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Assembly of multi-flavored two-dimensional
colloidal crystals†

Nathan A. Mahynski, *a Hasan Zerze,b Harold W. Hatch, a Vincent K. Shena and
Jeetain Mittal *b

We systematically investigate the assembly of binary multi-flavored colloidal mixtures in two dimensions.

In these mixtures all pairwise interactions between species may be tuned independently. This introduces

an additional degree of freedom over more traditional binary mixtures with fixed mixing rules, which is

anticipated to open new avenues for directed self-assembly. At present, colloidal self-assembly into

non-trivial lattices tends to require either high pressures for isotropically interacting particles, or the

introduction of directionally anisotropic interactions. Here we demonstrate tunable assembly into a

plethora of structures which requires neither of these conditions. We develop a minimal model that

defines a three-dimensional phase space containing one dimension for each pairwise interaction, then

employ various computational techniques to map out regions of this phase space in which the system

self-assembles into these different morphologies. We then present a mean-field model that is capable of

reproducing these results for size-symmetric mixtures, which reveals how to target different structures by

tuning pairwise interactions, solution stoichiometry, or both. Concerning particle size asymmetry, we find

that domains in this model’s phase space, corresponding to different morphologies, tend to undergo a

continuous ‘‘rotation’’ whose magnitude is proportional to the size asymmetry. Such continuity enables

one to estimate the relative stability of different lattices for arbitrary size asymmetries. Owing to its

simplicity and accuracy, we expect this model to serve as a valuable design tool for engineering binary

colloidal crystals from multi-flavored components.

1 Introduction
Achieving high-fidelity control over the self-assembly of multi-
component colloidal mixtures remains an outstanding objective
in material design, and an active area of ongoing research.1–5

By tuning their pairwise interactions, nano- and microscale
colloids can be assembled into a myriad of morphologies with
even greater complexity than those found in atomic systems.6,7

The vast phase space of parameters governing the mathematical
form of these potential interactions can be daunting, and deter-
mining specific pair potentials that stabilize a desired structure
is rarely obvious. Thus, computational tools are often employed
to predict pairwise interactions that optimally produce a desired
target. Among feasible parameters, directional anisotropy is a

common tool for engineering interactions in a highly specific
manner to stabilize stereospecific subunits of crystals.4,8–17 In
principle, desired spatial symmetries of a crystal can often be
obtained through intuitive design of the shape, size, and orienta-
tion of different ‘‘patches’’ on its constituent colloids, making this
a highly attractive route for experimental realization.4,13,14,17

However, for practical reasons not all theoretical or computational
designs involving anisotropy can be easily achieved in an
experimental setting4,14 and additional factors, such as struc-
ture directing agents, may be required to obtain the desired
structure.18–20 A seemingly simpler alternative is to construct
isotropic interactions that can achieve the same end goals.

Indeed, recent work has shown that inverse statistical
mechanical methods can be powerful tools for designing purely
repulsive pairwise interactions that stabilize specific crystal
morphologies in pure-component systems at high density or
pressure.21–24 The assembly of similar purely repulsive binary
mixtures have been studied extensively.25–36 Consequently, it
also known that subtle changes to such a pair potential’s form
or shape can shift the relative stability of different crystal
polymorphs.37,38 Since it is not always clear how to precisely
realize a computationally-engineered potential in an experi-
mental setting, it can be difficult to control the ubiquitous
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problem of polymorphism with such an approach. Further-
more, the high densities and pressures required to achieve
assembly with purely repulsive interactions are not always
representative of experimentally realizable systems.

It may be preferable to have a system of isotropically inter-
acting particles that assembles at low density or pressure,
whose pairwise interactions have general characteristics that
are robustly linked to the resulting morphology into which they
self-assemble. An appealing candidate system which meets
some of these requirements is DNA-grafted colloids. In tradi-
tional DNA-grafted nanoparticle assembly, colloids are coated
with a certain single stranded DNA (ssDNA) sequence while
strands with a complementary sequence are attached to other
particles; base pairing results in highly tunable assembly of this
binary mixture. Unfortunately, this approach does not permit
the self- and cross-interactions between different colloids to be
tuned independently.

However, recently a new approach known as the ‘‘multi-
flavoring motif’’ has experimentally demonstrated the capability
of decoupling them.39,40 In this case, more than one sequence
(and its complement) is grafted on different particles, which
enables one to tune the pairwise cross-interactions between like
species and unlike species independent of their self-interactions,
making them non-additive. This non-additivity is achieved by
controlling the relative concentrations of different strands (and
their complements) on different particles. This additional degree
of freedom greatly increases the design space for experimentally
realizable pair potentials, and may open new avenues to tunable
self-assembly with isotropic interactions at low density. Indeed,
non-additive pair potentials have been shown to manifest in a
breadth of nanoparticle systems7 and computational investiga-
tions into various colloidal models have revealed a range of
intriguing self-assembled structures and phase behavior.16,41,42

Inspired by this approach, here we use a variety of computational
and theoretical methods to interrogate the relative stability of two-
dimensional binary crystals assembled from multi-flavored colloids
at low densities (pressures) representative of experiments.43 We
systematically explore these binary mixtures using a simplified pair
potential containing a single order parameter, l, which smoothly
varies the interaction from long-range repulsive to long-range attrac-
tive (cf. Section 2).44 Thus, for a binary system of ‘‘A’’ and ‘‘B’’
particles, there are three values that need to be specified: hlA,A, lA,B,
lB,Bi. Physically, these parameters describe the cohesive inter-
action between like particles, li,i, and the adhesive interaction
between unlike particles, li,j. This reduces the pairwise interaction
phase space to three scalar coordinates for a binary colloidal
mixture. Within this phase space, we determine the regions in
which different self-assembled structures are the most stable.

This paper is organized as follows. In Section 2, we describe
our model and the computational methodologies we employed.
Following, in Section 3, we present our results demonstrating
tunable assembly of multi-flavored binary superlattices which
requires neither anisotropic interactions nor high pressures.
These results can be rationalized on the basis of a simple mean-
field model enabling heuristic design of binary systems
that need not follow the exact form of the pair potentials we

employ here. In addition, this model allows us to systematically
explore the impact of solution stoichiometry on the resulting
structure.45 We found excellent agreement between theoretical
predictions and the observed structure in direct simulations,
suggesting this model may serve as a valuable tool for guiding
experiments. Finally, we conclude by systematically investigating
the effect of size asymmetry between the constituent colloids.
These conclusions are further summarized in Section 4.

2 Methods
2.1 Multi-flavored pair potential

To capture the essential physics of the multi-flavoring motif, we
employed a modified Lennard-Jones potential between all
species, as described in ref. 44 (cf. Fig. 1). Here the attractive
and repulsive contributions are separated and recombined
according to the order parameter, l, such that:

Ui,j(r) = U r
i,j(r) + li,jU

a
i,j(r), (1)

where

Ur
i;jðrÞ ¼

4
si;j
r

! "12
$ si;j

r

! "6# $
ei;j þ ei;j r & 21=6si;j

0 r4 21=6si;j;

8
><

>:
(2)

and

Ua
i;jðrÞ ¼ 4

si;j
r

! "12
$ si;j

r

! "6# $
ei;j $Ur

i;jðrÞ: (3)

In all our simulations sA,A = 1, eA,A = eA,B = eB,B = 1.0, while the
diameter of the second species is reduced to explore size asymme-
try such that sB,B = 1.00, 0.40, 0.14. In all cases, sA,B = (sA,A + sB,B)/2.
Temperature is defined in reduced units such that T* = kBT/eA,A,
where kB is Boltzmann’s constant. Furthermore, all lengths
reported herein have been implicitly non-dimensionalized by
dividing by sA,A. In principle, one can use a pair potential
derived from statistical mechanics46 or simulations,47 but here

Fig. 1 The pair potential we employed describing the interactions between
different colloidal species ranging from long-range repulsive (red) to long-
range attractive (green), as a function of the order parameter l. The inset
shows how we divide the phase space describing these interactions, hlA,A,
lA,B, lB,Bi, for all pairs of species into discrete planes which were sampled
with Monte Carlo simulations.
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we restrict ourselves to the simple LJ-type potential form
for simplicity and generality of the results for other types of
binary superlattices.

2.2 Monte Carlo simulations

We performed Wang–Landau Monte Carlo simulations to
explore the three dimensional phase space defined by hlA,A,
lA,B, lB,Bi.48,49 To cover this pairwise interaction phase space
efficiently, we divided it into planes according to fixed ratios of
lA,A/lB,B as depicted in the inset of Fig. 1. Each plane was
broken into discrete simulations at different magnitudes of li,i.
In each simulation we employed an expanded ensemble in
which the adhesion was divided into 11 windows with values of
lA,B A [0.0, 0.1, 0.2,. . .,1.0]. The cohesion order parameters,
lA,A, lB,B were fixed, also at values in this range, while the
expanded ensemble allows the system to dynamically change
its value of lA,B over time. These were carried out in a periodic
35sA,A ' 35sA,A simulation cell at T* = 0.05, 0.10, 0.15, 0.175.
For equimolar mixtures the cell contained 100 ‘‘A’’-type colloids
and 100 ‘‘B’’-type colloids. For mixtures at a 2 : 1 ratio we
simulated 200 ‘‘A’’ and 100 ‘‘B’’ colloids, whereas for 3 : 1 the
cell contained 200 ‘‘A’’ and 66 ‘‘B’’ colloids. Here we report only
the representative results from T* = 0.10.

Wang–Landau simulation is a flat-histogram method which
constructs the relative probability distribution of a system’s
macrostates defined by a given order parameter, in this case,
lA,B.48 This is done by measuring the frequency with which
each macrostate is visited during a simulation. The inverse of
this estimated distribution is then used to bias the Monte Carlo
simulation so that all macrostates may be visited with approxi-
mately equal probability. Specific details of our implementation
can be found in ref. 50 and 51. In each simulation, we used single
particle displacement moves, identity swaps, geometric cluster
moves,52,53 and incremental changes to lA,B which occurred in a
ratio of 5000 : 5000 : 10 : 1, respectively. This expanded ensemble
allows the system to break and reform different morphologies
with relative ease facilitating fast equilibration across the range
of lA,B values used. The subsequent production phase lasted for
2 ' 1010 moves, during which we recorded the instantaneous
configuration of the system every 2.5 ' 105 steps. This generally
resulted in at least 1000 snapshots for each lA,B at fixed lA,A, lB,B.
The morphologies in each snapshot were identified visually in
each frame and the mean structure we found has been reported
here, where the results for each lA,B were included with those of
their neighboring values. Hence we report the mean structure for
lA,B A [0.1 ( 0.1, 0.3 ( 0.1, 0.5 ( 0.1, 0.7 ( 0.1, 0.9 ( 0.1]. In
these Monte Carlo simulations, all pair potentials were cutoff at
rcut = 3sA,A, then shifted to zero at the cutoff.

2.3 Stochastic global structure optimization

We used stochastic global optimization to understand the
lowest energy structure of small clusters of size-symmetric
colloids (sA,A = sB,B), used in the Monte Carlo simulations, to
identify the most thermodynamically stable structure in the
limit of T* - 0. Specifically, we used basin-hopping54,55 as
implemented in the SciPy library56 for Python,57 for a system of

six ‘‘A’’ colloids and six ‘‘B’’ colloids. We considered various
cases where li,j A [1, 0.5, 0.1, 0, $0.1, $0.5, $1]. Basin-hopping
proceeds via a series of cycles, during which: first, a random
perturbation to the coordinates of the colloids is made, second,
a local minimization is used to generate a new configuration, and
finally, the system is transformed from its old configuration to this
new one according to the standard Metropolis criterion58 based
on the difference in energies between the two configurations:

paccðold! newÞ ¼ min 1; exp $Unew $Uold

T̂

# $% &
: (4)

Here, T̂ is some fictitious temperature which effectively controls
the rate at which the system hops between different local
basins. Here we chose T̂ = 0.50; note that T̂ is not related to
T*. Initially, the colloids were randomly placed in a large, non-
periodic cell. Then, a perturbation was generated by choosing
random displacements (with magnitudes less than sA,A) for
each individual colloid 95% of the time, while 5% of the time a
randomly chosen number of colloid pairs were selected and
their identities were exchanged. Subsequently, the L-BFGS-B
algorithm59 was employed to locally optimize the structure and
produce a new candidate, which was accepted as the new state
of the system stochastically. This was repeated 5 ' 107 times,
over the course of which the energies and configurations of the
local minima were recorded. After which, the lowest energy
structure was taken as the ground state. To facilitate conver-
gence, interaction energies were truncated at |U(rcut)| o 0.005.
The morphology of the ground state was classified on the basis
of its mean coordination number (2, 4, or 6), regardless of its
compositional order, unless the resulting structure phase sepa-
rated. Representative configurations are available in the ESI.†

2.4 Mean-field model

To estimate the relative stability of different morphologies in
the ground state (limit of T* - 0) when the colloids are size-
symmetric, we used a simple mean-field approach to energeti-
cally rank structures. For a series of candidate structures, we
predicted their energies based on the number of i–j contacts in
a given structure (regardless of their relative orientation),
neglecting edge effects and assuming the result is defect-free.
Starting from a chosen stoichiometry of components available,
we assumed the colloids aggregate to form a structure whose
size is determined by the limiting ‘‘reactant’’ species in the bulk
since different structures can have different native stoichio-
metries than that initially available in the bulk. For simplicity,
the remainder is assumed to form a non-interacting homo-
geneously dispersed phase which contributes no energy. For a
structure with a native stoichiometry of x : y, the number of AxBy

‘‘molecules’’ that may form is given by:

Nm ¼ min
NA

x
;
NB

y

# $
; (5)

where NA and NB correspond to the number of each colloid type
initially available. In each structure, the coordination of each
colloid is represented by the vector,

-

C = hCA,A, CA,B, CB,B, CB,Ai.
Here, Ci,j refers to the number of colloids of type j in the nearest
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neighbor shell of a colloid of type i. Values of C are provided in
Table 1 for all potential lattices we considered. The total energy
of each structure is then given by:

U ¼ $Nm

2
x CA;AlA;A þ CA;BlA;B
' (

þ y CB;AlA;B þ CB;BlB;B
' () *

:

(6)

We also considered the cases where A and B may exchange
identities (Ci,j - Cj,i) within the same morphology. From this, we
report the lowest energy structure as the most stable. Note that we
considered the case where one species forms a pure hexagonal
crystal, while the other forms either a ‘‘gas’’ or another pure crystal,
as being the same morphology, which we refer to as ‘‘phase-
separated hexagonal.’’ This is because the two species demix in both
cases, which we consider an uninteresting result, as our objective is
to form mixed morphologies corresponding to binary superlattices.

2.5 Molecular dynamics simulation

In addition to Monte Carlo, we also used canonical molecular
dynamics simulations, implemented in LAMMPS,60 to determine
the phases forming ab initio from a disordered fluid phase. For
equimolar size-symmetric mixtures we considered lA,A, lB,B A
[1.0, 0.5, 0.0, $0.5, $1.0] and lA,B A [1.0, 0.75, 0.5, 0.25, 0.0],
where each simulation contained 1000 total colloids. All pair-
wise interactions were truncated at rcut = 2.5si,j. These results
are presented in the ESI.† In addition, we replicated the results
of Monte Carlo simulations for non-equimolar mixtures at
the conditions reported in Fig. 4. The simulations contained
1050 total colloids for a 2 : 1 stoichiometric ratio, and 1000 total
colloids for a 3 : 1 ratio. Simulations were performed in a
square, periodic box with an edge length of 90sA,A. The
Verlet algorithm was used to integrate the equations of motion

using a time step of Dt ¼ 0:01sA;A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
,
eA;A

q
, where the mass, m, of

all colloids was set to unity. A Langevin thermostat was used with a

damping constant of 2sA;A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
,
eA;A

q
. The system was initially

equilibrated for 106 integration steps at T* = 2. Subsequently, the
system was run for 2 ' 108 integration steps at a constant
temperature of T* = 0.1 during which instantaneous configurations
were recorded. Visual inspection of the forming structures was
conducted using Visual Molecular Dynamics (VMD).61

3 Results and discussion
Depending on the grafting density and composition of the
ssDNA strands on the colloids, pairwise interactions in a
multi-flavored system may range from being attractive to softly
repulsive. The potential shown in Fig. 1 mimics this by dividing
a Lennard-Jones potential into its attractive and repulsive con-
tributions, then recombining them according to a factor, l.44

Thus, when li,j = 1, particles i and j interact via the conventional
Lennard-Jones potential. When li,j = 0, the two have a pseudo-
hard-sphere interaction known as the Weeks–Chandler–Andersen
potential,62 and when li,j = $1 the two colloids have a purely
(soft) repulsive interaction. The first case exemplifies when base-
pairing results in an attraction between species; the last is
representative of when the grafts are non-complementary and
exhibit an entropic repulsion between the polymer coronas.
Tuning the details of the ssDNA chemistry and composition in
the multi-flavoring motif allows one to achieve intermediate
states as well.40 To identify the most stable crystal or morphology
for a given set of pairwise interactions (e.g., hlA,A, lA,B, lB,Bi),
we first performed flat-histogram Monte Carlo simulations in a
lA,B-expanded ensemble.

3.1 Monte Carlo simulations

We begin with the size-symmetric case where the two types of
colloids have equal diameters (sA,A = sB,B). Unless otherwise
stated, we consider the system at a fixed stoichiometric ratio of
1 : 1. Throughout this work we report only lA,B 4 0; otherwise
the two species demix entirely which is a trivial result. Fig. 2(a)
illustrates the results when lA,A/lB,B = 1 at low temperatures
(T* = 0.10) where the mixture can form well-defined crystals
for sufficient interparticle attraction. When represented in a
two-dimensional cohesion (li,i) vs. adhesion (li,j) diagram, the
morphologies we observed display changes which manifest as
one traverses the figure in a counterclockwise fashion.

In region (i) the self-interactions between like colloids display
a long-range repulsion, whereas unlike particles are only weakly
attractive. Consequently, we find the system in a generally
homogeneous, disordered gas-like state. As the adhesive
interactions are increased, the system begins to ‘‘polymerize’’
forming compositionally alternating string-like aggregates, as
show in region (ii). The emerging compositional order results
from an interplay between the long-range cohesive (repulsive)
and intermediate-range adhesive (attractive) interactions. Upon
further increasing the adhesion, individual string-like aggregates
further assemble into an alternating square lattice depicted in
region (iii). Next, if one considers the adhesion as fixed, and
simply increases the favorability of the cohesive interactions, the
alternating square lattice increases its coordination number and
transforms into a mixed hexagonal lattice, region (iv), with a loss
of compositional order. Finally, if adhesion is reduced at fixed
cohesion we reach region (v). The morphology which manifests
here is one in which the colloids form hexagonal crystals that
have compositionally phase separated into separate grains.
Intuitively, this is brought about by reducing the adhesion value
below the cohesion values.

Table 1 Coordination numbers and stoichiometry for candidate
morphologies considered in our mean-field model

Morphology
Stoichiometry
(x : y) CA,A CA,B CB,B CB,A

Disordered ‘‘gas’’ 1 : 1 0 0 0 0
Alternating string-like aggregate 1 : 1 0 2 0 2
Alternating square lattice 1 : 1 0 4 0 4
Alternating hexagonal layers 1 : 1 2 4 2 4
Mixed hexagonal lattice 1 : 1 3 3 3 3
Phase-separated hexagonal lattices 1 : 1 6 0 6 0
Phase-separated hexagonal
lattice + ‘‘gas’’

1 : 1 6 0 0 0

Honeycomb 2 : 1 3 3 0 6
Kagome 3 : 1 4 2 0 6
Square kagome 3 : 1 4 2 0 6
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With one notable exception, these morphologies represent
all of the stable ones found within the range of hlA,A, lA,B, lB,Bi
values we explored at a 1 : 1 stoichiometric ratio. This exception
may be clearly found along the lA,A/lB,B = $1 plane, which is
depicted in Fig. 2(b). In this case, the cohesive nature of one
type of colloid is opposite to the behavior of the other type; e.g.,
when one is self-repulsive, the other is self-attractive. Again, we
find some angular diagrammatic symmetry moving in either a
counterclockwise direction from the origin, through the upper
half of the order diagram, or clockwise through the lower half.
The diagram has reflection symmetry across the li,i = 0 axis, as
expected, since crossing this axis simply entails exchanging the
identities of the colloids. Once again, starting from an initially
homogeneous, disordered state at the origin, increasing the
adhesive interactions (lA,B) while lA,A = $lB,B = 0 results in
string-like aggregates, depicted in region (i). These transform
directly into a randomly mixed hexagonal lattice as the adhe-
sion is further increased, region (ii). However, at this point,
because lA,A = $lB,B, increasing the favorability of one species’
self-interaction implies that the other’s is equally penalized.
Consequently, as li,i is increased, species i will energetically
favor morphologies with a maximum amount of i-type neigh-
bors, whereas species j will tend to favor avoiding other j-type
neighbors. The result is a honeycomb lattice, where species j
(in the case shown in Fig. 2(b), the red ‘‘B’’ colloids) situate

themselves inside a hexagonal shell of the species i (the blue
‘‘A’’ colloids). Note that upon reducing the adhesion from this
state, the system once again phase separates into a hexagonal
‘‘A’’ phase, while the repulsive ‘‘B’’ species forms a disordered
gas-like phase around the hexagonal crystal. We refer to both
this state and that in Fig. 2(a) when the colloids form two
separate grains as a ‘‘phase-separated hexagonal’’ state, which
is of little interest here.

3.2 Energetic optimization of small clusters

For all the cases we investigated thus far at a 1 : 1 stoichiometry, we
found that the morphologies could be classified as one of the
following: a mutually disordered gas-like phase, an alternating
string-like aggregate, an alternating square lattice, a (composition-
ally) mixed hexagonal lattice, a phase-separated hexagonal lattice,
or a honeycomb lattice. To understand the ground-state behavior
of this system, we performed stochastic global energy minimiza-
tion of small clusters of 6 ‘‘A’’ and 6 ‘‘B’’ particles to obtain the
most stable morphologies in the zero-temperature limit (cf. ESI†).
To identify any emergent patterns in phase space where differ-
ent morphologies appear, we performed linear discriminant
analysis.63,64 This analysis revealed that considering the mean
cohesive interaction, (lA,A + lB,B)/2, vs. the adhesive interaction,
lA,B, often produced a pattern in which morphologies with the
same coordination number (or approximately the same n-fold

Fig. 2 Results from Monte Carlo simulations of equimolar, size-symmetric binary mixtures. ‘‘A’’ and ‘‘B’’ colloids are depicted in blue and red,
respectively. (a) The case when the cohesive interactions, lA,A = lB,B = li,i, are identical. Representative snapshots of the morphologies in each colored
region, indicated as (i)–(v), are shown on the right. Dashed lines delineate regions of two-, four-, six-fold rotational symmetry, and phase-separated
morphologies (counterclockwise, respectively) of small clusters in the limit of absolute zero temperature, when compositional order was ignored. (b) The
case when the two colloids have opposite self-interactions, lA,A = li,i = $lB,B. Representative snapshots are shown on the right. Individual components of
the honeycomb lattice from region (iii) are illustrated in more detail.
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rotational symmetry) fell within regions defined by the angle
formed by these two coordinates. The results are summarized
as dashed lines on Fig. 2(a) for the case when lA,A = lB,B. In
Fig. 2(a) we have presented the results from Monte Carlo
simulations when lA,A = lB,B, so this mean cohesive interaction
is given simply by li,i.

In this ground state, morphologies with the same rotational
symmetry may be found between these lines emanating from
the origin; however, close to the origin at finite temperature we
expect these morphologies to melt into a disordered state
(cf. region (i) in Fig. 2(a)) as their pair interactions are overcome
by thermal energy, which is indeed what we observed in all
Monte Carlo simulations. Thus, we compare the results of the
optimized ground state structure with Monte Carlo performed
far from the origin. When the self-interactions are predomi-
nantly repulsive, any finite amount of cross-interaction results
in an alternating string-like morphology in the limit of T* - 0.
This aggregate, which may be considered as possessing two-
fold rotational symmetry, generally resides in regions (i) and (ii)
in Fig. 2(a). Here the distinction between the two regions
is found only in systems at finite temperature, where there
is sufficient thermal energy to break up weakly associating
clusters found when close to the origin. Moving counterclockwise,
we find a region of well-defined compositionally alternating
square lattices (four-fold rotational symmetry) which coincides
with Monte Carlo simulations at finite temperature far from the
origin (region (iii), Fig. 2(a)). Continuing, we similarly find
lattices with six-fold symmetry in the region corresponding to
the mixed hexagonal lattices (region (iv)). Finally, when the
cohesion is the strongest, but adhesion is relatively weak, we
find the ground state phase separates into different composi-
tionally pure grains, as in Monte Carlo (region (v)). We note that
as the temperature of the Monte Carlo simulations is reduced,
each morphology tends to more completely ‘‘fill’’ the region
corresponding to its rotational symmetry, bounded by the
dashed lines.

This general increase in the rotational symmetry of the ground
state morphology, from strings (two-fold) - square (four-fold) -
hexagonal (six-fold), moving counterclockwise in Fig. 2 is most
readily observed when lA,A = lB,B. However, even when lA,A a lB,B,
the general trend still holds, with the caveat that differences in
composition order must be neglected. For example, one must
include the honeycomb lattice in the six-fold classification
together with the mixed hexagonal lattices, without making any
distinction between the two (cf. ESI†). Although this may seem
reasonable when considering the morphologies of finite-sized
clusters which may be too small to reliably predict the resulting
structure of larger systems, this is, in fact, a representation
problem that arises in multi-flavored systems. Fundamentally,
the presence of three independent pairwise interactions requires,
at minimum, a three-dimensional representation of the data,
which will be adopted henceforth. Although for specific experi-
mental realizations there may be many variables determining
the precise shape and form of these interparticle potentials,
apparently, the general nature of having decoupled these
pairwise interactions from each other tends to necessitate at

least one variable per interaction to preserve information
corresponding to morphologies with the same rotational sym-
metry but different compositional order. Furthermore, the fact
that this minimization can reliably predict the morphology
observed in Monte Carlo simulations suggests these systems
are largely energetically dominated.

3.3 Mean-field model

Encouraged by the close agreement between the simulation
and ground-state results, we also developed a mean-field model
to predict the structure in the ground state. In this simplified
model, we considered an array of different possible arrange-
ments for size-symmetric colloids, including the morphologies
discussed above as well as others including kagome lattices
(cf. ESI†). Each lattice was ranked on the basis of its energy,
assuming it was defect free and fully periodic. There are two
principal components to our model. The first is that each
lattice’s energy is based only on the number of nearest neighbor
i–j contacts between different species, each of which is assigned
an energy of $li,j. The total energy of the lattice is then based on
the product of the number of each type of contact and its energy,
scaled by the size of the crystal that can be produced from a
given stoichiometry.

This stoichiometric effect is the second principal component,
which will be addressed further in the next section. We note that
a number of similar coarse-grained thermodynamic models for
binary mixtures of DNA-coated colloids already exist, such as the
complementary contact model.3 However, this model neither
accounts for entropic repulsions between particles with non-
complementary DNA strands, nor stoichiometric effects.3,45

Because of the former, it is highly incompatible in its current
form with the multi-flavoring motif since li,j o 0 introduces
‘‘soft’’ repulsive interactions. Notably, a recent improvement of
this theory was developed which sought to remedy both
shortcomings.45 In that case, a more advanced approach was
adopted to treat the formation of competing morphologies
as independent, parallel reactions which requires advanced
numerical methods to solve the associated set of non-linear
expressions describing equilibrium. In our approach we adopt
a significantly simplified tactic (cf. Methods), and find that it is
still capable of making accurate predictions about the relative
stability of different lattices.

In Fig. 3(a) we took the results of Monte Carlo simulations
and plotted them in three-dimensional hlA,A, lA,B, lB,Bi phase
space. Remarkably, the regions of phase space corresponding
to each morphology can be described by a single contiguous
domain, with the exception of the honeycomb lattice which
requires two. Comparatively, we found that the simplified
mean-field model qualitatively reproduces these domains,
suggesting the temperature used in our Monte Carlo simula-
tions (T* = 0.10) is sufficiently low (for most cases) as to be
representative of the ground state (cf. Fig. 3(b)). Only some minor
differences appear, which are intuitively to be expected. First, the
region corresponding to the homogeneously dispersed gas-like
phase is reduced from a three-dimensional domain to a two-
dimensional plane, indicated by the cyan dots in Fig. 3(b). This is
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to be expected as any finite, positive lA,B implies a favorable
energetic interaction between opposite colloidal species. This
will result in aggregation in the limit of T* - 0, whereas a
finite amount of thermal energy will be able to break these
clusters or aggregates when T* 4 0. Indeed, this has already
been discussed in the context of the energy minimization of
small clusters, and is also why the string-like aggregate region
(magenta) from Fig. 3(a) does not manifest in part (b). Though,
of course, at the interface between the square lattice and the
homogeneous gas-like phase one expects intermediate struc-
tures, in practice. The mean-field model does not consider the
long-ranged nature of the repulsions when li,i are highly
negative, which is why ground state optimization, which
accounts for these effects, finds a region of string-like aggre-
gates at this interface while the mean-field model does not.
Regardless, this region is relatively inconsequential with
regards to the assembly of binary superlattices, and its absence
does not detract from the applicability of the model.

In Fig. 3(b) we have neglected one morphology from
the array of structures we considered, namely an alternating
hexagonal layer morphology in which the blue ‘‘A’’ and red ‘‘B’’
colloids are aligned in layers of similar color on a hexagonal
lattice. In fact, the mean-field model identifies this structure as
slightly lower in energy than the mixed hexagonal lattice, so if it
is included, the green region in Fig. 3(b) would now correspond
to this morphology rather than the randomly mixed hexagonal
morphology also found in Monte Carlo (cf. ESI†). This, however,
has no effect on any of the other domains. The reason for this
change is simply due to the fact that the mixed hexagonal
lattice has a much higher entropy than its alternating layer
counterpart due to its disordered nature. Accordingly, we
expect that at finite temperature this morphology should
dominate, which is indeed what was observed in both Monte
Carlo and molecular dynamics simulations. Regardless, these
differences do not detract from the mean-field model’s capacity
to predict these regions of stability rather accurately. Given its
simplicity, we expect this model to serve as a useful design tool
which can provide heuristics for developing pairwise inter-
actions to stabilize desired lattices.

3.4 Stoichiometric control

Next, we consider the impact of mixture stoichiometry on our
model. Recent work has shown how the stoichiometric ratio of
individual components couples to the assembly of a lattice’s
building blocks, thus controlling its equilibrium assembly.45

Consequently, stoichiometry can exert a greater degree of control
over the self-assembly of colloidal crystal lattices than previously
anticipated. To account for this effect, we consider the two size-
symmetric colloidal species as reactants whose mixture stoichio-
metry determines the extent to which an irreversible ‘‘reaction’’
to form a single ‘‘unit’’ of a given lattice or morphology may
proceed (cf. Methods). The extent of each reaction determines
the maximum size of each morphology, and therefore the
extensive energy, associated with each. For example, 100 ‘‘A’’
and 100 ‘‘B’’ colloids could combine to produce 100 units of an
alternating square lattice (1 : 1 stoichiometry), but only 50 units
of a honeycomb lattice (2 : 1 stoichiometry). This in turn affects
the ranking of the different morphologies in the ground state.
For simplicity, we assume any excess forms a non-interacting
homogeneously dispersed (ideal) ‘‘gas’’ phase which contributes
no energy to the final state.

Fig. 4 shows the qualitative changes that result from tuning
the solution stoichiometry. Generally speaking, lattices whose
stoichiometry is commensurate with that of the initial mixture
become favored. In the equimolar case, 1 : 1 lattices are favored
in different regions depending on their relative interactions.
However, upon increasing the amount of ‘‘A’’ particles to reach
a 2 : 1 stoichiometric ratio, the honeycomb lattice primarily
dominates the interaction phase space. Indeed, this lattice is
the only lattice we considered which has this ratio. This comes
at the expense of other 1 : 1 lattices such as the mixed hexagonal
lattice and alternating strings, neither of which appear anywhere
in phase space. Furthermore, along the lA,A axis a new morphology
appears which was never stabilized in the equimolar case: the

Fig. 3 Mean-field model vs. Monte Carlo simulations for a size-
symmetric equimolar mixture. (a) Three-dimensional reconstruction of
the domains corresponding to each morphology found in Monte Carlo
simulation at T* = 0.10. (b) Mean-field predictions in the limit of T* - 0. In
both parts, the colors represent different morphologies as indicated in part
(a). The dotted cyan region in part (b) indicates that this disordered
‘‘gas’’ morphology is stable only precisely along the plane where lA,B = 0,
and lA,A, lB,B r 0.
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kagome lattice, indicated in orange in Fig. 4(a). Upon further
increasing the stoichiometric asymmetry to 3 : 1, the kagome
lattice dominates phase space, primarily where lA,A 4 0. Again,
this is consistent with intuition since the kagome lattice has
a native 3 : 1 stoichiometric ratio. Note that reversing the
stoichiometric ratio, e.g., from 2 : 1 to 1 : 2, simply flips the
diagram by exchanging the lA,A and lB,B axes. Furthermore,
increasing the ratio beyond 3 : 1 makes no additional changes
since we have not considered lattices beyond this limit, as none
were found in either Monte Carlo or molecular dynamics
simulations.

To validate these predictions, we performed direct simula-
tions at various points in hlA,A, lA,B, lB,Bi phase space. While we
only provide a few examples in Fig. 4(b) and (c), we found
general agreement between the predictions of the mean-field
model and simulation, both Monte Carlo and molecular
dynamics. In Fig. 4(b) we illustrate the results obtained from
Monte Carlo simulations at hlA,A, lA,B, lB,Bi = h0.5, 1.0, 0.5i. For
an equimolar mixture, a mixed hexagonal morphology mani-
fests with no compositional order. When the ratio is increased

to 2 : 1, with an excess of blue ‘‘A’’ colloids, the system instead
assembles into a honeycomb lattice. Similarly, equimolar mix-
tures at hlA,A, lA,B, lB,Bi = h1.0, 1.0, $1.0i form a well-defined
honeycomb structure, which becomes a polymorphic kagome
lattice at a 3 : 1 stoichiometric ratio. This lattice generally
appears defective, which we attribute to the polymorphic nature
of the kagome lattice. As detailed in the ESI,† there are two
polymorphs of this trihexagonal tiling which differ only in their
long-range order, while the nearest neighbor shell around
each particle type remains unchanged. Consequently, the two
polymorphs are indistinguishable for systems dominated by
their nearest neighbor interactions. We therefore expect the
traditional kagome, and its square polymorph, to manifest
simultaneously leading to a structure containing regular poly-
gonal hexagrams (highlighted in yellow in Fig. 4(c)) which lack
long range order. Indeed, this is precisely what is observed.
These kagome polymorphs were also occasionally found as
defects within honeycomb lattices formed from equimolar
mixtures (cf. ESI†), however they were never found to be stable
for this stoichiometry.

Fig. 4 Impact of stoichiometry. (a) From left to right, the A : B stoichiometric ratio increases from 1 : 1 to 2 : 1 to 3 : 1 in our mean-field model. The yellow
domain corresponds to an alternating square lattice, blue to honeycomb, green to mixed hexagonal, red to phase-separated hexagonal, and orange to
kagome. (b) Monte Carlo simulations at hlA,A, lA,B, lB,Bi = h0.5, 1.0, 0.5i with a 1 : 1 stoichiometric ratio form a mixed hexagonal lattice, while at a 2 : 1 ratio
the honeycomb lattice appears instead. (c) Equimolar Monte Carlo simulations at hlA,A, lA,B, lB,Bi = h1.0, 1.0, $1.0i produce a honeycomb lattice, which
instead becomes polymorphic kagome at a 3 : 1 ratio. For clarity, the red colloids have been reduced in size and are depicted next to the blue colloids in
whose interstices they exist.
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3.5 Effects of size asymmetry

Finally, we consider the impact that size asymmetry has on the
resulting morphology of the binary mixture at a 1 : 1 stoichio-
metric ratio. As the size asymmetry is increased, the smaller
component is anticipated to adsorb in the interstices of lattices
formed by the larger colloid.32,65,66 When this occurs, it is
common to find multiple smaller colloids within the interstices
of the larger one; as a result, the crystal’s stoichiometry deviates
from 1 : 1 and the resulting lattices are often reported as being
‘‘LSx’’ structures, where x denotes the occupancy of the smaller
species within the interstices.32,65 Consequently, we expect the
smaller component to behave like a structure directing
agent16,18,19,67,68 that will bias the formation of the lattice into
which the smaller colloid can maximize its energetically favor-
able nearest neighbor contacts. We fixed sA,A = 1.0 and reduced

sB,B = 0.40, 0.14. At a size ratio of sB;B
,
sA;A ¼

ffiffiffi
2
p
$ 1 ) 0:40, the

smaller species ‘‘B’’ can precisely fit into a square formed by four

tangent ‘‘A’’ colloids. Similarly, when sB;B
,
sA;A ¼

2

3

ffiffiffi
3
p
$ 1 ) 0:14,

the smaller colloid can be inscribed inside a tangent triplet
of ‘‘A’’ colloids. From simple packing arguments, we anti-
cipate that when sB,B/sA,A = 0.40 a square lattice of ‘‘A’’ colloids
will be favored, whereas when sB,B/sA,A = 0.14 a lattice
with a triangular tiling will be favored (cf. Fig. 5(a)). Fig. 5
illustrates the resulting changes to the location of the domains

where different morphologies are found in Monte Carlo
simulations.

We generally find that the classifications used thus far to
describe different morphologies in the size-symmetric case
remain valid descriptors when the colloids are asymmetric.
However, we note that the honeycomb lattice should be taken
as synonymous with the hexagonal LS2 lattices as reported
elsewhere.32,65,66 Furthermore, in both the aggregate and mixed
hexagonal domains, we note that the morphologies often
resembled the LS6 and LS9 phases reported in, e.g., ref. 65. At
the temperatures and asymmetries we investigated, we did not
find these structures to be well-defined; however, it is likely
that these and other LSx (x 4 2) phases may manifest in those
domains at lower temperatures, in systems with slightly mod-
ified interaction potentials, or at non equimolar stoichiometric
ratios. We point out that these domains simply surround the
honeycomb, or LS2 domain, in the our three-dimensional phase
space. They may be considered to act as intermediates between
the honeycomb lattice and, e.g., phase-separated or square
lattice domains. As a result, a detailed characterization of these
intermediate structures is beyond the scope of this investiga-
tion. We refer the interested reader to the ESI† for representa-
tive snapshots and additional details.

When sB,B/sA,A = 0.40 we find that regions corresponding to the
phase-separated hexagonal lattice and homogeneous disordered

Fig. 5 Impact of size asymmetry on an equimolar mixture. (a) The diameter of species ‘‘A’’ (blue) is fixed at sA,A = 1.0, while species ‘‘B’’ (red) varies from
left to right as sB,B = 1.0, 0.40, 0.14. The coloring scheme for the domain corresponding to each morphology is the same as in Fig. 3. (b) Resulting
morphology from Monte Carlo simulations for each size ratio. The yellow domain corresponds to an alternating square lattice, blue to honeycomb, green
to mixed hexagonal, red to phase-separated hexagonal, and cyan to a disordered ‘‘gas.’’ The magenta regions indicate an amorphous aggregate phase
which, in the specific case of a size-symmetric system, manifests as an alternating string-like morphology. (c) Phase space showing only the honeycomb
(blue) and alternating square lattice (yellow). Arrows indicate the qualitative ‘‘twist’’ the domains undergo as size asymmetry increases.
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gas-like phase are largely the same as when the system is size-
symmetric. Instead the domains corresponding to the square
(yellow, Fig. 5(a and b)) and honeycomb (blue, Fig. 5(a and b))
lattices undergo the most salient changes. As expected, the volume
of the phase space where the square lattice is found has increased
substantially, commensurate with expectations based on packing
arguments. However, its location has now shifted to the region
where the large ‘‘A’’ colloids interact favorably with themselves and
even more favorably with the smaller ‘‘B’’ species, while the latter are
long-range repulsive with themselves. This is also an intuitive result
based on energetic arguments. The volume of the domain corres-
ponding to the honeycomb lattice has not changed significantly, but
it has shifted, relative to its location in phase space when the colloids
are size-symmetric, in a similar fashion as the square lattice.
Magenta and green regions in the center panel of Fig. 5(b) corre-
spond to random aggregates and mixed hexagonal lattices, respec-
tively. In the latter case, the smaller ‘‘B’’ colloids act to adhere the
larger colloids into a hexagonal lattice, but do not present with any
order themselves (cf. ESI†). In both cases, these regions manifest as
interfaces between lattices of different symmetries, e.g., square and
hexagonal; at finite temperature, these intermediate structures are to
be expected.

When sB,B/sA,A = 0.14 the region corresponding to the square
lattice for sB,B/sA,A = 0.40 is now dominated by the honeycomb
structure. This is again, expected as this size asymmetry pre-
cisely admits one ‘‘B’’ colloid between tangent triplets of ‘‘A’’
colloids which, in this region of strongly favorable cohesion,
form a hexagonal lattice with trigonal gaps. Interestingly, a
square-like lattice also seems to persist in a narrow region with
weaker cohesive interactions, where adhesion remains relative
strong. In this case, the smaller species tends to form small
clusters which aggregate into the center of interstices formed
by the larger ‘‘A’’ colloids when the latter forms a square lattice
(cf. ESI† for representative images). Once again, there is little to
no change in the location of the phase-separated hexagonal
lattice and homogeneous disordered gas-like domains.

Thus, upon increasing the size asymmetry of the colloids, the
domains of hlA,A, lA,B, lB,Bi phase space corresponding to the square
and honeycomb lattices tend to undergo what may be envisioned as
a counterclockwise rotation in the right-handed coordinate system
presented in Fig. 5(c). The relatively uninteresting phase-separated
hexagonal lattice and homogeneous disordered gas-like regions
remain essentially fixed in place, while the remaining morphologies
simply act as interfaces between these structures and the square and
honeycomb lattices as they ‘‘twist’’ in phase space. The general
absence of any new emerging morphologies, and the seemingly
‘‘continuous’’ nature of the rotation of the domains in phase space,
suggest that one may expect to reasonably interpolate the regions of
phase space corresponding to each morphology at intermediate size
asymmetries not studied here.

4 Conclusions
We systematically studied the low-temperature self-assembly of
multi-flavored binary colloidal mixtures in two-dimensions. To

represent the experimentally achievable variability in interpar-
ticle potentials which occurs in multi-flavored systems, we
employed a simple pair potential that spans from long-range
repulsive to long-range attractive continuously with a single
variable. Thus, our model uses a single variable to describe the
nature of each pairwise interaction, resulting in an overall three-
dimensional phase space. We used both Monte Carlo and
molecular dynamics simulations to investigate the morphology
into which binary systems assemble at low temperature through-
out this phase space, and observed a range of different structures
with n-fold rotational symmetries varying from n = 2 to n = 6. The
most thermodynamically stable morphology depends on: (1) the
location in three-dimensional phase space describing the pair-
wise interactions, (2) the mixture’s stoichiometric ratio, and
(3) the particle size asymmetry. Using energy minimization,
we investigated the ground state structure of small clusters
to validate results obtained from larger scale molecular simula-
tions which suggested a nearest neighbor, mean-field descrip-
tion could capture the thermodynamics of this self-assembly.
We then demonstrated how this mean-field model can indeed
predict the most stable morphology at a given point in
phase space for size-symmetric systems with an arbitrary
stoichiometry. These predictions were validated with Monte
Carlo and molecular dynamics simulations, suggesting
this simple model may serve as a valuable design tool for
engineering the self-assembly of binary multi-flavored systems.
We further considered the consequences of size asymmetry and
found that domains in phase space for different morphologies
tend to undergo a continuous ‘‘rotation’’ as size asymmetry
increases. This continuity suggests how size asymmetry per-
turbs the predictions made by our model for each point in
phase space, enabling qualitative predictions to be made for
size-asymmetric systems as well.

We expect the resulting heuristics to enable the experimental and
computational realization of targeted two-dimensional colloidal
crystals from multi-flavored components. We note that the realiza-
tion of open structures by this strategy will involve additional post-
processing steps, such as the selective removal of one type of
particle,69 relative to the design of single-component potentials
that can yield such open lattices directly. However, this addi-
tional complexity may be acceptable especially when compared
to difficulties involved in the latter case.70
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Global Structure Optimization of Clusters

Figure S1: Minimum energy structures for various interactions as determined by basin-
hopping. Lines approximately separating different domains are drawn as a guide to the
eye. Representative structures are outlined with the color corresponding to the points in the
region of phase space they were found in, indicated by the legend. For clarity colloids are
shown simply as points colored according to their type, however, in all cases they lie tangent
to the surface of their nearest neighbors.

We used stochastic global optimization to predict the lowest energy structure of a small

subset of colloids used in larger scale Monte Carlo simulations. This reflects the most ther-

modynamically stable structure in the limit of T ⇤ ! 0. Specifically, we used basin-hopping1,2

as implemented in the SciPy library3 for Python.4 Details are provided in the main text.

Figure S1 depicts the results for a size-symmetric system (�A,A = �B,B = 1.00) of six blue

“A” colloids and six red “B” colloids. As twelve total colloids were deemed too few to reli-

ably determine large scale morphologies, we classified structures which formed an underlying

hexagonal lattice, regardless of its compositional order, simply as being six-fold rotationally

2



symmetric unless the resulting structure phase separated into two different domains (phase-

separated hexagonal). Representative configurations of the structures corresponding to the

global minimum in energy found are shown in the figure. We considered various cases where

�i,j 2 [1.0, 0.5, 0.1, 0.0,�0.1,�0.5,�1.0]. We plot the data here in terms of the average cohe-

sive energy, (�A,A + �B,B)/2, versus the adhesive energy, �A,B. Linear discriminant analysis

(LDA)5,6 was used to identify this lower dimensional subspace where the morphologies col-

lapse into separate contiguous domains. Moving counterclockwise about the origin of Fig. S1,

these domains reflect a transformation of the system from a disordered state, to a string-like

aggregate (two-fold rotational symmetry), to a square lattice (four-fold rotational symme-

try), to hexagonal crystals (six-fold rotational symmetry). This transformation is further

discussed in the main text, however, we emphasize that this two-dimensional phase space is

effective at representing this data only when all non-phase-separated six-fold lattices, such

as honeycomb and mixed hexagonal, are considered as part of the same class. To distinguish

these structures from one another, an additional degree of freedom is required, necessitat-

ing the three-dimensional phase space, h�A,A,�A,B,�B,Bi, used in the main text. When the

system is size-asymmetric, classifying resulting structures is less trivial, which is consistent

with the complex domain shapes and locations corresponding to different morphologies, also

depicted in the main text. Hence, simple linear data transformation techniques, such as LDA

or principle component analysis, did not provide any meaningful collapse of the optimized

structure data into a lower dimensional subspace.
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Mean-Field Model

In our mean-field model we considered ten possible candidate morphologies which are given in

the main text along with the relevant parameters for computing their potential energy. With

this, we predicted the most thermodynamically stable morphology in the limit of T ⇤ ! 0

for size-symmetric systems (�A,A = �B,B = 1.00). Examples of most of the structures con-

sidered may be found in the main text with the exception of the alternating hexagonal layer

morphology, which is depicted in Fig. S2 for reference. In the main text, we presented the

mean-field model’s predictions of the most stable structure when this morphology was ne-

glected from our analysis. The reason was that this structure was not broadly observed

in simulations at a finite temperature. Instead, the mixed hexagonal lattice was generally

found. Figure S2 illustrates the mean-field model’s predictions when this morphology was

included. Comparatively, this alternating hexagonal layer morphology (gray region) gener-

ally tends to simply replace the mixed hexagonal lattice domain (green region in main text)

in h�A,A,�A,B,�B,Bi phase space without significantly affecting the other domains. Thus, it

is clear that the mixed hexagonal lattice tends to have the second lowest energy, next to

the alternating hexagonal layer morphology, in that region of phase space. However, while

the latter is expected to be the most stable structure in the limit of T ⇤ ! 0, at finite tem-

perature entropy will contribute to the free energy of each structure. The mixed hexagonal

lattice, which is much more substitutionally disordered, is expected to have a higher en-

tropy than the alternating hexagonal layer structure; this is apparently enough to cause the

mixed hexagonal lattice morphology to dominate this region of phase space at the conditions

reported in the main text (T ⇤ = 0.10).
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Figure S2: Mean-field predictions for a 1:1 stoichiometry. (Left) Depiction of the alternating
hexagonal layer morphology. (Right) Domains of predicted stability when all morphologies
discussed in the main text are considered. Red corresponds to the phase-separated hexagonal
structure, yellow to an alternating square lattice, blue to a honeycomb lattice, and the
cyan dots to a disordered “gas” phase located precisely along the �A,B = 0 plane when
�A,A,�B,B  0.
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The Kagome Lattices as Defects

We also considered two polymorphs of the trihexagonal tiling known as the kagome lattice in

our mean-field approach: the more conventional one, which we simply refer to as “kagome,”

and the “square-kagome” lattice. Both are depicted in Fig. S3. We did not observe these

structures forming globally in our Monte Carlo simulations at a 1:1 stoichiometric ratio,

which is consistent with the fact that this structure never manifests as the lowest energy

structure out of all the candidate morphologies in our mean-field model. However, we did

find that toward the low �A,B edge of the honeycomb (blue) regions, the lattice tended to

display defects. The propensity of these defects increased as we reduced the temperature

of the Monte Carlo simulations from T ⇤ = 0.10 ! 0.05, but the overall morphology we

continued to observe was still honeycomb. We attribute these defects to difficulty in sampling

at lower temperature. These defects generally resulted in local kagome structures within the

honeycomb lattice which formed. As shown in Fig. S4(a), a point defect in a honeycomb

lattice results in a kagome structure around that defect. Furthermore, when a twinning plane

develops from, for instance, layers sliding past one another, the structure across the plane is

locally a square kagome lattice. Such a plane is shown in Fig. S4(b). The similarity of the

kagome lattices with the honeycomb is clearly reflected in their nearly identical coordination

numbers (cf. main text). Thus, although the kagome lattices were never found to be the

most stable structure for a 1:1 stoichiometric ratio, it is possible that these structures may

be observed in a similar region of phase space due to kinetic limitations.
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Figure S3: (Left) Kagome lattice composed of two species, “A” (blue) and “B” (red). (Right)
Square kagome polymorph with the same constituents. The white lines depict the local
coordination numbers and how these polymorphs are made of smaller subunits which tile
two dimensional space differently.

Figure S4: Honeycomb lattice with (a) a point defect showing a locally kagome structure and
(b) a twinning plane across which the crystal manifests as a locally square kagome lattice.

7



Size Asymmetry for 1:1 Stoichiometry

Figure S5: Regions of phase space where each morphology appears in Monte Carlo simula-
tions of size-asymmetric colloids when �A,A = 1.00, �B,B = 0.40, with corresponding repre-
sentative snapshots from each. The disordered “gas” and phase-separated hexagonal regions
have been neglected as their morphologies are qualitatively identical to the size-symmetric
case (�A,A = �B,B = 1.00). A fully reconstructed three-dimensional phase space is presented
in the main text.
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Figure S6: Regions of phase space where each morphology appears in Monte Carlo simula-
tions of size-asymmetric colloids when �A,A = 1.00, �B,B = 0.14, with corresponding repre-
sentative snapshots from each. The disordered “gas” and phase-separated hexagonal regions
have been neglected as their morphologies are qualitatively identical to the size-symmetric
case (�A,A = �B,B = 1.00). A fully reconstructed three-dimensional phase space is presented
in the main text.
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Molecular Dynamics Simulations

Figure S7: Representative results from molecular dynamics simulations for a size-symmetric
system at 1:1 stoichiometry showing each morphology found. (a) �A,A = �0.5, �B,B = 0.5,
�A,B = 0.5 (Honeycomb lattice), (b) �A,A = �0.5, �B,B = �0.5, �A,B = 0.75 (Alternating
square lattice), (c) �A,A = 0.5, �B,B = 0.5, �A,B = 0.25 (Phase-separated hexagonal lattice),
(d) �A,A = 0, �B,B = 0, �A,B = 0.75 (Mixed hexagonal lattice), (e) �A,A = �0.5, �B,B =
�0.5, �A,B = 0.25 (Disordered “gas”), (f) �A,A = �1, �B,B = �1, �A,B = 0.5 (Alternating
string-like aggregate).
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