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When a polarized light beam is incident upon the surface of a magnetic material, the re-

flected light undergoes a polarization rotation 1. This magneto-optical Kerr effect (MOKE)

has been intensively studied in a variety of ferro- and ferrimagnetic materials because it pro-

vides a powerful probe for electronic and magnetic properties 2, 3 as well as for various appli-

cations including magneto-optical recording 4. Recently, there has been a surge of interest in

antiferromagnets (AFMs) as prospective spintronic materials for high-density and ultrafast

memory devices, owing to their vanishingly small stray field and orders of magnitude faster

spin dynamics compared to their ferromagnetic counterparts 5–9. In fact, the MOKE has

proven useful for the study and application of the antiferromagnetic (AF) state. Although

limited to insulators, certain types of AFMs are known to exhibit a large MOKE, as they are

weak ferromagnets due to canting of the otherwise collinear spin structure 10–14. Here we

report the first observation of a large MOKE signal in an AF metal at room temperature.

In particular, we find that despite a vanishingly small magnetization of M ∼0.002 µB/Mn,

the non-collinear AF metal Mn3Sn 15 exhibits a large zero-field MOKE with a polar Kerr

rotation angle of 20 milli-degrees, comparable to ferromagnetic metals. Our first-principles

calculations have clarified that ferroic ordering of magnetic octupoles in the non-collinear

Néel state 16 may cause a large MOKE even in its fully compensated AF state without spin

magnetization. This large MOKE further allows imaging of the magnetic octupole domains

and their reversal induced by magnetic field. The observation of a large MOKE in an AF

metal should open new avenues for the study of domain dynamics as well as spintronics us-
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ing AFMs.

The magneto-optical (MO) Kerr and Faraday effects in ferro- and ferrimagnets arise from the

combined effects of band exchange splitting and spin-orbit interactions (SOI) 17–19 and are powerful

probes of the local magnetization in such materials. In the case of antiferromagnets (AFMs),

observation of the MOKE has been restricted to a certain class of insulators (e.g. orthoferrites and

iron borate) 9–13, 20–22, which have weak ferromagnetism due to canting of the otherwise collinear

Néel order. In the fully compensated collinear AFMs, where the MOKE is usually absent, the

quadratic MO effects such as the Voigt effect can be useful to determine the Néel vector 23.

On the other hand, recent theoretical and experimental progress has revealed that systems

such as certain spin liquids and non-collinear antiferromagnets may exhibit a large Hall response

in zero applied magnetic field (anomalous Hall effect or AHE) despite a vanishing magnetization

15, 24–30. Because the AHE has the same symmetry requirements as the MOKE 31, it is possible

that the same class of antiferromagnets may exhibit a Kerr rotation. Thus, the recent experimental

discovery of a large AHE in the non-collinear antiferromagnet Mn3Sn and its soft response to a

magnetic field 15 give promise for a potentially large MOKE character.

Mn3Sn is a hexagonal antiferromagnet (space group P63/mmc) 32, which has the ABAB

stacking sequence of the (0001)-plane consisting of a kagome lattice of Mn magnetic moments.

Below the Néel temperature TN ∼430 K, the combination of inter-site AF and Dzyaloshinskii-

Moriya (DM) interactions leads to an inverse triangular spin structure, namely, a 120 degree spin

structure with a uniform negative vector chirality of the in-plane Mn moments because of geo-
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metrical frustration (Figure 1a) 15, 32, 33. Significantly, this three-sublattice AF state on the kagome

bilayers can be viewed as ferroic ordering of cluster magnetic octupoles (Fig. 1a) 16. In addition to

this dominant order parameter, the moments cant slightly in the plane to produce a small net ferro-

magnetic (FM) moment of ∼0.002 µB/Mn along the local easy axis in the (0001)-plane, e.g. [21̄1̄0]

and [011̄0] 15. This small moment, which corresponds to less than 10−3 of the local Mn moment,

is theoretically understood to result from the competition between the DM interaction and single-

ion anisotropy 34. Although, as we discuss below, the sub-dominant FM order is not responsible

for the AHE and MOKE, it is essential (together with concomitant weak in-plane anisotropy) for

magnetic field control of the AF spin structure. This control is demonstrated, for example, by the

ability to reverse the sign of the AHE by application of a small applied field of B ∼15 mT within

the (0001)-plane, which is sufficient to reverse the direction of the Mn moments 15.

Before presenting the main MOKE results, we shall first discuss the AHE and magnetiza-

tion curve. In this study, we used as-grown single crystals with the composition of Mn3.06Sn0.94

(Methods) and confirmed no magnetic transition above 50 K 15. Figures 1c and 1d provide the

field dependence of the Hall resistivity ρH(B) and magnetization M(B) for B || [21̄1̄0] at room

temperature (RT), respectively (Methods). The observed ρH(B = 0) = 3.1 µΩcm is large and is

equivalent to the size of the ordinary Hall effect under an external field of ∼100 T estimated using

the Hall coefficient of R0 ∼0.03 µΩcm/T 15. This sizable ρH(B = 0) with vanishingly small spon-

taneousM strongly suggests another form of order rather than FM (in this case magnetic octupole)

is responsible for the AHE 15, 16, 24.
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Now, we turn to our results of the MOKE measurements. Similar to the AHE experiments,

we carried out field-swept measurements of the polar MOKE using the Mn3Sn (21̄1̄0)-plane with

a λ = 660 nm semiconductor laser at 300 K (Methods, Fig. 1b). Significantly, a large change of

the Kerr rotation angle |θK| = 17.5 milli-degrees and a clear square hysteresis loop are observed

as a function of the field B || [21̄1̄0] (Fig. 2a). The coercive field of BC ∼12 mT is consistent

with the hysteresis curve obtained in ρH(B), indicating that the magnetic properties at the surface

are nominally identical to those in the bulk. The MOKE in an AF metal is unprecedented. Figure

2b provides the longitudinal MOKE loops measured in various B directions within the (21̄1̄0)-

plane at 300 K (Methods). Upon changing the direction of both the applied field B and plane of

incidence from [011̄0] (φ = 0◦) to [0001] (φ = 90◦) in the (21̄1̄0)-plane (Fig. 2c), we find that the

MOKE signal decreases and the coercivity increases. Finally, the MOKE signal disappears when

B and the plane of incidence are parallel to the magnetic hard axis [0001] (φ = 90◦). The signal

magnitude is proportional to the projection of B onto [011̄0], which demonstrates that the surface

magnetic character probed by the MOKE is consistent with our previous studies on bulk transport

and magnetization 15. We also performed polar MOKE spectroscopy on the same sample with the

wavelength from 400 nm to 1100 nm at 300 K (Methods). In Fig. 2d, we plot the spontaneous

Kerr rotation θK(B = 0) = (θK,+0T − θ
K,−0T)/2, which removes time-reversal even effects such as

birefringence resulting from structural anisotropy and the Voigt effect, and illustrates the history

dependent remnant response. The spectra show a broad peak with magnitude 19.6 milli-degrees at

λ = 580 nm (2.1 eV).

A striking property of the MOKE data is that, once application of a small magnetic field
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serves to rotate the spin orientation, further increase of the field and therefore the magnetization,

does not affect much on the size of the Kerr effect (Fig. 1d and Fig. 2a). This observation strongly

suggests that the amplitude of the MOKE and the FM magnetization are entirely decoupled in this

system. As a result, the ratio of the MOKE amplitude to M is unusually large. To emphasize this

point, we compare the polar MOKE in Mn3Sn with values reported for ferro- and ferrimagnets and

AF insulators. Figure 3 is a double-logarithmic plot of the polar MOKE signal vs. magnetization

(Methods) obtained at RT. The wavelengths used in the various measurements are all in the range

between 250 nm and 1250 nm. For FM systems, there is a clear trend that the Kerr angle in-

creases with the magnetization. This is consistent with the theoretical expectation that the MOKE

is roughly proportional to M (and SOI) 17. However, this correlation is not as straightforward as

is the case for the AHE 24, 35 because the MOKE can exhibit a complicated frequency dependence

including sign changes. Nonetheless, we note that the ratio |θK|/M = 25.6 degrees/T of Mn3Sn

is largest among all the empirical reports, i.e. 1-2 order(s) of magnitude larger than ferro- and

ferrimagnets, and still the largest among those known for canted AF insulators that have a similar

magnitude to Mn3Sn.

The experimental evidence presented above for the decoupling of the MOKE from the FM

order is strongly supported by theoretical considerations. Detailed symmetry analysis 16 demon-

strated that, despite vanishing M , ferroic octupole order was sufficient to induce a non-zero net

Berry curvature of the Fermi sea, and hence an AHE. Further it was demonstrated that the size

of the AHE in Mn3Sn could be reproduced in a model in which the spin orientations are set such

that M = 0. As the AHE corresponds to the ω → 0 limit of the MOKE, the same symmetry
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considerations apply to both. To further test the connection of this theory to experiment, we have

performed a first-principles calculation of the frequency dependence of the Kerr rotation θK(ω)

for the fully compensated AF state without spin canting for Mn3Sn (Methods). The calculation

reproduces the large Kerr rotation of ∼30 milli-degrees at around 520 nm (2.4 eV) (Fig. 2d inset),

which corresponds to the observed value of ∼20 milli-degrees at 580 nm (2.1 eV). Our results of

a large MOKE without spin magnetization sharply contrast with the previously known AF insu-

lator cases where weak ferromagnetism has been believed to be essential for the presence of the

MOKE 11, 12, 36. In addition, we find almost no change in the Kerr angle by increasing M from

0 to 0.005 µB/formula unit (f.u.) (Fig. 2d inset). In contrast, the change in the size of the oc-

tupole, which is proportional to the sublattice moment, should lead to a significant change in the

band structure and AHE 16, and hence in the MOKE. Therefore, in Mn3Sn, it is not magnetization

but magnetic octupole that induces the large MOKE. Further reflectivity measurements using e.g.

Fourier-transform infrared spectroscopy will be useful to clarify σij(ω) and will help understand

the origin of the MOKE in the AF metallic state.

Having shown the sizable Kerr rotation in Mn3Sn, we demonstrate the application of the

MOKE microscopy as a useful non-contact and non-destructive probe for imaging of magnetic do-

mains and their corresponding dynamics. In particular, we apply the polar MOKE to visualize the

magnetic domains in the AF state of Mn3Sn (Methods). A series of MOKE images of the Mn3Sn

(21̄1̄0)-plane under B || [21̄1̄0] (-21 mT ≤ B ≤ 21 mT) are presented in Figs. 4a to 4h. Changes

in contrast from grey-to-black and black-to-grey are evident over the sequence of increasing field

(Figs. 4a-d) and decreasing field (Figs. 4e-4h), respectively. Here, the grey and black colours cor-

7



respond to positive and negative values of the polar MOKE signal || [21̄1̄0]. As discussed above,

the symmetry considerations show that switching of the magnetic octupole domains with a trian-

gular spin texture can flip the sign of σij(ω) and consequently the Kerr angle θK. Particularly in

B || [21̄1̄0], one of the three moments of a Mn triangle aligns with the field, with the other two

at ± 120 degrees away (Fig. 1a). Therefore, the grey and black regions are interpreted as the

domains in which the Mn spin collinear with the field (the magnetic octupolar axis) points either

along the positive or negative [21̄1̄0] direction (Fig. 4i). Provided that the in-plane Mn moments

have an easy-axis along [21̄1̄0], Mn3Sn may have six types of domains in principle, corresponding

to six equivalent axes to ⟨21̄1̄0⟩ in the (0001)-plane. However, a clear square shape observed in our

MOKE hysteresis loop, AHE and magnetization measurements for B || [21̄1̄0] (Figs. 1 and 2) all

suggest that the field cycle only stabilizes the two types of the magnetic octupole domains shown

in Fig. 4i. Indeed, only two distinct regions with different colours are found in Figs. 4b, c, f and g.

Generally, in ferromagnets, two fundamental processes in the magnetization reversal are

known, namely, (i) reversal by domain nucleation and domain wall propagation, and (ii) reversal

by coherent rotation. The series of our domain images indicates the former mechanism while the

coarse resolution hinders the observation of nucleation itself. At the highest field B = 18.4 mT

(Fig. 4d), the view of the entire region (25 µm × 50 µm) reflects an oppositely aligned domain

in contrast to the initial domain configuration (Fig. 4a). Similar evolution of the domain images

is obtained for the field-increasing and -decreasing processes (Fig. 4). Interestingly, the domain

images around zero field in the field-increasing (Fig. 4a) and -decreasing processes (Fig. 4e) show

grey/black contrast, respectively, confirming that these mono-domains have a spontaneous Kerr
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angle at zero field whose sign can be switched by a modest coercive field ∼10 mT. This is the first

observation of the domain reversal in an AF metal and the magnetic octupole domain reversal by

MOKE microscopy.

The observation of the large MOKE signal and the magnetic octupole domain reversal in the

antiferromagnet Mn3Sn has various implications. In spintronics, antiferromagnets have attracted

significant attention as a potential active element in the next generation memory technology 5–9.

The MOKE in AF metals may well accelerate the development of future memory devices with

emergent optical, magnetic and electric properties by taking advantage of significantly large re-

flectivity in comparison with insulators. Furthermore, our success in the magneto-optical imaging

of the domain configurations in an AF metal opens a new avenue for studying current-driven do-

main dynamics. In principle, the AF domain dynamics could be very different from the ones in

ferromagnets as the magneto-static energy, which is the primary driving force of the domain for-

mation in ferromagnets, is unimportant in antiferromagnets. In particular in Mn3Sn, six magnetic

domains and the associated various types of topological defects could be possible including a vor-

tex type of point defect around which the six domains meet. It is a future subject to investigate the

possible current-induced AF domain wall motion 37. Finally, the topological aspect of the mag-

netic state (magnetic Weyl state) of Mn3Sn, which has been recently pointed out by theoretical 38

and experimental 39 studies, would make it interesting to investigate the Berry curvature effects in

the MOKE at low frequency, and further make the topological defects even more attractive as the

bulk-edge correspondence for such a magnetic Weyl semimetallic state may lead to a Fermi arc in

a magnetic domain wall, and contribute to the MOKE signal in an unconventional fashion 37, 40.
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Methods

Sample preparation and characterization. Polycrystalline samples were prepared by melting

the mixtures of manganese and tin in an alumina crucible sealed in an evacuated quartz ampoule

in a box furnace at 1050 ◦C for 6 hours. Excess manganese (10 mol.%) over the stoichiometric

amount was added to compensate for its loss during crystal growth. The obtained polycrystalline

materials were used for growing single crystals by the Bridgman method using a single zone fur-

nace with a maximum temperature of 1080 ◦C and growth speed of 1.5 mm/h. Our single-crystal

and powder x-ray measurements indicate the presence of only single phase hexagonal Mn3Sn with

the lattice constants of a = 5.66(1) Å and c = 4.53(1) Å. Our scanning electron microscopy en-

ergy dispersive x-ray spectroscopy (SEM-EDX) and inductively coupled plasma atomic emission

spectrometry (ICP-AES) analyses confirmed that Mn3Sn is the bulk phase, and found that the

composition of the single crystals is Mn3.06Sn0.94. The magnetization was measured using a com-

mercial SQUID magnetometer (MPMS, Quantum Design). The Hall resistivity was measured by

a standard four-probe method using a commercial physical property measurement system (PPMS,

Quantum Design). Our as-grown single crystals are found to exhibit a phase transition to a cluster

glass phase at 50 K 15. In this study, we used as-grown single crystals that show no transition above

50 K.

Magnetic field dependence of the magneto-optical Kerr effect (MOKE) shown in Figs. 2a,

2b, & 2c. Magnetic field dependence of the Magneto-optical Kerr effect (MOKE) was measured

by using a commercial system (NanoMOKE3, Quantum Design). Bulk Mn3Sn crystals were used

for the MOKE spectroscopy measurement. Crystal samples were cut and polished so that the
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samples had optically smooth surfaces along the (21̄1̄0)-plane. Kerr rotation versus applied field

were measured in a polar MOKE configuration under out-of-plane applied magnetic fields, and in

a longitudinal MOKE configuration under in-plane applied magnetic fields. In the polar MOKE

configuration, a polarized light beam and magnetic field are applied perpendicular to the reflecting

(21̄1̄0)-plane. The plane of the input polarization is parallel to the [0001] direction. In the longi-

tudinal MOKE configuration, the magnetic field is parallel to both the plane of incidence and the

reflecting surface. The polarized light beam is applied under an incident angle of 45 degrees and

the plane of polarization is parallel to the plane of the incidence. φ is the angle between the plane

of incidence/magnetic field and the [011̄0] direction. An electromagnet was used to generate both

in-plane and out-of-plane applied magnetic fields up to 0.24 T. Fast MOKE loops were acquired

using a 660 nm semiconductor laser and a spatial light modulator (SLM) enabling acquisition of

30 hysteresis loops per minute while the applied field was sinusoidally varied at a rate of 0.5 Hz.

One hundred MOKE loops were averaged in order to improve the signal to noise fidelity. To

obtain the MOKE signal, which is an odd function of magnetic field B (more precisely magneti-

zation M and/or ferroic octupole order parameter in Mn3Sn), we calculated the Kerr rotation to be

{θK(+B)− θK(−B)}/2.

Magneto-optical Kerr effect (MOKE) spectroscopy shown in Fig. 2d. Magneto-optical Kerr

effect spectroscopy was performed by using a W-filament light source and grating monochromator.

The (21̄1̄0)-polished Mn3Sn single crystal was used for the measurement as with the MOKE hys-

teresis loop measurement. In a polar Kerr measurement, linearly polarized light was focused onto

the sample with a ∼10 µm diameter spot by a reflective objective with an incidence angle close
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to normal and the reflected light was collected by a pick-up mirror. To measure the Kerr rotation,

we used a technique based on a photoelastic optical phase modulator (PEM) 41, 42. Synchronous

detection of the reflected light at the second harmonic of the PEM frequency and DC reflectivity

enabled precision of rotation with 0.25 milli-degrees (5 µrad) sensitivity. The plane of the input

polarization is parallel to the [0001] direction. Spectra were acquired for the following sequence

of fields: +0.2 T (with respect to [21̄1̄0]), +0 T, −0.2 T, and then finally −0 T again. We refer

to the zero field condition following ±0.2 T as ±0 T. The spectra exhibit the same hysteretic and

remnant behaviour as the AHE and single wavelength MOKE observations. In particular, Kerr

rotation is observed at 0.2 T, remains unchanged at +0 T, flips sign when measured at −0.2 T, and

then remains at −0 T with opposite sign to the MOKE signal at +0 T. In Fig. 2d, we plot the

spontaneous magneto-optical Kerr rotation θK(B = 0) = (θK,+0T − θK,−0T)/2, where θK,±0T is the

Polar Kerr angle at ±0 T. This estimate of θK(B = 0) removes time-reversal even effects such as

birefringence resulting from structural anisotropy and the Voigt effect, and illustrates the history

dependent remnant response.

Magneto-optical Kerr effect (MOKE) imaging shown in Fig. 4. For magneto-optical imaging

of the magnetic domain configurations in bulk Mn3Sn crystals, the same (21̄1̄0)-polished sam-

ple, which was used in the MOKE hysteresis loop and spectroscopy measurements, was used.

The magneto-crystalline anisotropy tends to align the magnetization along the [21̄1̄0] direction,

which enables us to conduct polar MOKE investigation of the out-of-plane magnetic domains in

the (21̄1̄0)-plane. Magneto-optical imaging was performed at room temperature using a polarizing

microscope with nearly-crossed polarizers and a 625 nm collimated LED source. Direct visual-
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ization of out-of-plane domain structures was provided during the domain-reversal process using

the polar magneto-optical Kerr effect. The black and grey colours of the magneto-optical image

correspond to opposite signs of the magnetic domain direction. Magneto-optical imaging was

made using a charge coupled device (CCD) camera. Applied out-of-plane magnetic fields were

generated by a projected-field electromagnet, enabling the application of magnetic fields up to 21

mT (16.8 kA/m) in magnitude. Certain equipment, instruments or materials are identified in this

paper in order to adequately specify the experimental details. Such identification does not imply

recommendation by the endorsement by the authors or their organizations nor does it imply the

materials are necessarily the best available for the purpose.

Computational details. Under the magnetic structure shown in Fig. 1a, the conductivity tensor

has the form

σ =


σxx 0 0

0 σyy σyz

0 −σyz σzz

 , (1)

where x, y, and z correspond to [21̄1̄0], [011̄0], and [0001] directions, respectively. Here, σαβ is

approximated using the Kubo formula as

σαβ(h̄ω) =
ie2h̄

NkΩc

∑
k,n,m

f(ϵmk)− f(ϵnk)

ϵmk − ϵnk

⟨ψnk|vα|ψmk⟩⟨ψmk|vβ|ψnk⟩
ϵmk − ϵnk − (h̄ω + iη)

, (2)

where Ωc is the cell volume, Nk is the number of k-points, f(ϵ) is the Fermi distribution function,

and η is the smearing parameter. Since the incident light is along the x-axis, the polar Kerr effect

can be described by the two eigen modes, E± and corresponding complex refractive indices, n±.
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Here, E± and n± are the solutions of the Fresnel equation for Eq. (1) and given as

n2
± = 1 +

4πi

ω

(
σyy + σzz

2
±
√

1

4
(σyy − σzz)2 − σ2

yz

)
. (3)

Then, by decomposing the linearly polarized incident light, Ez, as Ez = pE++qE−, the reflected

light is written as

p
n+ − 1

n+ + 1
E+ + q

n− − 1

n− + 1
E−. (4)

Thus, by analyzing the orientation of the ellipse of this light, the Kerr rotation, θK is obtained. For

calculating Eq. (2), the Kohn-Sham energy, ϵnk, and wavefunction, |ψnk⟩, were obtained within

the generalized-gradient approximation 43 based on the density functional theory as implemented

in the quantum-ESPRESSO package 44. A 7 × 7 × 7 k-point grid, ultrasoft pseudopotentials 45

and plane wave basis sets with cutoff energies of 80 Ry for wavefunctions and 320 Ry for charge

densities were used. The obtained magnetic moment for each Mn atom is 3.26 µB while the total

magnetic moment vanishes due to cancellation within the numerical error. We also performed cal-

culation with constraint on M and calculated θK for M = 0.005 and 0.025 µB/f.u.. The summation

in Eq. (2) were taken using a Wannier-interpolated band structure 46 with a 50 × 50 × 50 k-point

grid and a smearing width of η = 0.4 eV.

Detailed information about MOKE results for ferro- and ferrimagnets, and antiferromag-

netic insulators shown in Fig. 3. Figure 3 is made using the polar MOKE results obtained at

room temperature (RT) from various (i) ferro- and ferrimagnetic metals, (ii) ferro- and ferrimag-

netic insulators, and (iii) antiferromagnetic insulators, as reported in previous studies including (i)

L10-MnxGa1−x: 0.43 ≤ x ≤ 0.56 (λ = 670 nm, T = 300 K) 47, 48 and x = 0.62 (820 nm, RT) 49,
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L12-Mn3Pt (650 and 1000 nm, RT) 50, MnBi (700 and 900 nm, RT) 51, MnSb1−xSnx: 0 ≤ x ≤ 0.4

(633 nm, RT) 52, and MnAlGe (633 nm, RT) 53, PtMnSb (710 nm, RT) 54, Ni (633 nm, RT) 53, Co

(633 nm, RT) 53, CoxGa1−x: 0.58 ≤ x ≤ 0.7 (633 nm, RT) 53, Co2Sn (633 nm, RT) 53, Fe (633

nm, RT) 53, FexAl1−x: 0.7 ≤ x ≤ 0.9 (633 nm, RT) 53, FexGa1−x: 0.6 ≤ x ≤ 0.8 (633 nm, RT) 53,

FexGe1−x: x = 0.85 and 0.9 (633 nm, RT) 53, D019-Fe3Ge (633 nm, RT) 53, D019-Fe3Sn (633 nm,

RT) 53, MnSbxSn1−x: 0 ≤ x ≤ 0.4 (633 nm, RT) 52, and L10-FePt (633 nm, RT) 55, and (ii) Fe3O4

(1240 nm, RT) 56, Y3Fe5O12 (251 nm, RT) 10, 57, Eu3Fe5O12 (253 nm, RT) 57, 58, Ho3Fe5O12 (279

nm, RT) 57, 59, and Er3Fe5O12 (251 nm, RT) 10, 57, and (iii) YFeO3 (421 nm , RT) 10, 60, SmFeO3

(430 nm, RT) 10, 61, EuFeO3 (432 nm, RT) 10, 60, DyFeO3 (324 nm, RT) 10, 60, ErFeO3 (320 nm, RT)

10, 61, YbFeO3 (328 nm, RT) 10, 61, LuFeO3 (324 nm, RT) 10, 61.

The data that support the plots within this paper and other findings of this study are available from

the corresponding author upon reasonable request.
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Figure 1: Crystal and magnetic structures, anomalous Hall effect and weak ferromagnetism

at 300 K of the non-collinear antiferromagnet Mn3Sn. a, Large red (small dark grey) and large

transparent orange (small transparent grey) spheres represent Mn (Sn) atoms forming kagome

planes at z = 0 and 1/2, respectively. The Mn magnetic moments (arrows) lie in the (0001)-plane

and form an inverse triangular spin structure. Different colours of arrows indicate three sublat-

tices. The spin structure on the kagome bilayers can be considered as ferroic ordering of cluster

magnetic octupoles by using the cluster octupole unit shown in the inset. b, Schematic illustration

of magneto-optical Kerr effect measurements. A polarized light beam is applied perpendicular to

the (21̄1̄0)-plane, and the reflected light becomes elliptically polarized with the major axis rotated

by θK. c,d Field dependence of c, the Hall resistivity ρH in the magnetic field B || [21̄1̄0] with the

electric current I || [0001], and of d, the magnetization M in B || [21̄1̄0].

Figure 2: Magneto-optical Kerr rotation in the non-collinear antiferromagnet Mn3Sn at 300

K. Field dependence of a, the polar magneto-optical Kerr rotation angle θK for the (21̄1̄0)-plane

in B || [21̄1̄0], and b, the longitudinal magneto-optical Kerr rotation angle θK of the (21̄1̄0)-plane

measured along φ = 0-90 degrees (Methods). c, Schematic illustrations of sample configurations

for the polar and longitudinal magneto-optical Kerr effects (MOKE) (Methods). d, Polar MOKE

spectroscopy of the (21̄1̄0)-plane from 400 nm to 1100 nm under zero magnetic field (Methods).

Inset: Polar Kerr rotation spectrum obtained using the first-principles calculation with the smearing

parameter of η = 0.4 eV (Methods). The rotation angle slightly changes with M , and there is

almost no change in the angle between M = 0 and 0.005 µB/f.u. Since the observed M is just

∼0.005 µB/f.u. (∼0.002 µB/Mn), we may conclude that M plays just a minor role in the MOKE.
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Figure 3: Magnetization dependence of the polar Kerr effect at room-temperature for ferro-

and ferrimagnets, and antiferromagnets including Mn3Sn. Full logarithmic plot of the polar

magneto-optical Kerr rotation angle |θK| vs. the magnetization M for various ferro- and ferrimag-

nets, and antiferromagnets including Mn3Sn measured around room-temperature (Methods). Here,

Mn3Sn is the only non-collinear antiferromagnet even in its fully compensated antiferromagnetic

state. In ferromagnetic systems, it shows a general trend for most of the ferro- and ferrimagnets

that |θK| increases with increasing M , namely |θK| = KSM . Here, KS is a coefficient, ranging be-

tween 0.2 and 2.0 degrees/T for ferro- and ferrimagnets, as highlighted by the shaded region. The

spontaneous polar MOKE signal of Mn3Sn does not follow the above scaling for ferromagnets and

KS has a 1-2 order(s) of magnitude larger value of 25.6 degrees/T, which is still the largest among

antiferromagnets that have similar magnitude of KS = 10-20 degrees/T.

Figure 4: Magneto-optical Kerr effect (MOKE) images in the non-collinear antiferromagnet

Mn3Sn. Evolution of the antiferromagnetic domains of the (21̄1̄0)-plane as a function of a field B

along [21̄1̄0] (-21 mT ≤ B ≤ 21 mT). The imaging area is 25 µm × 50 µm. Grey and black regions

correspond to positive and negative values of the MOKE signal. a-d, MOKE images obtained in

the increasing field process from -21 mT to 21 mT. e-h, MOKE images obtained in the decreasing

field process from 21 mT to -21 mT. (i) Schematic illustration of two regions with different MOKE

image contrasts (grey/black areas) due to opposite signs of the Kerr angles θK,−/+, corresponding

to two types of cluster magnetic octupule domains which have the inverse triangular spin structures

with opposite spin directions within the (0001)-plane. The two regions should be separated by a

domain wall (yellow area).
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