the inclusion
of a broad class of dissipative processes favoring a steady-
state density matrix that does not commute with the
Hamiltonian is relatively benign. Specifically, operators
in the Heisenberg picture remain dynamically localized
for finite-rangeHamiltonians, enabling the time dependence
of correlation functions to be efficiently obtained by solving
a system of equations whose (finite) dimension is deter-
mined by the range of theHamiltonian. This structure exists,
for example, even when dissipation alone drives the system
toward a dark state that is the ground state of a transverse
field. It also exists when the dissipation is explicitly derived
from a fluctuating transverse field; evidently, even though
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the Ising model is not generally expected to be solvable in
the presence of a particular (static or time-varying) trans-
verse field, the dynamics of the transverse-field Ising model
averaged over all such fields can be computed exactly.
To illustrate the utility of these solutions, we exploit them

to prove that an experimentally relevant subset of the models
considered possess a finite dissipative gap, and therefore
cannot undergo dissipative phase transitions. We then apply
this result to a model of interacting Rydberg atoms studied in
Refs. [43,44], thereby confirming the structure of the phase
diagram inferred from recently developed approximate
techniques [45]. From a more applied perspective, we
emphasize that Ising-like Hamiltonians, despite often being
referred to as classical, induce truly quantum dynamics and
play a central role in the production of states sought for
quantum information tasks [46–48]. Their solvability in
the presence of dissipation thus affords numerous exciting
opportunities to investigate the effect of decoherence on
the generation of useful entangled states. As an illustrative
example, we compute the effects of a fluctuating transverse
field (dephasing) on Ising dynamics generated by Mølmer-
Sørensen gates [48–50], which can impose important
technical limitations in trapped-ion-based approaches to
quantum computation [51].
Dissipative models.—The models we consider can be

constructed in close analogy to the spin-1=2 transverse-field
Ising model. There, one starts with an Ising Hamiltonian

Ĥ ¼
X
j≠k

hj;kσ̂
z
jσ̂

z
k; ð1Þ

which is classical in the sense that it can be diagonalized
by a choice of local basis. Therefore, its eigenstates (e.g.,
j↑z;↓z;…;↑z;↓zi) are in one-to-one correspondence with
the configurations of a classical Ising model; they have well-
defined local values of the z component of spin, and in this
sense there are noquantum fluctuations [52]. In equilibrium, a

natural question to ask is how one can modify Ĥ such that, in
the low-temperature limit where thermal fluctuations vanish,
quantum fluctuations remain. One simple strategy is to add
single-body terms to the Hamiltonian that are not diagonal-
ized by the eigenstates of Ĥ. The usual culprit is a transverse
field, resulting in the tranverse-field Ising Hamiltonian
ĤTFIM ¼ Ĥ þ B

P
jσ̂

x
j . For B ≠ 0, even at zero temperature

(i.e., in the quantum ground state of ĤTFIM), there will be
fluctuations between the classical eigenstates of Ĥ.
In a driven-dissipative setting, we are no longer inter-

ested in properties of the ground state, which control the
low-temperature equilibrium physics, but rather in the
properties of the steady state, which control the longtime,
nonequilibrium physics. A natural dissipative generaliza-
tion of the procedure used above to frustrate the zero-
temperature ordering associated with Ĥ is to introduce
single-body dissipative processes that drive the system
toward a steady state that does not commute with Ĥ.
Assuming that dissipation can be treated in the Born-
Markov approximation, the dynamics of an open quantum
system with Hamiltonian Ĥ is governed by a Markovian
master equation of the form [53–55]

_̂ρ ¼ Lðρ̂Þ≡ −i½Ĥ; ρ̂� þDðρ̂Þ; ð2Þ

where Dð⋆Þ≡P
j;αðγjα=2Þð2Ĵjα⋆Ĵ†jα − fĴ†jαĴjα;⋆gÞ. The

dissipation is induced by jump operators Ĵjα, each of which
we assume to be supported on a single site j. The index α
may take on multiple values in order to describe multiple
dissipative channels on a given site, though for simplicity
we will generally consider only one jump operator on
each site, dropping the index α. Consider the dissipative
dynamics in the absence of the Hamiltonian, described
by _̂ρ ¼ Dðρ̂Þ. The steady-state solution of the purely
dissipative dynamics is determined implicitly by solving
Dðρ̂disÞ ¼ 0. If ρ̂dis commutes with the Hamiltonian, then it
is automatically also a solution of Lðρ̂Þ ¼ 0 and thus is a
proper steady state of the complete dynamics including
both coherent evolution and dissipation. If it does not, then,
in close analogy to the ground state of the TFIM, we expect
the steady state to possess fluctuations in the sense of
admixing of classical states [25,41,42].
Surprisingly, a large class of dissipators that frustrate

the classical Hamiltonian, i.e., for which ½ρ̂dis; Ĥ� ≠ 0,
nevertheless admit exact solutions for the dynamics of
observables. For example, suppose that

Tr½σ̂zjDðσ̂�k Þ� ¼ 0 ðfor all values of j; kÞ: ð3Þ
Note that this condition is automatically guaranteed for
j ≠ k because we assume single-site jump operators, and
therefore D does not change the support of an operator.
Thus, only the case j ¼ k imposes an additional constraint
on the form of the jump operators. For Ĥ of the form in

FIG. 1. In the transverse-field Ising model (left panel), ordering
with respect to a “classical” Hamiltonian Ĥ ¼ P

j≠khj;kσ̂jσ̂k is
frustrated, even atT ¼ 0, because the ground state of the transverse
field (expressed as a densitymatrix) does not commutewith Ĥ. The
models solved here generalize this scenario to the case where order
is frustrated by the inclusion of a dissipative processwhose steady
state does not commutewith Ĥ. In the example shown (right panel),
Markovian dissipation implemented by jump operators σ̂yj − iσ̂zj
drives each spin toward the ground state of a transverse field.
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Eq. (1), we also have Tr[σ̂zj½Ĥ; σ̂�k �] ¼ 0, and therefore
whenever the jump operators are chosen to satisfy Eq. (3),
the complete Liouvillian also obeys

Tr½σ̂zjLðσ̂�k Þ� ¼ 0 ðfor all values of j; kÞ: ð4Þ

Taken together with the equality Tr½1̂jLðσ̂�k Þ� ¼ 0, which
follows trivially from the definition of L (and ensures the
conservation of probability) regardless of the form of the
jump operators, Eq. (4) can be understood colloquially as a
statement that L, when applied to the density matrix in the z
basis, does not map coherences (off-diagonal elements)
onto populations (diagonal elements), as illustrated in
Fig. 2(a). In what follows, we will show that finite-range
Hamiltonians of the form in Eq. (1), subjected to dis-
sipation obeying Eq. (3), can be solved efficiently in the
thermodynamic limit.
There are many natural jump operators satisfying Eq. (3).

For example, dephasing, spontaneous emission, and inco-
herent pumping along the z axis all do, and the models
studied here therefore subsume finite-range versions of the
models studied inRefs. [56,57] (and realized experimentally
inRef. [33]) as special cases.However, all of the examples of
dissipation just mentioned lead to steady states ρ̂dis that
commute with Ĥ, and thus the steady states in the presence
of Ĥ remain trivial. Examples of jump operators satisfying
Eq. (3) but producing steady states that do not commute
with Ĥ include dephasing along any direction in the x-y
plane; Ĵ ¼ cosðθÞσ̂x þ sinðθÞσ̂y, or spontaneous emission
along any axis in the x-y plane; Ĵ ¼ σ̂z þ i½cosðθÞσ̂xþ
sinðθÞσ̂y�. Note that, in the latter example, ρ̂dis is the ground
state of a transverse field.
Localization of correlations.—The time-dependent expe-

ctation value of an arbitrary operator Ô, initially supported
on a set of sites A , can be written as

Schrödinger picture∶
OðtÞ¼Tr½ÔexpðtLÞρ̂0�;

Heisenberg picture∶
OðtÞ¼Tr½ρ̂0expðtL‡ÞÔ�: ð5Þ

The Heisenberg-picture expression utilizes the adjoint
Liouvillian L‡ðÔÞ ¼ i½Ĥ; Ô� þD‡ðÔÞ, with the adjoint
dissipator given by D‡ð⋆Þ ¼ P

j;αðγjα=2Þð2Ĵ†jα⋆Ĵjα−
fĴ†jαĴjα; ⋆gÞ. Ô could be, e.g., a product of two spinoperators
on different sites, in which case OðtÞ is an equal-time
correlation function. Equation (4) can be recast in terms of
the Heisenberg-picture Liouvillian as Tr½σ̂�j L‡ðσ̂zkÞ� ¼ 0;
thus, L‡ does not map populations onto coherences
[Fig. 2(a)]. This condition can be restated in the following
useful way: Referring to an operator as “diagonal on the
setS ” if it commuteswith all operators σ̂zj for j ∈ S , one can
show that the set of operators that are diagonal onS is closed
under the action ofL‡.With this structure inmind, we refer to
L‡ as diagonality preserving (in the z basis), a propertywhich
plays a key role in the solution of Eq. (2).
To understand the solvability of the models under

consideration, it is helpful to remember why compu-
ting OðtÞ for a many-body master equation is generally
a difficult task. Consider the expansion OðtÞ ¼P∞

n¼0ðtn=n!ÞTr½ρ̂0Ôn�, where Ôn ¼ ðL‡ÞnÔ, and take
Ô0¼Ô to be a single-spin operator on some site of the
lattice. If Ĥ contains only nearest-neighbor interactions,
then Ô1 will contain products of two spin operators,
supported on both the initial site and its nearest neighbors.
In general, we expect that Ôn contains terms with products
between n (or at least of order n) spin operators supported
on a set of radius ∼n, and the number of such operators
grows at least exponentially with n. Therefore, barring
some simplifying structure, computing the dynamics to
order n in time is exponentially difficult in n.
To see how this situation is avoided in the present context,

we take Ô to be initially supported on the set A , and we
define the set of sitesB that are nearest neighbors ofA as all
sites outside of A for which a term in the Hamiltonian has
simultaneous support onA andB.We further defineC to be
the complement ofA ∪ B [Fig. 2(b)]. Because Ĥ does not
contain terms supported on bothA and C , and becauseD is
composed of local jump operators, we see that Ô1 ≡ L‡ðÔÞ
is supported entirely onA ∪ B. Importantly, because L‡ is
diagonality preserving, Ô1 is diagonal onB. Next, consider
Ô2 ¼ L‡ðÔ1Þ: Because Ô1 is diagonal on B, commutation
with the diagonal operator Ĥ (which does not connectA to
C ) cannot enlarge the support beyond A ∪ B. As was
the case for Ô1, the diagonality-preserving nature of L‡

ensures that Ô2 is diagonal on B. Iterating this argument
through a formal inductive proof [58], it follows that Ôn is
supported on A ∪ B for all n. As a result, we can write
OðtÞ¼TrA∪B½ρ̂AB

P∞
n¼0ðtn=n!ÞðL‡

ABÞnÔ�. Here, ρ̂AB ¼
TrC ½ρ̂0� is the initial reduced density matrix obtained by

FIG. 2. (a) Schematic representation of Eq. (4). In the z basis, L
does not map coherences to populations. Equivalently, in the
Heisenberg picture, L‡ does not map populations onto coher-
ences. (b) When the conditions described in (a) are met, the
dynamics of any observable supported on a subsystem A can be
computed by identifying the nearest neighbors of the set A ,
denotedB, tracing out the part of the density matrix supported on
C , then solving the master equation projected into the remaining
finite-dimensional system.
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tracing over C , and LAB is obtained from L by eliminating
all terms in Ĥ and D with support on C . Returning to the
Schrödinger picture, we find our primary result,

OðtÞ ¼ TrA∪B½Ô expðtLABÞρ̂AB�: ð6Þ

Thus,OðtÞ canbe computed efficiently (i.e., froman effective
problem defined within a finite system) whenever the
Hamiltonian is of finite range, such thatB is finite. It follows
immediately that correlations are localized for finite-range
Hamiltonians. For example, consider a connected correlation
function Cμν

jk ≡ hσ̂μj σ̂νki − hσ̂μj ihσ̂νki (μ; ν ∈ fx; y; zg), and

suppose the system starts in a product state. If Ĥ is of finite
range r (meaning that hj;k ¼ 0 whenever jrj − rkj > r), and
sites j and k are separated by a distance djk > 2r (so that sites
j and k do not share any neighbors, andA ∪ B decomposes
into two disjoint sets), then it follows from Eq. (6) that
hσ̂μj σ̂νki ¼ hσ̂μj ihσ̂νki at all times [64]. Therefore, Cμν

jk vanishes
identically unless djk ≤ 2r.
Applications.—Just as many-body ground states can

suddenly change in character as a parameter in the
Hamiltonian is continuously adjusted, signaling a quantum
phase transition, steady states can exhibit a sudden change
when a parameter in the Liouvillian is continuously
adjusted, signaling a dissipative phase transition. While a
quantum phase transition is associated with the closing of
an energy gap in the Hamiltonian’s spectrum, a dissipative
phase transition is associated with the closing of a dis-
sipative gap in the Liouvillian’s spectrum [63]. Consider
the dissipative transverse-field Ising model studied in
Refs. [43,44],

ĤTFIM¼J
X
hj;ki

σ̂zjσ̂
z
kþΔ

X
j

σ̂xj ; Ĵj¼
1

2
ðσ̂yj − iσ̂zjÞ; ð7Þ

in which fluctuations due to both dissipation (strength γ)
and a transverse field (strength Δ) are considered. Note
that, in the absence of the Ising term, the dissipation drives
the system into a dark state j↓x;…;↓xi. Thus, either
dissipation or energy minimization with respect to the
transverse field (for Δ > 0) drives the system toward
the same state. If Δ ¼ 0 (for arbitrary J, γ), the model is
of the form assumed in Eq. (1) and the dissipator satisfies
Eq. (3), so our solutions can be applied. In Ref. [44], a
careful analysis of the variational techniques developed in
Ref. [45] suggests that the system is disordered for any
value of γ at Δ ¼ 0 in high dimensions. Here, we can make
this conclusion rigorous in any dimension: By exploiting
the solvability of the model, it can be proven [58] that, at
Δ ¼ 0, there must be a finite dissipative gap ≥ γ. Since the
model is disordered at γ ¼ ∞ and a gap exists at Δ ¼ 0
whenever γ > 0, it must be disordered along the entire
Δ ¼ 0 axis. Given the Liouvillian stability results of
Ref. [65], a dissipative gap at Δ ¼ 0 may actually imply

something much stronger: A gap persists for small Δ > 0,
ruling out a phase transition forΔ≲ γ and implying that the
system is disordered for sufficiently small Δ whenever
γ > 0.
The solutions developed here can also be used to

calculate dynamics of the Ising model in the presence of
a fluctuating transverse field [66,67],

ĤFTFIMðtÞ ¼ J
X
hj;ki

σ̂zjσ̂
z
k þ

X
j

ΔjðtÞσ̂xj : ð8Þ

Here, the transverse fields ΔjðtÞ are Gaussian random

variables with white noise spectra, Δjðt1ÞΔkðt2Þ ¼
γδj;kδðt1 − t2Þ, and observables are to be computed with
respect to the stochastic Schrödinger equation ∂tjψðtÞi ¼
−iĤFTFIMjψðtÞi. This model arises naturally in ion trap
experiments, where it captures the important effects of
qubit dephasing along the quantization axis during Ising
dynamics induced by Mølmer-Sørensen gates [48–51],
and hence it plays a prominent role in the description of
decoherence effects on trapped-ion-based approaches to
quantum computation. Note that the brute-force solution of
this model requires averaging over the dynamics of an Ising
model with a time-dependent transverse field, which cannot
(in general) be done efficiently. Nevertheless, it is well
known that this model can be mapped exactly onto the
master equation [68,69]

_̂ρ ¼ −i
�
J
X
hj;ki

σ̂zjσ̂
z
k; ρ̂

�
þ γ

X
j

ðσ̂xj ρ̂σ̂xj − ρ̂Þ; ð9Þ

which obeys Eq. (3) and thus can be efficiently solved by
the methods developed here [see also Refs. [70,71] for a
constructive approach to Eq. (9) starting from Eq. (8)].
In Fig. 3 we show numerical simulations of the stochastic

Schrödinger equation starting from an initial state polarized
along the y direction, jψð0Þi ¼ j↑y;…;↑yi. These simu-
lations are computationally very expensive as they require
a large sampling of the solutions to an exponentially
large set of coupled differential equations with random
transverse-field values, and they are not feasible for more

FIG. 3. Quench in the fluctuating-transverse-field Ising model
starting with all spins polarized along þy (10 spins in 1D with
periodic boundary conditions, γ ¼ J=4).
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than ∼10 spins (giving, in this case, a system of 210

ordinary differential equations to sample from). However,
one can clearly see that the average over sufficiently many
samples converges to the results obtained from the exact
solution of Eq. (9) (the black-dashed line).
Outlook.—The underlying algebraic structure exploited

here persists in a much more general class of Hamiltonians
that are solvable in the absence of dissipation. For example,
our results can be generalized to systems with arbitrary
finite-dimensional Hilbert spaces on each site and time-
dependent Hamiltonians. Long-range interactions spoil
some aspects of the solution, but the absence of dissipative
phase transitions can still be proven. Hamiltonians that are
not diagonalized by a local choice of basis but can still be
written as a sum of local commuting terms, such as the toric
code [27,72], are amenable to similar solution techniques
and will be explored in future work.
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