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We present a technique to measure the amplitude of a center-of-mass (c.m.) motion of a two-dimensional
ion crystal of ∼100 ions. By sensing motion at frequencies far from the c.m. resonance frequency, we
experimentally determine the technique’s measurement imprecision. We resolve amplitudes as small as
50 pm, 40 times smaller than the c.m. mode zero-point fluctuations. The technique employs a spin-
dependent, optical-dipole force to couple the mechanical oscillation to the electron spins of the trapped
ions, enabling a measurement of one quadrature of the c.m. motion through a readout of the spin state. We
demonstrate sensitivity limits set by spin projection noise and spin decoherence due to off-resonant light
scattering. When performed on resonance with the c.m. mode frequency, the technique demonstrated here
can enable the detection of extremely weak forces (< 1 yN) and electric fields (< 1 nV=m), providing an
opportunity to probe quantum sensing limits and search for physics beyond the standard model.
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Measuring the amplitude of mechanical oscillators has
engaged physicists for more than 50 years [1,2] and, as the
limits of amplitude sensing have dramatically improved,
has produced exciting advances both in fundamental
physics and in applied work. Examples include the detec-
tion of gravitational waves [3], the coherent quantum
control of mesoscopic objects [4], improved force micros-
copy [5], and the transduction of quantum signals [6].
During the past decade, optomechanical systems have
facilitated increasingly sensitive techniques for reading
out the amplitude of a mechanical oscillator [7–11], with
a recent demonstration obtaining a measurement impreci-
sion more than 2 orders of magnitude below zZPT, the
amplitude of the ground-state zero-point fluctuations [12].
Optomechanical systems have assumed a wide range of
physical systems, including toroidal resonators, nano-
beams, and membranes, but the basic principle involves
coupling the amplitude of a mechanical oscillator to the
resonant frequency of an optical cavity mode [4].
Crystals of laser-cooled, trapped ions behave as atomic-

scale mechanical oscillators [13–15] with tunable oscillator
modes and high quality factors (∼106). Furthermore, laser
cooling enables ground-state cooling and nonthermal state
generation of these oscillators. Trapped-ion crystals there-
fore provide an ideal experimental platform for investigat-
ing the fundamental limits of amplitude sensing. Prior work
has demonstrated the detection of coherently driven ampli-
tudes larger than the zero-point fluctuations of the trapped-
ion oscillator [14–16], and has reported impressive force
sensing by injection locking an optically amplified oscil-
lation of a single trapped ion [17].

In this Letter we experimentally and theoretically ana-
lyze a technique to measure the center-of-mass (c.m.)
motion of a two-dimensional, trapped-ion crystal of
∼100 ions with a sensitivity below zZPT. We employ a
time-varying spin-dependent force F0 cos ðμtÞ that couples
the amplitude of the c.m. motion with the internal spin
degree of freedom of the ions [18–20]. When the frequency
μ matches the frequency ω of a driven c.m. oscillation,
Zc cos ðωtÞ, a spin precession proportional to Zc occurs.
The amplitude-dependent spin precession is analogous to
the optomechanical frequency shift of a cavity mode. In
contrast to the continuous measurement typical of opto-
mechanics experiments, we measure the spin precession
only at the end of the experimental sequence, with a
precision imposed by spin projection noise [21].
To determine the readout imprecision in a regime free

from thermal noise, we perform measurements where ω is
far from resonance with the trap axial frequency ωz.
Additionally, we implement a protocol where the phase
of the measured quadrature randomly varies from one
iteration of the experiment to the next, appropriate for
sensing a force whose phase is unknown or not stable. For
N ¼ 85 ions and zZPT ≡ ð1= ffiffiffiffi

N
p Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðℏ=2mωzÞ

p
≈ 2 nm, we

detect amplitudes Zc ¼ 500 pm in a single implementation
of the experimental sequence, and as small as 50 pm after
averaging over 3000 iterations of the sequence.
Our experimental apparatus, described in Fig. 1 and

Refs. [18,19,22], consists of N ∼ 100 9Beþ ions laser
cooled to the Doppler limit of 0.5 mK and confined to a
single-plane Coulomb crystal in a Penning trap. The spin-
1=2 degree of freedom is the 2S1=2 ground-state valence
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electron spin j↑iðj↓iÞ≡ jms ¼ þ1=2iðjms ¼ −1=2iÞ. In
the magnetic field of the Penning trap, the spin-flip
frequency is 124 GHz. A resonant microwave source is
used to perform global rotations of the spin ensemble. A
pair of laser beams, detuned from the nearest optical
transitions by ∼20 GHz, interfere to form a one-
dimensional (1D) traveling-wave potential that produces
a spin-dependent optical-dipole force (ODF). Optical
pumping prepares the initial state j↑iN ≡ j↑↑ � � �↑i with
high fidelity. At the end of the experiment, we measure the
probability P↑ for an ion spin to be in j↑i from a global
measurement of state-dependent resonance fluorescence on
the Doppler cooling transition, where spin j↑i (j↓i) is
bright (dark).
If the ions are localized axially over an extent that is

small compared to the wavelength of the 1D traveling-wave
potential (Lamb-Dicke confinement), then the ODF

couples the spin and motional degrees of freedom through
the interaction [22]

ĤODF ¼ F0 cos ðμtÞ
X

i

ẑiσ̂
z
i : ð1Þ

Here, F0 ¼ U δkDWF is the magnitude of the ODF, where
UðδkÞ is the zero-to-peak potential (wave vector) of the 1D
traveling wave, μ is the frequency difference between the
ODF beams, and ẑi and σ̂

z
i are the position operator and the

Pauli spin matrix for ion i. The Debye-Waller factor
DWF ¼ expð−δk2hẑ2i i=2Þ reduces F0 due to the departure
from the Lamb-Dicke confinement regime [24]; DWF ≈
0.86 for the conditions of this work. The potential U, and
therefore F0, is determined from ac Stark shift measure-
ments on the ions [25]. Typical maximum values for this
work are U=ℏ≈2π×ð10.4kHzÞ, resulting in F0 ≈ 40 yN.
Equation (1) describes a dependence of the spin tran-

sition frequency on the axial position of the ions and the
ODF frequency μ. We excite a small, classically driven c.m.
motion of constant amplitude ẑi → ẑi þ Zc cosðωtþ δÞ
with a weak rf drive on a trap end-cap electrode [see
Fig. 1(a)] at a frequency ω far from ωz. If ω ∼ μ, Eq. (1)
produces an approximately constant shift in the spin
transition frequency. With δkZc ≪ 1, this shift is given by

ĤODF ≈ F0Zc cos½ðω − μÞtþ δ�
X

i

σ̂zi
2
: ð2Þ

For μ ¼ ω, the static shift of the spin transition frequency is
simply ΔðZcÞ ¼ ðF0=ℏÞZc cosðδÞ.
We measure ΔðZcÞ from the resulting spin precession in

an experiment like that shown in Fig. 1(b). Ideally, spin
precession can be measured using a Ramsey-type experi-
ment. First, the ions are prepared in the j↑iN state, followed
by a microwave π=2 pulse around ŷ that rotates the spins to
the x̂ axis. The spins precess for an interaction time τ so that
the resulting spin precession on resonance (μ ¼ ω) is
θ ¼ θmax cosðδÞ, where θmax ≡ ðF0=ℏÞZcτ. After a final
π=2 pulse around ŷ, the final state readout measures the
population of the spins in j↑i, P↑ ¼ 1

2
½1 − e−Γτ cosðθÞ�.

Here,Γ is the decay rate from spontaneous emission from the
off-resonant ODF laser beams [26]. To detect small ampli-
tudes with the available F0 in our setup, we extend the spin-
precession time to τ ≥ 20 ms. To avoid decoherence due to
magnetic field fluctuations and coherently accumulate spin
precession, we use a quantum lock-in [27] sequence where,
during the interaction time τ, the spin precession is inter-
rupted by a train of π pulses that are synchronizedwith phase
jumps enforced on the ODF beams [23]. Specifically, we
use a Carr-Purcell-Meiboom-Gill (CPMG) sequence with
m ¼ 8 ODF-π-ODF segments [τ ¼ 2mT, see Fig. 1(b)].
We ensure the phase δ randomly varies from one

iteration of the CPMG sequence to the next, effectively
measuring a random quadrature of the motion for each
experimental trial. Different experimental trials therefore

FIG. 1. (a) Representation of ion spins arranged in a 2D
triangular lattice, along with a cross-section illustration of the
Penning trap, characterized by an axial magnetic field B ¼
4.45 T and an axial trap frequency ωz ¼ 2π × 1.57 MHz. The
blue dots represent ions. Cylindrical electrodes (yellow) generate
a harmonic confining potential along the ẑ axis. Radial confine-
ment is provided by the Lorentz force from (E⃗ × B⃗)-induced
rotation in the axial magnetic field. The beams generating the
spin-dependent optical-dipole force (the green arrows) cross
the ion plane at �10°, forming a 1D traveling-wave potential
(the green lines) with δk ¼ 2π=ð0.9 μmÞ. An ac voltage source is
connected to the trap end cap and used to drive an axial oscillation
with calibrated amplitude Zc. (b) Quantum lock-in CPMG
sequence used to detect spin precession produced by c.m. motion
resonant with the ODF. Doppler cooling and j↑iN spin-state
preparation occur before the sequence, and spin-state detection
after. The grey blocks with solid borders represent microwave
π=2 rotations around ŷ and π rotations around x̂. The orange
blocks with dashed borders represent ODF pulses. The ODF
phase is advanced by Δφ in a modulation scheme discussed in
Ref. [23], where Δφ ¼ π for ω ¼ μ. The dashed vertical lines
indicate the m segments of the sequence (here, m ¼ 2). We make
use of an m ¼ 8 sequence for Figs. 2–4.
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result in a different precession θ, as indicated in Fig. 3.
We measure the collective dephasing (or decoherence)
averaged over many experimental trials hP↑i ¼
1
2
½1 − e−ΓτhcosðθÞi�. Here, the brackets h� � �i denote an

average over many iterations of the CPMG sequence.
Averaging over the random phase δ yields [28]

hP↑i ¼
1

2
½1 − e−ΓτJ0ðθmaxÞ�; ð3Þ

with J0 being the zeroth-order Bessel function of the
first kind.
To create the steady-state c.m. axial oscillation

Zc cosðωtþ δÞ, we applied a continuous ac voltage to an
end cap of the Penning trap at a frequency ω=ð2πÞ near
400 kHz. This frequency was chosen because it was far
from any motional mode frequencies of the ion crystal, and
there were no observed noise sources. Thus, the back-
ground, i.e., the signal without the driven c.m. axial motion,
such that Zc ¼ 0, was fully characterized by decoherence
due to spontaneous emission and is given by hP↑ibck ¼
1
2
½1 − e−Γτ�. We calibrated the displacement of the ions due

to a static voltage applied to the end cap by measuring the
resulting movement of the ion crystal in the side-view
imaging system. From this calibration, we determined that
a 1 V offset results in a 0.97ð5Þ μm displacement of the
ions. We estimate that the corrections for using this dc
calibration to estimate Zc for an ω=ð2πÞ ≈ 400 kHz drive is
less than 10%.
Figure 2 shows the emergence of the measured spin-

precession signal out of the background as the amplitude Zc
is increased from 500 pm to 5 nm. The measured line shape
agrees well with the prediction, detailed in Ref. [23],
involving no free parameters. Figure 3 shows the

background and the measured resonant (μ ¼ ω) response
to a Zc ¼ 485 pm oscillation for a range of ODF strengths
F0=F0M, where F0M is the maximum F0 possible with our
current setup (∼40 yN). Agreement with Eq. (3) involving
no free parameters is excellent. For both Fig. 2 and Fig. 3,
the background is within 6% of that determined by
independent measurements of the spontaneous emission
decay rates of each ODF beam [25]. The amplitude Zc ¼
θmax=ðτF0=ℏÞ can be determined from the difference
hP↑i − hP↑ibck [23]. We note that hP↑i − hP↑ibck depends
on θ2max. Therefore, the sensing protocol described here
directly measures Z2

c. The inset of Fig. 3 shows a
determination of Z2

c for a range of ODF strengths. The
uncertainties were calculated from the measured noise of
the hP↑i − hP↑ibck measurements using standard error
propagation. These uncertainties go through a minimum,
indicating an optimum F0=F0M value for determining Z2

c.

FIG. 2. Line shape of the spin-precession signal for amplitudes
Zc of 500 pm (the red diamonds), 1 nm (the blue triangles), 2 nm
(the green squares), and 5 nm (the orange circles) for τ ¼ 20 ms.
The black triangles are the background, with the drive turned off.
The dashed lines are predictions with no free parameters. The
error bars represent standard error. Here N ¼ 90 ions and
F0 ¼ 7.9 yN.

FIG. 3. (Top panels) Bloch sphere representation [29] of spin
dephasing for Zc ¼ 485 pm. Each blue vector represents an
experimental trial with a different phase δ (see the text). From
left to right, the spread in the blue vectors corresponds to
θmax ¼ 0.470, 1.41, 3.62 rad and F0=F0M ¼ 0.1, 0.3, 0.77,
where F0M is the maximum optical-dipole force. Our experiment
measures the length of the Bloch vector averaged over many
trials, denoted by the thick red vector. (Main plot) As a function
of ODF strength, the background (the black diamonds) with no
applied drive and signal (the blue points) for a 485 pm amplitude
and total ODF interaction time τ ¼ 24 ms is shown. The red
dashed line is a fit to the background. The black dashed line is the
prediction with no free parameters, given the background fit.
Here, N ¼ 75 ions and F0M ¼ 41.3 yN. (Inset) The black points
are experimentally determined values for Z2

c. The red dashed
line is the calibrated value of Z2

c. The error bars represent
standard error.
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To explore the ultimate amplitude sensing limits of our
protocol, we performed repeated pairs of P↑ measurements,
first with Zc ¼ 0 to get the background, then with Zc ≠ 0.
For a given Zc, 3000 pairs of measurements were used to
determine the average difference hP↑i − hP↑ibck and the
standard deviation σðP↑ − P↑;bckÞ of the difference for a
single pair of measurements. For each Zc, F0=F0M was set
close to the value that maximizes the signal-to-noise ratio
for determining Z2

c. This occurs for a relatively small θmax

such that 1
2
½1 − J0ðθmaxÞ� ≈ θ2max=8. Then, the signal-to-

noise ratio for determining Z2
c from a single pair of P↑,

P↑;bck measurements is approximately

Z2
c

δZ2
c
≈
hP↑i − hP↑ibck
σðP↑ − P↑;bckÞ

: ð4Þ

Figure 4 displays Eq. (4) from measurements acquired with
Zc ranging from 10 nm to as small as 0.025 nm. Excellent
agreement is observed with a model (the dashed red line)
that assumes the only noise sources are projection noise in
the spin-state detection and fluctuations in P↑ produced by
random variation in the phase δ from one experimental trial
to the next.
For amplitudes Zc ≳ 500 pm, fluctuations in P↑ due to

the random variation of the phase δ for different exper-
imental trials dominate. This situation is depicted by the
middle Bloch sphere of Fig. 3. Here, the fluctuations in P↑

are comparable to the difference hP↑i − hP↑ibck, limiting
the signal-to-noise ratio of a single determination of Z2

c to
∼1. As Zc decreases, this noise and the signal decrease
while projection noise stays approximately the same,
resulting in a decreasing Z2

c=δZ2
c. For a small Zc, we show

that the sensitivity is determined by N, δk, and the ratio
of the spontaneous decay rate to the optical potential
ξ≡ Γ=ðU=ℏÞ [23], according to

Z2
c

δZ2
c

����
limiting

≈ 0.097

ffiffiffiffi
N

p ðDWFÞ2ðδkÞ2
ξ2

Z2
c: ð5Þ

For N ¼ 85 and values of DWF, δk, and ξ ¼ 1.156 × 10−3

relevant to our setup, Eq. (5) predicts Z2
c=δZ2

c≈
½Zc=0.2 nm�2, displayed as the blue line in Fig. 4. On
the log-log plot, the slope of 2 is the result of a signal
proportional to Z2

c along with a constant readout noise of
the spins (here, projection noise). We perform 16 pairs
of measurements in 1 s, so the signal-to-noise ratio
Z2
c=δZ2

c ≈ ½Zc=0.2 nm�2 for a single pair of measurements
corresponds to a long averaging time sensitivity of
ð100 pmÞ2= ffiffiffiffiffiffi

Hz
p

(recall that our protocol measures Z2
c).

Figure 4 documents a good understanding of the sensing
limits of our protocol, indicating how the measurement can
be improved in the future. Equation (5) scales as 1=ξ2,
resulting in significant improvements for setups with less
spontaneous decay. By stabilizing the ODF beat-note phase
with respect to the classical drive [30,31], we could
repeatedly measure the same quadrature of motion and
realize a substantial improvement in sensitivity. For this
phase-coherent protocol, assuming that N ¼ 100 and
current parameters of our setup, we estimate [23] a
measurement imprecision of 74 pm for a single imple-
mentation of the experimental sequence. This is ∼30 times
smaller than zZPT, producing a long averaging time sensi-
tivity of ∼18 pm=

ffiffiffiffiffiffi
Hz

p
. The use of spin-squeezed states,

recently demonstrated in this system [22], can provide an
additional enhancement by reducing the projection noise of
the readout.
The 50 pm amplitude detected in Fig. 4 at a frequency ω

far from resonance corresponds to an electric field detection
of 0.46 mV=m or 73 yN=ion. These force and electric field
sensitivities can be improved by the Q of the c.m. mode by
probing near resonance with ωz. Quality factors Q ∼ 106

should be possible with trapped-ion c.m. modes. The
detection of a 20 pm amplitude resulting from a 100 ms
coherent drive on the 1.57 MHz c.m. mode is sensitive to a
force per ion of 5 × 10−5 yN, corresponding to an electric
field of 0.35 nV=m. Electric field sensing below ∼1 nV=m
enables searches for hidden-photon dark matter [32,33],
although shielding effects must be carefully considered. Ion
traps typically operate with frequencies ωz=2π between
50 kHz and 5 MHz, providing a sensitivity to hidden-
photon masses from 2 × 10−10 to 2 × 10−8 eV.
By sensing c.m. motion far from resonance, we calibrate

the measurement imprecision of our protocol in the absence
of thermal noise and backaction. Probing on resonance with
a measurement imprecision below zZPT will be sensitive to
thermal fluctuations and backaction due to spin-motion

FIG. 4. Amplitude sensing limits for N ¼ 85. The black points
are the experimentally measured signal-to-noise ratio for deter-
minations of Z2

c from single pairs of P↑, P↑;bck measurements as a
function of the experimentally imposed Zc. Our measurement for
Zc ¼ 25 pm is consistent with zero. The red dashed line is the
prediction for the signal-to-noise ratio, including projection noise
and the random c.m. mode quadrature measured each trial. The
blue solid line is the predicted limiting signal-to-noise ratio for
small amplitudes [Eq. (5)], assuming only projection noise and
parameters relevant for our setup. The error bars represent
standard error.
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entanglement [19]. This motivates the investigation of
potential backaction-evading protocols with trapped-ion
setups. For the phase-coherent measurement of a single
quadrature, backaction due to spin-motion entanglement
can be evaded through the introduction of the appropriate
correlations between spin and motion [34].
In summary, we have presented a technique for ampli-

tude sensing below zZPT of a trapped-ion mechanical
oscillator. By employing a spin-dependent force to couple
the spin and motional degrees of freedom of the ions, the
amplitude of the c.m. motion may be determined. We have
detected a 500 pm amplitude in a single experimental trial
and demonstrated a long measurement time sensitivity of
ð100 pmÞ2= ffiffiffiffiffiffi

Hz
p

with a protocol where the phase of the
measured quadrature randomly varies. Modifications of our
setup should enable repeated measurements of the same
quadrature, with a measurement imprecision of 74 pm for a
single experimental trial with N ¼ 100 ions, providing
opportunities for trapped-ion mechanical oscillators to
explore the quantum limits of amplitude and force sensing,
and to enable the use of new tools in the search for physics
beyond the standard model.
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