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Abstract 

In this paper, we look at long arithmetic progressions on conics. By an arithmetic 
progression on a curve, we mean the existence of rational points on the curve whose 
x-coordinates are in arithmetic progression. We revisit arithmetic progressions on the 
unit circle, constructing 3-term progressions of points in the first quadrant containing 
an arbitrary rational point on the unit circle. We also provide infinite families of three 
term progressions on the unit hyperbola, as well as conics ax2 + cy2 = 1 containing 
arithmetic progressions as long as 8 terms. 

1 Introduction 

Recently, several researchers have explored arithmetic and geometric progressions on various 
families of plane curves. By a progression on a curve, we mean there is a sequence of 
rational points on the curve whose x-coordinates (or y-coordinates) form an arithmetic or 
geometric progression. The historical motivation for this problem on elliptic curves seems to 
be an apparent connection between long progressions and high ranks for the corresponding 
Mordell-Weil groups (see [12, 20] for a lengthier discussion). Perhaps for this reason, much 
of the work in this area has pertained to elliptic (or hyperelliptic) curves. 
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Bremner [5], Campbell [8], Garcia-Selfa and Tornero [12], have looked at arithmetic 
progressions on elliptic curves defined by Weierstrass equations, while Campbell [8], MacLeod 
[17] and Ulas [21] have investigated progressions on curves represented by quartic models. 
Alvarado [3] and Ulas [22] extended similar results to genus 2 curves. In addition, Moody 
[18, 19], Choudhry [9], Bremner [6], and Gonzalez-Jiménez [13] studied longer arithmetic 
progressions on Edwards and Huff curves. 

The problem of finding long arithmetic progressions on conics has not been explored quite 
as extensively. Alvarado and Goins [4] gave a generalization of 3-term arithmetic progressions 
on an arbitrary conic section C. Allison [1, 2], Bremner [7], and González-Jiménez/Xarles 
[15] all looked at progressions on parabolas, with infinitely many with 8 term progressions 
found. More recently, Choudhry and Juyal [10] parameterized infinitely many arithmetic 
progressions of three rational points on the unit circle, such that the three points all lie in 
the first quadrant. They also used these progressions to derive infinitely many arithmetic 
progressions on the ellipse x2/a2 + y2/b2 = 1. 

In this work, we look at finding arithmetic progressions on the unit circle, as well as on 
the unit hyperbola and conics of the form ax2 + cy2 = 1. We give a slightly more general 
result on 3-term arithmetic progressions on the unit circle x2 + y2 = 1, and similarly on the 
unit hyperbola x2 − y2 = 1 . We also provide infinitely many conics C : ax2 + cy2 = 1 having 
8-term arithmetic progressions. This matches the highest known length of a progression on 
conics. 

2 Arithmetic Progressions on the Unit Circle 

Consider the unit circle x2 + y2 = 1. Trivially, the points (−1, 0), (0, 1), and (1, 0) are 
always on the circle yielding a progression of length 3. Similarly, given any rational point 
(x, y), there is the progression obtained from the points (−x, y), (0, 1), and (x, y). However, 
Choudhry and Juyal sought to find a progression of length 3 whose points were all in the 
first quadrant. That is, the x-coordinates xi all satisfied 0 < xi < 1. We will work under the 
same restriction, and present a different approach to finding a 3-term progression. 

We begin by parameterizing the rational points on the unit circle by setting 

2t 
x(t) = , 

t2 + 1

t2 − 1 
y(t) = . 

t2 + 1 

To find a progression of length 3 in the first quadrant, we need to find rational t0, t1, t2 such 
that 0 < x(t0), x(t1), x(t2) < 1 and x(t2) − x(t1) = x(t1) − x(t0). An easy calculation shows 
this will be possible if the following quadratic equation in t2 has rational solutions: 

2 2 2 2 2 2 2(2t0t1 − 4t0t1 + 2t0 − 4t1)t + 2(t + 1)(t1 + 1)t2 + 2t0t − 4t0t1 + 2t0 − 4t1 = 0. (1)2 0 1 
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We obtain rational solutions to the quadratic if the resulting discriminant
 

2 4 2 3 4 2 2 2 2D = 4(t0 − 1)2t1 + 64t0(t0 + 1)t1 − (56t0 + 144t0 + 56)t1 + 64t0(t0 + 1)t1 + 4(t0 − 1) 

is square. As the coefficient of t41 is square, we can use a trick from Fermat in [11, p. 639] to 
make the entire quartic in t1 be equal to a square by setting 

t0(t0 − 1)2(t0 + 1)2(t20 + 1) 
t1 = 8 . 

(3t40 + 2t0
2 + 3)(t40 + 6t0

2 + 1) 

Substituting in this value of t1, the quadratic (1) factors, resulting in the roots 

3t8 + 4t6 − 30t4 − 28t2 − 130 0 0 0t2 = t0 , 
+ 28t6 + 30t4 − 4t2 − 313t80 0 0 0 

and it’s inverse. A three term arithmetic progression on the unit circle is thus given by 
x(t0), x(t1), and x(t2) with the above values of t1 and t2. 

We next find conditions under which the corresponding points will be in the first quadrant. 
2tAs x(t) = 

t2+1 is always an x-coordinate on the unit circle, then clearly 0 < x(t) < 1 exactly 
when t > 0, t  1. We therefore assume that t0 > 0. We see that t1 > 0 if and only = 
if (3t40 + 2t0

2 + 3)(t40 + 6t0
2 + 1) > 0, which is always true. An easy analysis shows that if 

t0 > 1.8 then the expression for t2 > 0. Thus, when t0 > 1.8, we see that the points with 
x-coordinates x(t0), x(t1), and x(t2) can all be taken to lie in the first quadrant. As an 
example, when t = 2 we obtain the progression 4/5, 3483360/6369961, 9353756/31849805. 

An interesting property of the progression above is that given any rational point (x ∗ , y  ∗) = 
(0, ±1) on the unit circle, we can find a 3-term progression in the first quadrant containing 
it. Set t0 = (1 ± y ∗)/x∗, and then an easy calculation verifies that x(t0) = x ∗ . The three 
term progressions on the unit circle found by Choudhry and Juyal do not have this property. 
We note the property cannot be extended to two arbitrary rational points on the unit circle. 
For example, with the points (7/25, 24/25) and (3/5, 4/5) the progression would need to 
have third term −1/25, 11/25, or 23/25. However none of these values are x-coordinates of 
rational points on the unit circle. 

We remark that if we allow circles which are not the unit circle, it is possible to have 
progressions of length 4, although the points do not all lie in the first quadrant. A simple 
example is the circle x2 +y2 = 5/2 which has x = −3/2, −1/2, 1/2, 3/2. Any such symmetric 
progression of length 4 of the form {−3x1, −x1, x1, 3x1} requires finding rational points 
satisfying 

x1
2 + y1

2 = R, 

9x1
2 + y2

2 = R, 

where the circle has equation x2 + y2 = R. These simultaneous quadratic equations can be 
transformed into more common models for an elliptic curve. For example, when R = 5/2, 
we parameterize solutions to the first quadratic by setting x(t) = (−3t2 +4t + 12)/(2t2 + 8). 
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Substituting this expression into the second quadratic yields the curve C := z2 = −71t4 + 
216t3 + 584t2 − 864t − 1136. The points (t, z) = (−1, 5) and (2, 8) are on C. We then have 
x(−1) = x(2) = 1/2, leading to the progression −3/2, −1/2, 1/2, 3/2. It is not hard to find 
other values of R which lead to similar 4-term progressions. 

3 Progressions on the Unit Hyperbola 

It is simple to extend this approach to the unit hyperbola x2 − y2 = 1. We parameterize the 
rational points on the hyperbola by setting x(t) = (t2 + 1)/(2t). Following the exact same 
procedure as above, we find that for any rational t2 we can set 

3t2 
t0 = , 

t22 + 1

2(t22 + 1) 
t1 = . 

3t2 

The resulting three term progression is x(t0), x(t1), and x(t2): 

t4 + 11t2 + 1 
x(t0) = 2 2 , 

+ 1)6t2(t22 

(t22 + 4)(4t22 + 1) 
x(t1) = ,

12t2(t22 + 1) 

t22 + 1 
x(t2) = . 

2t2 

We attempted to extend these progressions to four terms for both the unit circle, as well 
as the unit hyperbola. If we let d = x(t2) − x(t1) be the common difference of a progression, 
a fourth term would come from either x(t0) − d or x(t2) + d being a valid x-coordinate on 
the corresponding curve. Upon simplfying the resulting equations, they all lead to needing a 
rational point on certain quartic equations. Transforming these quartics into elliptic curves, 
we found that none of them have positive rank. Thus, we do not get four term progressions 
from this approach. 

4 Arithmetic Progressions on General Conics 

The general conic is of the form ax2 + bxy + cy2 + dx + ey + f = 0. We assume the conic is 
not degenerate, meaning it is not the product of two linear equations. If we were to consider 
degenerate conics, we would trivially obtain progressions of infinite length as every rational 
value is a valid x-coordinate for a linear equation. 
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Considering ax2 + bxy + cy2 + dx + ey + f = 0, then we can complete the square (in y) 
to transform the equation into the form 

b2 2b e be e
(cy + x + )2 = ( − ac)x 2 + ( − cd)x + − cf. 

2 2 4 2 4 

Thus, any arithmetic progression on the general conic will become a progression on a conic 
of the form y2 = ax2 + bx + c. As mentioned in the introduction, arithmetic progressions 
on parabolas have been considered by a few authors [1, 2, 7, 15]. Allison found infinitely 
many parabolas with eight points in arithmetic progression, while González-Jiménez and 
Xarles were able to show that there does not exist integer arithmetic progressions with nine 
or more terms on parabolas with both integral coefficients and axis of symmetry. They note 
without the restrictions requiring integers, an upper bound on the length of progressions on 
parabolas is not known. 

For the remainder of this section, we consider conic sections in standard form, i.e., those 
for which b = 0. We may complete the square, to write the conic equation as 

a(x − d/(2a))2 + c(y − e/(2c))2 + f − d2/(4a) − e 2/(4c) = 0. 

An arithmetic progression shifted by x−b/(2a) is still an arithmetic progression, and similarly 
shifting by y − d/(2c) does not affect the progression. Thus we can rewrite the equation as 

ax 2 + cy 2 = 1, 

for some constants a, c, ∈ Q. Note, by multiplying the entire equation by a suitable rational, 
we can scale so that the constant coefficient is 1. If we wish the progression to be of the 
form {−2x1, −x1, 0, x1, 2x1}, then we need that c is a square and the equation reduces to 
ax2 + y2 = 1. 

Now given any rational m, let a = −m4 + 10m2 − 9 and x ∗ = 
4
1 
m . Then a straightforward 

∗ m2−3 ∗ 2+3calculation shows that the points (±2x , ), (±x , −m ), and (0, 1) all lie on ax2+y2 = 1 
2m 4m 

and hence yield infinitely many 5-term progressions. If 1 < |m| < 3, then a > 0 and the 
conic will be a circle, while otherwise a < 0 and the conic is a hyperbola. It is also possible 
to instead fix a value of a, which would then require −1/a(m4 − 10m2 + 9) to be square. 
Such an equation defines an elliptic curve. If the curve has positive rank then the curve will 
yield an infinite number of progressions for that fixed a. For example, if a = 15/64 then the 
quartic is isomorphic to the curve Y 2 = X3 − 63897600X − 146800640000, which is a rank 
1 curve with generator (−4864, 221184). 

We can further improve the results for ax2 + cy2 = 1, and obtain progressions of length 
greater than five. Set 

t(t + 1)(t − 2) 
a = ,

(t − 1)(2t − 1)(t + 4)(t + 2)

2 
c = ,

(t − 1)(2t − 1)(t + 4)(t + 2)
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 for any t = 1/2, 1, 2, −1, −2, −4. Then the rational points (±1, ±(t2 +2t−t)), (±3, ±(t2 +2)), 
and (±5, ±(t2 − 4t − 2)) all satisfy ax2 + y2 = 1. Thus, there are infinitely many conics of 
this form with 6 terms in progression. In order for there to be a point with x-coordinate ±7, 
then there needs to be a rational solution to the equation 

s 2 = t4 − 20t3 + 24t2 + 40t + 4. 

The curve defined is birationally equivalent to the elliptic curve E : Y 2 = X3−1008X+10368. 
The curve E is a rank 1 curve with generator (−12, −144), and hence has infinitely many 
rational points. Given any such point (X, Y ), we set t = (40X − 480+4Y )/(X2 − 16X +48). 
For these values of t, then x = ±7 is a valid x-coordinate, showing we have an infinite 
number of conics with 8 points in progression. As a concrete example, the point (28, 64) is 
on E, and leads to t = 7/3. When t = 7/3, the conic (105/5434)x2 + (81/5434)y2 = 1 has 
eight points in progression with x-coordinates {−7, −5, −3, −1, 1, 3, 5, 7}. 

5 Conclusion and Future Work 

In this work, we have studied long arithmetic progression on conics. We gave a more gen­
eral result on finding progressions on the unit circle, and similarly provided infinitely many 
unit hyperbolas with 3-term arithmetic progressions. We also constructed infinitely many 
conics in standard form having 8-term arithmetic progressions. Future work would be to 
improve the length of these progressions. It might also be possible to use the techniques 
of [14] to prove upper bounds on the maximum length of (integer) progressions on the unit 
circle, hyperbola, or conics in standard form. It would be interesting to study long geometric 
progressions on conics as well. 
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