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Abstract—Ultra-wideband (UWB) signal processing is a tech-
nology that has tremendous potential to develop advances in
communication and information technology. However, it also
presents challenges to the signal processing community, and,
in particular, to sampling theory. This article outlines a UWB
signal processing system via a basis projection and a basis system
designed specifically for UWB signals. The method first windows
the signal and then decomposes the signal into a basis via a
continuous-time inner product operation, computing the basis
coefficients in parallel. The windows are key, and we develop
windows that have variable partitioning length, variable roll-off
and variable smoothness. They preserve orthogonality of any
orthonormal system between adjacent blocks. In this paper, we
develop new windows, and give an outline for a new architecture
for the projection. We then use this projection with a basis system
designed to work with UWB signals, implementing modified
Gegenbauer functions designed specifically for these signals.

I. INTRODUCTION

Ultra-wideband (UWB) signal processing is a technology
with many features that promise potential advances in wireless
communications, networking, radar, imaging, and positioning
systems. This article outlines a UWB signal processing system
via a basis projection and a basis system designed especially
for UWB signals. The method first windows the signal and
then decomposes the signal into an orthonormal basis via a
continuous-time inner product operation, computing the basis
coefficients in parallel. We call this procedure the Projection
Method. The windows are key, and we develop windows that
have variable partitioning length, variable roll-off and variable
smoothness. They are designed to preserve orthogonality of
any orthonormal system between adjacent blocks. We then use
the Projection Method with a basis system designed to work
with UWB signals. This system is a modified Gegenbauer
system designed specifically for UWB signals. This system
minimizes the Gibbs phenomenon, giving the point values of
a piecewise smooth signal with essentially the same accuracy
as a smooth approximation, making it the ideal system to use
for the Projection Method as applied to these signals. The
use of the Gegenbauer system for UWB signals is known
in the engineering community. Justification for this system
is given by numerical simulation [13], [16] (and references
therein). In this article, we provide an outline of an analytic
justification, and we give new methods for creating windows
and new outlines for the system architecture that advance our
previous work [4]. Mathematical definitions and computations
for the paper follow those given in Benedetto [1].

A UWB communication system is a large bandwidth system
based on the transmission of very short pulses with relatively
low energy. These systems operate by running as signaling
waveforms, baseband pulses of very short duration, rather
than the traditional method using a sinusoidal carrier. The
UWB technique has a fine time resolution which makes
it a technology appropriate for accurate ranging. The large
bandwidth of a UWB system is dominated by its pulse shape
and duration. This large system bandwidth relative to the
information bandwidth allows UWB systems to operate with
a low power spectral density. Such a low power spectral
density implies that the UWB signal may be kept near or
below the noise floor of detection devices. For these reasons,
UWB technology has many potential advantages, such as high
data rate, low probability of interception and detection, system
simplicity, low cost, reduced average power consumption,
weak sensitivity to the near-far problem and immunity to
interference.

However, UWB systems present challenges to current meth-
ods of signal processing. From a signal processing perspective,
we can approach this problem by implementing an appropriate
signal decomposition in the analog portion that provides par-
allel outputs for integrated digital conversion and processing
[3]. This naturally leads to an architecture with windowed
time segmentation and parallel analog basis expansion. The
method represents a change of view in sampling, from that
of a stationary view of a signal used in classical sampling
to an “short-time windowed stationary” view. This viewpoint
gives that the time and frequency space “tile” occupied by the
signal is processed quickly. The windows give us the tools
to partition time-frequency so that the UWB signal can be
partitioned uniformly but also quickly and efficiently. With
the blocks, the signal can be sampled in parallel [3].

II. THE PROJECTION METHOD

Classical sampling theory applies to functions that are
square integrable and band-limited. A function in L2(R)
whose Fourier transform f̂(ω) =

∫
R f(t)e−2πitωdt is com-

pactly supported and has several smoothness and growth
properties given in the Paley-Wiener Theorem. The choice to
have 2π in the exponent simplifies certain expressions, e.g.,
for f, g ∈ L1∩L2(R), f̂ , ĝ ∈ L1∩L2(R̂), we have Plancherel-
Parseval – ‖f‖L2(R) = ‖f̂‖L2(bR) 〈f, g〉 = 〈f̂ , ĝ〉. The Paley-
Wiener Space PWΩ is defined as PWΩ = {f continuous :
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f, f̂ ∈ L2, supp(f̂) ⊂ [−Ω,Ω]} . The Whittaker-Kotel’nikov-
Shannon (W-K-S) Sampling Theorem applies to functions in
PWΩ.

Theorem 1 (W-K-S Sampling Theorem): Let f ∈ PWΩ,
sincT (t) = sin( πT t)/πt, and δnT (t) = δ(t− nT ).

1) If T ≤ 1/2Ω, then for all t ∈ R,

f(t) = T

([∑

n∈Z
δnT

]
· f
)

∗ sincT (t) . (1)

2) If T ≤ 1/2Ω and f(nT ) = 0 for all n ∈ Z, then f ≡ 0.
To demonstrate the Projection Method, let’s start with a

few “back of the envelope computations.” Let χS denote the
characteristic (or indicator) function of the set S. Let T > 0
and let g(t) be a function such that supp g ⊆ [0, T ]. The T -
periodization of g is [g]◦(t) =

∑∞
n=−∞ g(t− nT ) . Let f be

a signal of finite energy in the Paley-Wiener class PWΩ. For
a block of time T , let f(t) =

∑
k∈Zf(t)χ[(k)T,(k+1)T ](t) .

If we take a given block fk(t) = f(t)χ[(k)T,(k+1)T ](t), we
can T -periodically continue the function, getting [fk]

◦(t) =
[f(t)χ[(k)T,(k+1)T ](t)]

◦ . Expanding (fk)
◦(t) in a Fourier se-

ries, we get [fk]
◦(t) =

∑
n∈Z

̂[fk]◦[n]exp(2πint/T ) . The
original function f is Ω band-limited. However, the truncated
block functions fk are not. The cutoff functions have a
“ringing” of order O(1/ω) in frequency. Using the original
Ω band-limit gives us a lower bound on the number of non-
zero Fourier coefficients ̂[fk]◦[n] as follows. We have n

T ≤ Ω,
i.e., n ≤ T · Ω. So, choose N = dT · Ωe, where d·e denotes
the ceiling function. For this choice of N , we compute

f(t) =
∑

k∈Z
f(t)χ[(k)T,(k+1)T ](t)

=
∑

k∈Z

[
[fk]

◦(t)

]
χ
[(k)T,(k+1)T ](t)

≈
∑

k∈Z

[ n=N∑

n=−N

̂[fk]◦[n]exp(2πint/T )
]
χ
[(k)T,(k+1)T ](t) .

Note that for the standard basis (sines, cosines), we can, for a
fixed value of N , adjust to a large bandwidth Ω by choosing
small time blocks T . Also, after a given set of time blocks, we
can deal with an increase or decrease in bandwidth Ω by again
adjusting the time blocks, e.g., given an increase in Ω, decrease
T , and vice versa. The quality of the signal, as expressed in
the accuracy of the representation of f , depends on N , Ω, and
T .

We develop windows which preserve orthogonality of any
orthonormal (ON) system between adjacent blocks. The con-
struction uses any orthonormal basis for L2(R) and is created
by solving a Hermite interpolation problem with constraints.
These ON preserving windows allow us to create a method of
time-frequency analysis for a wide class of signals, giving an
arbitrary degree of smoothness in time which in turn then gives
an arbitrary degree of cut-off decay in frequency. Preserving
orthogonality requires that the ON windows {Wk(t)} satisfy∑

k [Wk(t)]
2 ≡ 1 .

Let T, r ∈ R, and consider a signal block of length T +2r
centered at the origin. Let 0 < r � T/2. Define Cap(t) as
follows:




0 |t| ≥ T
2 + r ,

1 |t| ≤ T
2 − r ,

sin(π/(4r)(t+ (T/2 + r))) −T
2 − r < t < −T

2 + r ,

cos(π/(4r)(t− (T/2− r))) T
2 − r < t < T

2 + r .
(2)

Given Cap(t), we form a windowing system {Capk(t)} such
that supp(Capk(t)) ⊆ [kT − r, (k + 1)T + r] for all k. Note
that the Cap window has a continuous roll-off at the endpoints,
windows the signal in [−T

2 − r, T
2 + r] and is identically 1 on

[−T
2 + r, T

2 − r]. It has a 1/ω2 decay in frequency space, and
also has the property that for all t ∈ R,

[Capk(t)]
2 + [Capk+1(t)]

2 = 1 .

If we had a signal f with an absolutely convergent Fourier
series, then (f · Cap)k̂[n] =

∑
m f [n − m]Cap̂[m] = f̂ ∗

Cap̂[n]. The Fourier transform of Cap is a linear combination
of sincω and sinω functions and has an asymptotic 1/ω2

decay.
The theory of splines gives us the tools to generalize this

system. The idea is to cut up the time domain into perfectly
aligned segments so that there is no loss of information.
We also want the systems to be smooth, so as to provide
control over decay in frequency, and adaptive, so as to adjust
accordingly to changes in frequency band. Finally, we develop
our systems so that the orthogonality of bases in adjacent and
possible overlapping blocks is preserved.

Definition 1 (ON Window System): An ON Window
System is a set of functions {Wk(t)} such that for all k ∈ Z,

(i.) supp(Wk(t)) ⊆ [kT − r, (k + 1)T + r] ,

(ii.) Wk(t) ≡ 1 for t ∈ [kT + r, (k + 1)T − r] ,

(iii.) Wk is symmetric about its midpoint ,

(iv.)
∑

[Wk(t)]
2 ≡ 1 ,

(v.) {Ŵk
◦[n]} ∈ l1 . (3)

Conditions (i.) and (ii.) are partition properties, in that
they give an exact snapshot of the input function f on
[kT + r, (k + 1)T − r] with smooth roll-off at the edges.
Conditions (iii.) and (iv.) are needed to preserve orthogonal-
ity between adjacent blocks. Condition (v.) is needed for the
computation of Fourier coefficients. We generate our systems
by translations and dilations of a given window WI , where
supp(WI) = [−T

2 − r, T
2 + r]. Condition (v.) is needed for

the following reason. Let I = T +2r and let PWΩ denote the
Paley-Wiener space for bandlimit Ω. Let f ∈ PWΩ and let
{Wk(t)} be an ON window system with generating window
WI . Then

1

I

∫ T/2−r

−T/2−r

[f ·WI ]
◦(t) exp(−2πint/[I]) dt = f̂ ∗ŴI [n] . (4)
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Our general window function WI is m-times differentiable,
has supp(WI) = [−T

2 − r, T
2 + r], and has values

WI =





0 |t| ≥ T/2 + r ,
1 |t| ≤ T/2− r ,

ρ(±t) T/2− r < |t| < T/2 + r .
(5)

We solve for ρ(t) by solving the Hermite interpolation problem




(a.) ρ(T/2− r) = 1 ,
(b.) ρ(n)(T/2− r) = 0 , n = 1, 2, . . . ,m ,
(c.) ρ(n)(T/2 + r) = 0 , n = 0, 1, 2, . . . ,m .

with the conditions that ρ ∈ Cm and

[ρ(t)]2 + [ρ(−t)]2 = 1 for t ∈ [±(T2 − r),±(T2 + r)] . (6)

We will modify the Cap window given above using B-
splines to construct our functions. Let 0 < α � β and
consider χ

[−α,α]. We want the (m + 2)-fold convolution of
χ
[α,α] to fit in the interval [−β, β]. Then we choose α so that

0 < (m+ 2)α < β, and let

Ψ(t) = χ
[−α,α] ∗ χ[−α,α] ∗ · · · ∗ χ[−α,α](t)︸ ︷︷ ︸

(m+2)−times

.

The Cm solution for ρ is given by a theorem of Schoenberg
(see [18], pp. 7-8). Schoenberg solved the Hermite inter-
polation problem with endpoints −1 and 1. An interpolant
that minimizes the Chebyshev norm is called the perfect
spline. The perfect spline S(t) for the Hermite problem with
endpoints −1 and 1 such that S(1) = 1, S(n)(1) = 0,
n = 1, 2, . . . ,m, and S(n)(−1) = 0, n = 0, 1, . . . ,m, is
given by the integral of the function

M(t) = (−1)m
m∑

j=0

Ψ(t− tj)

φ′(tj)
,

where Ψ is the m+ 1 convolution of characteristic functions,
the knot points are tj = − cos(πjm ), j = 0, 1, . . . ,m, and
φ(t) =

∏k
j=0(t − tj). Given these knots, we have to choose

α to fit the knot points. If m is even, the midpoint occurs at
the m/2 knot point. If m is odd, the midpoint occurs at the
midpoint between the m/2 and (m + 1)/2 knot points. Let
ξ = l(t) = r

2 (t − 1), and let α(ξ) = S ◦ l(±ξ) , |ξ| ≤ r .
Let A =

∫ r

−r
α(ζ) dζ. Now, normalize α by letting β(ξ) =

π
2Aα(ξ) , and let

Θ(τ) =

∫ τ

−r

β(ξ) dξ , |τ | ≤ r . (7)

Define

ρup(τ) = sin(Θ(τ)) , ρdown(τ) = cos(Θ(τ)) . (8)

We define our Cm window WI(t) = ONCm(t) as follows:




0 |t| ≥ T/2 + r ,
1 |t| ≤ T/2− r ,
ρup(t+ (T/2 + r) −T/2− r < t < −T/2 + r ,
ρdown(t− (T/2− r))) T/2− r < t < T/2 + r .

(9)

We translate the window as needed. The resultant windowing
system has variable partitioning length, variable roll-off, and
variable smoothness. With each degree of smoothness, we get
an additional degree of decay in frequency.

We designed the ON windows {Wk(t)} so that they pre-
serve orthogonality of basis elements of overlapping blocks.
Because of the partition properties of these systems, we need
only check the orthogonality of adjacent overlapping blocks.
The best way to think about the construction is to visualize
how one would create the extension for a system of sines and
cosines. We would extend the odd reflections about the left
endpoint and the even reflections about the right. Let {ϕj(t)}
be an ON basis for L2[−T

2 ,
T
2 ]. Define

ϕ̃j(t) =





0 |t| ≥ T/2 + r ,
ϕj(t) |t| ≤ T/2− r ,

−ϕj(−T − t) −T/2− r < t < −T/2 ,
ϕj(T − t) T/2 < t < T/2 + r .

(10)
Theorem 2: {Ψk,j} = {Wkϕ̃j} is an ON basis for L2(R).

Proof : See [3]. �
This theorem gives a new method for analog to digital

conversion. Unlike W-K-S Sampling, which examined the
function at specific points and then uses those individual
points to recreate the curve, the Projection Method breaks the
signal into time blocks and then approximates their respective
periodic expansions with a Fourier series. This process allows
the system to individually evaluate each piece and base its
calculation on the needed bandwidth. The individual Fourier
series are then summed, recreating a close approximation of
the original signal. It is important to note that instead of fixing
T , the method allows us to fix any of the three parameters
while allowing the other two to fluctuate. From the design
point of view, the easiest and most practical parameter to
fix is N . For situations in which the bandwidth does not
need flexibility, it is possible to fix Ω and T by the equation
N = dT · Ωe. However, if greater bandwidth Ω is need, choose
shorter time blocks T . Theorem (2) is for any ON basis, giving
us the freedom to choose a basis to optimize the analysis of a
given class of signals, e.g., modified Gegenbauer (for UWB)
or Walsh (for binary).

Given characteristics of the class of input signals, the
choice of basis functions used can be tailored to optimal
representation of the signal or a desired characteristic in the
signal.

Theorem 3 (Projection Formula for ON Windowing): Let
{Wk(t)} be ON windows, and let {Ψk,n} = {Wkϕ̃n} be
an ON basis that preserves orthogonality between adjacent
windows. Let f ∈ PWΩ and N = N(T,Ω) be such that
〈f,Ψk,n〉 = 0 for all n > N and all k. Then, f(t) ≈ fP(t),
where

fP(t) =
∑

k∈Z

[ N∑

n=−N

〈f,Ψk,n〉Ψk,n(t)

]
. (11)

Proof : See [3]. �
The analysis of the error generated by the Projection

Method involves looking at the decay rates of the Fourier
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coefficients. If we are working with the standard basis, for
f ∈ C(T2Φ), we can define the modulus of continuity
as µ(δ) = sup|x−y|≤δ |f(x) − f(y)| . This measures the
local oscillation of the signal. We say that f satisfies a
Hölder condition with exponent α if there exists a constant
K such that |f(x + δ) − f(x)| ≤ Kδα . If f is m-times
continuously differentiable and fm satisfies a Hölder condition
with exponent α, then there exists a constant K such that
|f̂ [n]| ≤ K 1

nm+α .
The sharp cut-offs χ

[kT,(k+1)T ] have a decay of only
O(1/ω) in frequency. We designed the ON windows so that
the windows have decay O(1/(ω)m+2) in frequency. This
makes the error on each block summable.

We assume Wk is Cm. Therefore, Ŵk(ω) = O(1/(ω)m+2).
We will analyze the error EkP on a given block. Let M =
‖(f ·Wk)‖L2(R). Then EkP

= sup

∣∣∣∣(f(t) ·Wk)−
[ N∑

n=−N

〈f,Ψn,k〉Ψn,k(t)

]
Wk(t)

∣∣∣∣

= sup

[ ∑

|n|>N

〈f,Ψn,k〉Ψn,k(t)

]
Wk(t) ≤

∑

|n|>N

M

nm+2
.

III. MODIFIED GEGENBAUER SYSTEMS

The Gegenbauer polynomials are the symmetric specializa-
tion of the Jacobi polynomials (see [12], [17, Chapter 18]).
They are used in a UWB communication system to construct
pulses with narrow widths. The Gegenbauer waveform is used
to modulate data, and has demonstrated superior performance
to classic waveforms, e.g., Gaussian waveforms and the Her-
mite systems. The investigations in the engineering literature
give justifications for their claims via numerical simulation
[13], [16]. In this section, we develop a modified Gegenbauer
system, and use it to construct a windowed basis system for
UWB signals with exponentially small error on each block.

Using the spirit of [13], [16] (and references therein), we
define an ON basis for L2[−T

2 ,
T
2 ] using modified Gegenbauer

functions, constructed from Gegenbauer polynomials. The
Gegenbauer polynomials are modified so that they zero-out
at the endpoints and normalized to create an ON system. This
then allows UWB signals to be expanded in the Projection
Method (11) using the modified Gegenbauer system.

The Gegenbauer polynomials Cν
n : C → C are orthogonal

over (−1, 1) with orthogonality relation given by [17, Table
18.3.1]

∫ 1

−1

Cν
n(x)C

ν
m(x)w(x; ν)dx = hν

nδn,m, (12)

for ν ∈ (− 1
2 ,∞) \ {0}, where

w(x; ν) := (1− x2)ν−1/2, (13)

hν
n :=

21−2νπΓ(2ν + n)

(ν + n)Γ2(ν)n!
. (14)

The gamma function Γ : C \ −N0 → C is defined in [17,
Chapter 5], where N0 := {0, 1, 2, . . .}. The Gegenbauer poly-

nomials are defined using the Gauss hypergeometric function
[17, (18.5.9)] as

Cν
n(x) :=

(2ν)n
n!

2F1

(
−n, 2ν + n

ν + 1
2

;
1− x

2

)
,

where the Pochhammer symbol (·)n : C → C for n ∈ N0 is
defined by (a)n := (a)(a+ 1) · · · (a+ n− 1), and the Gauss
hypergeometric function is defined in [17, Chapter 15]. They
have a Rodrigues-type formula [17, Table 18.5.1]

Cν
n(x) :=

(−1)n(2ν)n

2n(ν + 1
2 )nn!

1

w(x; ν)

dn

dxn
w(x; ν + n),

and can also be computed using three-term recurrence rela-
tions [17, Table 18.9.1] or using trigonometric [14, p. 220]
series expressions. The Gegenbauer polynomials are given in
terms of the more general Jacobi polynomials symmetric in
parameters with [17, (18.7.1)]

Cν
n(x) =

(2ν)n

(ν + 1
2 )n

P (ν−1/2,ν−1/2)
n (x).

Consider the modified Gegenbauer function Cν
n : [−T

2 ,
T
2 ]×

(0,∞) → R defined by

Cν
n(t;T ) :=

√
2w
(
2t
T ; ν

)

Thν
n

Cν
n

(
2t

T

)
. (15)

It is easy to see from (12) that these functions form an ON
basis for L2[−T

2 ,
T
2 ] with ν ∈ ( 12 ,∞), namely

∫ T/2

−T/2

Cν
n(t;T )Cν

m(t;T )dt = δm,n.

Note that we exclude the parameters ν ∈ (− 1
2 ,

1
2 ] in order to

keep the endpoints ±T
2 in the domain of integration. By using

(13) and (14), one has

Cν
n(t;T ) =

22ν−1/2Γ(ν)

T ν

√
(n+ ν)n!

πΓ(2ν + n)

×
((

T
2

)2 − t2
)ν/2−1/4

Cν
n

(
2t

T

)
. (16)

The modified Gegenbauer system zeros out at the endpoints,
which allows us to use it to create the windowed ON basis
{Ψk,n} = {Wk

˜Cν
n(t;T )}, where we window with ONCm .

We use two theorems of Gottlieb and Shu [7] to give an
outline of an analytic argument showing they minimize the
Gibbs phenomenon. Given an integrable function f defined on
[−T

2 ,
T
2 ], we can compute its modified Gegenbauer coefficients

f̂ν(l) by

f̂ν(l) =

∫ T/2

−T/2

f(t)Cν
l (t;T )dt . (17)

This then gives the Gegenbauer expansion for the first j + 1
terms as

fν
j (t) =

j∑

l=0

f̂ν(l)Cν
l (t;T ) . (18)
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It is important to note that in order to get exponential decay
in our error computation at the end of this section (24), ν
must grow linearly with N . We assume ν = αN , for α > 0.
Now, let f be our original signal, fm be the expansion of
f into m-th degree modified Gegenbauer functions, and fm

N

be the expansion of f into m-th degree modified Gegenbauer
functions truncated at N . We want to estimate ‖(f − fm

N )‖.
By the triangle inequality,

‖(f − fm
N )‖ ≤ ‖(f − fm)‖+ ‖(fm − fm

N )‖ . (19)

Assume m = βN , for β > 0. Let TE(ν, α, β,N) be the
truncation error in ‖(fm−fm

N )‖ (Theorem 4.1, page 659 from
[7]). One has

TE(ν, α, β,N) ≤ C(qT )
N , (20)

where qT = (β+2α)(β+2α)

(2α)αββ . Note, qT is the key to expo-
nential decay in the truncation estimate. We have that if
α = β < 2/27, qT < 1. (In fact, if α = β, the function
g(x) = [(3x)(3x)]/[2x · (x)(2x)] is minimized at x = 2/(27e)
with value e−2/(27e).)

Next, we estimate the regularization error ‖(f − fm)‖. Let

RE(ν,m) = sup
−T

2 ≤t≤T
2

∣∣∣∣f(t)−
m∑

l=0

f̂ν(l)Cν
l (t;T )

∣∣∣∣ . (21)

We modify Theorem 4.3, p. 662 from [7]. Here, we have to be
careful, because the estimate in [7] involves 1

Cν
l (1)

(Equation
(4.21), p. 661). The modified Gegenbauer functions zero out at
the endpoints. Therefore, we had to recompute the estimates.
Adjusting the arguments in Gottlieb and Shu for the modified
Gegenbauer functions, we arrive at RE(ν,m) ≤

max
−T

2 ≤t≤T
2

|f(t)|
[
1+

21−ν

√
TΓ(ν + 1/2)

m∑

l=0

√
(l + ν)Γ(l + 2ν)

Γ(l − 1)

]
.

Using Stirling’s approximation formula [17, p. 141], and
bounding sup−T

2 ≤t≤T
2
|f(t)| by M , we get that

RE(ν,m) ≤ M√
2πT

[
21−ν

(ν − 1
2 )

ν

][
(m+ 2ν)

(m+2ν)
2

m
m
2

]
. (22)

We can now follow the proof of Theorem 4.3, pp. 662-663
from [7]. If ν = γm, there exists qR < 1 such that the error
in this estimate satisfies, for 0 < r < 1,

RE(ν,m) ≤ Cm(qR)
m, qR =

(1 + 2γ)
(1+2γ)

2

γ2γ
r . (23)

We close by computing EkP in terms of the modified Gegen-
bauer system. The minimization of the Gibbs phenomenon,
giving the point values of a piecewise smooth signal with
essentially the same accuracy as a smooth approximation,
makes this system the ideal system to use for the Projec-
tion Method as applied to UWB systems. Let σ ∈ N be
the smoothness parameter, and assume Wk is Cσ , and so
Ŵk(ω) = O(1/(ω)σ+2). Now approximate the signal f with
the windowed ON basis {Ψk,n} = {Wk

˜Cν
n(t;T )}, where we

window with ONCσ . Let q = max{qT , qR}. Note, q < 1.
Then, the error EkP on a given block is

sup

∣∣∣∣(f(t) ·Wk)−
[ N∑

n=−N

〈f,Ψn,k〉Ψn,k(t)

]
Wk(t)

∣∣∣∣(24)

≤ sup

[ ∑

|n|>N

∣∣∣∣〈f,Ψn,k〉Ψn,k(t)

∣∣∣∣
]
Wk(t) ≤

∑

|n|>N

elog(q)N

nσ+2
.

Since q < 1, elog(q)N decays exponentially as N increases.
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