
SPHINCS-Simpira: Fast Stateless Hash-based 

Signatures with Post-quantum Security 

Shay Gueron1,2 and Nicky Mouha3,4 

1 University of Haifa, Israel. 
2 Intel Corporation, Israel Development Center, Haifa, Israel. 

3 National Institute of Standards and Technology, Gaithersburg, MD, USA. 
4 Project-team SECRET, Inria, France. 

Abstract. We introduce SPHINCS-Simpira, which is a variant of the 
SPHINCS signature scheme with Simpira as a building block. SPHINCS 
was proposed by Bernstein et al. at EUROCRYPT 2015 as a hash-based 
signature scheme with post-quantum security. At ASIACRYPT 2016, 
Gueron and Mouha introduced the Simpira family of cryptographic per-
mutations, which delivers high throughput on modern 64-bit processors 
by using only one building block: the AES round function. The Simpira 
family claims security against structural distinguishers with a complex-
ity up to 2128 using classical computers. In this document, we explain 
why the same claim can be made against quantum computers as well. 
Although Simpira follows a very conservative design strategy, our bench-
marks show that SPHINCS-Simpira provides a 1.5× speed-up for key 
generation, a 1.4× speed-up for signing 59-byte messages, and a 2.0× 
speed-up for verifying 59-byte messages compared to the originally pro-
posed SPHINCS-256. 

Keywords: Simpira, SPHINCS, post-quantum security, hash-based sig-
nature, AES-NI. 

1 Introduction 

Although it is not known how long it will be before large-scale quantum com-
puters can be built, the advent of such computers will make most currently-used 
standards for public-key cryptography insecure. The goal of post-quantum cryp-
tography is to ensure that systems remain secure against quantum computers. 

Hash-based signatures are one of the most promising candidates for post-
quantum digital signatures. The advantage of hash-based signatures is that the 
choice of secure parameters is better understood than for other constructions, 
against attacks using classical as well as quantum computers. Modern hash-
based signatures can be quite efficient in terms of key storage, signature sizes, 
and computation times. A recently proposed hash-based signature scheme is 
SPHINCS [3], introduced by Bernstein et al. at EUROCRYPT 2015. 

At ASIACRYPT 2016, Gueron and Mouha introduced a family of crypto-
graphic permutations named Simpira [13], which supports inputs of 128× b bits, 



where b is a positive integer. These permutations can be used in various appli-
cations, such as encryption, authentication, and hashing. 

In this paper, we will explain how Simpira can be used inside SPHINCS-256. 
In particular, we will instantiate the F : {0, 1}256 → {0, 1}256 and H : {0, 1}512 → 
{0, 1}256 functions of SPHINCS by Simpira with respectively b = 2 and b = 4, 
combined with a Davies-Meyer feedforward. 

The main goal of this paper will be to provide benchmarking results of the 
resulting construction, and to compare them with the original SPHINCS-256. 
As a side result, we will also argue that Simpira can provide 2128 security not 
just against classical computers but also against quantum computers, so that 
the security proof of SPHINCS can be carried over. 

To improve the readability of this paper, we will use Simpira to refer to 
Simpira v2, which is the published version of the design that appeared at ASIA-
CRYPT 2016. Also, SPHINCS will refer to SPHINCS-256, which a specific in-
stantiation of SPHINCS that was introduced in the SPHINCS paper at EURO-
CRYPT 2016. 

Outline. First, we discuss hash functions, digital signatures and hash-based 
signatures in Sect. 2. In Sect. 3, we describe SPHINCS and in particular the F 
and H functions inside SPHINCS that dominate its performance. The descrip-
tion of Simpira is briefly recalled in Sect. 4. We explain how Simpira satisfies 
the design requirements of SPHINCS in Sect. 5, and in particular its resistance 
against quantum adversaries. In Sect. 6, we benchmark SPHINCS-Simpira, and 
compare its performance to the original SPHINCS design. A comparison with 
Haraka, another AES-based proposal to speed up SPHINCS, is made in Sect. 7. 
We conclude the paper in Sect. 8. 

2 Preliminaries 

A hash function h is a function that transforms an input of an arbitrary length 
into an output of a fixed length. It can be that the length of the input is fixed 
by the application, in which case it is acceptable that h only supports inputs of 
this specific length. 

The requirements of a hash function depend on the application. In a very 
informal way, we will state some common requirements for hash functions: 

– preimage resistance, that is, given an output, it should be infeasible to find 
a corresponding input to the hash function, 

– second-preimage resistance, that is, given an input, it should be infeasible to 
find another input that hashes to the same output, 

– undetectability, that is, it should be infeasible to distinguish the outputs from 
uniformly random values, 

– collision resistance, that is, it should be infeasible to find two distinct inputs 
that hash to the same output, 

2 

http:againstquantumadversaries.In


– indifferentiability from a random oracle, that is, the hash function should 
“behave” as a random oracle when it is instantiated with an “ideal” com-
pression function (or an “ideal” permutation for permutation-based hash 
functions). 

A (digital) signature scheme consists of three algorithms: 

– a key generation algorithm that draws a private key uniformly at random 
from the space of possible private keys, and generates a corresponding public 
key, 

– a signature algorithm that given a private key and a message, generates a 
signature for this message, and 

– a verification algorithm that given a public key, a message, and a signature, 
outputs “valid” if the signature is a correct signature for the given message, 
or “invalid” otherwise. 

The goal of a signature algorithm is to ensure that an adversary cannot generate a 
forgery, that is, a new message and a corresponding signature, generated without 
knowledge of the private key. 

Traditional signatures schemes such as RSA [24], DSA [22] or ECDSA [22] 
derive their security from the difficulty of number-theoretic problems such as the 
factorization or the discrete logarithm problem. Large-scale quantum computers 
are expected to render these signature schemes completely insecure due to Shor’s 
algorithm [25], which runs in polynomial time with respect to the size of the 
input. 

When post-quantum security is required, hash-based signatures can present 
an attractive alternative to traditional signature schemes. In fact, the very first 
digital signature scheme was a hash-based signature scheme, and was proposed 
around 1975 by Lamport [9,18]. In Lamport’s proposal, the private key consists 
of two secret values, and the public key consists of the corresponding hashes of 
these values. Then, to sign a one-bit message, reveal either the first or the second 
secret value, depending on whether the message bit is zero or one. By repeating 
this process, an arbitrary number of bits can be processed. 

A downside of Lamport’s signature scheme is that the size of the private and 
public keys grows quickly with the number of messages that need to be signed. 
Another, perhaps more devastating downside of Lamport’s signature scheme, 
is that it is a stateful signature scheme. That is, the signer needs to indicate 
which public keys are used to sign a particular message, and therefore needs to 
keep track of the number of messages signed so far. The security of the scheme 
critically depends on this property. As pointed out by Langley [19], this is a “huge 
foot-cannon” in many environments, for example when a private key needs to 
be copied from one device to another. 

Many improved hash-based signature schemes have been proposed to ad-
dress the shortcomings of Lamport’s signature scheme. For example, the private 
keys can be generated from a master key using a secure key derivation function 

3 



(KDF) [21], and Merkle trees [20] can be used to shorten the public keys. How-
ever most, if not all, practical hash-based signature schemes are stateful. To also 
overcome this problem, the stateless hash-based signature scheme SPHINCS was 
recently proposed. 

3 Hash Functions in SPHINCS 

For a full specification of SPHINCS, we refer to [3]. For the purposes of this 
paper, it is sufficient to know that the performance of SPHINCS is largely de-
termined by two functions: 

– F , a 256-bit-to-256-bit hash function, and 
– H , a 512-bit-to-256-bit hash function. 

The precise security requirements of F and H are stated in the SPHINCS 
paper [3]. For this paper, it is sufficient to recall the informal definitions of Sect.2, 
and to say that F is required to be preimage resistant, second-preimage resistant 
and undetectable, and that H is required to be second-preimage resistant. These 
security properties should hold for both classical and quantum adversaries. In 
the SPHINCS security proof, F and H are not required to be collision resistant, 
nor indifferentiable from a random oracle. 

To instantiate F and H , we will use two (unkeyed) cryptographic permuta-
tions of the Simpira family: P256 and P512 on 256-bit and 512-bit inputs respec-
tively. More specifically, let F (m) = P256(m)⊕ m, and H(m) = ⌊P512 (m)⊕ m⌋, 
where ⌊·⌋ truncates the input to the first 256 bits. 

When P256 and P512 are random permutations, this construction of F and H 

was shown to be optimally preimage, second-preimage and collision-resistant by 
Black et al. [6], and can trivially be shown to be undetectable as well. However, 
it is not indifferentiable from a random oracle, as shown by Chang et al. [8]. To 

−1see this, observe that it is easy to find a fixed point for F (pick m = P (0)), 
256

whereas it is hard to find a fixed point for a random oracle. For H , a similar 
differentiability attack applies. But as we noted earlier, the SPHINCS security 
proof does not require F and H to be secure in the indifferentiability framework. 

Note that Simpira comes with simple security arguments and comfortable 
security margins against all structural distinguishers with up to 2128 queries. 
This allows us to model P256 and P512 as random permutations for adversaries 
making up to 2128 queries, from which the security results of F and H follow. 
It may be considered to reduce the number of rounds of Simpira at a future 
point in time, and perhaps only when Simpira is used in SPHINCS. However, 
we decided to implement Simpira with the same number of rounds as in its design 
document, so that we can reuse Simpira’s claim against structural distinguishers 
in this paper. 

For fast software implementations of SPHINCS, it is recommended to evalu-
ate F and H on multiple independent inputs in parallel. This property is impor-
tant for the fast vectorized implementation of the original SPHINCS, and will 
be used in this paper as well. In the following section, we will explain how to 
use Simpira to instantiate P256 and P512 respectively. 

4 



4 Description of Simpira 

We now recall the specification of Simpira for the parameters that are relevant 
to this paper: b = 2 and b = 4, corresponding to 256-bit and 512-bit inputs 
respectively. A complete description, together with a design rationale, a security 
analysis and benchmarks, can be found in the Simpira design document [13]. 

An algorithmic specification of the Simpira design of Fig. 3 is given in Fig. 4. 
It uses one round of AES as a building block, which corresponds to the AESENC 
instruction on Intel processors (see Alg. 1). Its input is a 128-bit xmm register, 
which stores the AES 4 × 4 matrix of bytes as shown in Fig. 1. For additional 
details, we refer to [12]. 

s0 s4 s8 s12 

s1 s5 s9 s13 

s2 s6 s10 s14 

s3 s7 s11 s15 

Fig. 1. The internal state of AES can be represented by a 4 × 4 matrix of bytes, or as 
a 128-bit xmm register value s = s15� . . . �s0, where s0 is the least significant byte. 

The G-function5 is specified in Alg. 2. It is parameterized by a counter c and 
by the number of subblocks b. Here, SETR EPI32 converts four 32-bit values into 
a 128-bit value, using the same byte ordering as the mm setr epi32() compiler 
intrinsic. Fig. 2 shows how the constants can be expressed using the 4 × 4 byte 
matrix of AES. 

0x00 ⊕ c0 ⊕ b0 0x10 ⊕ c0 ⊕ b0 0x20 ⊕ c0 ⊕ b0 0x30 ⊕ c0 ⊕ b0 

c1 ⊕ b1 c1 ⊕ b1 c1 ⊕ b1 c1 ⊕ b1 

c2 ⊕ b2 c2 ⊕ b2 c2 ⊕ b2 c2 ⊕ b2 

c3 ⊕ b3 c3 ⊕ b3 c3 ⊕ b3 c3 ⊕ b3 

Fig. 2. The constants used inside the Gc,b function of Alg. 2, expressed as a 4 × 4 
matrix of bytes. Here, c = c4� . . . �c0 and b = b4� . . . �b0 are 32-bit integers, where the 
least significant byte is c0 and b0 respectively. 

Both the input and output of Simpira consist of b subblocks of 128 bits. The 
arrays use zero-based numbering, and array subscripts should be taken modulo 
the number of elements of the array. The subblock shuffle is done implicitly: we 

5 The F -function of the Simpira paper [13] is called G here to avoid confusion with 
the F -function of the SPHINCS design document [3]. 

5 



do not reorder the subblocks at the end of a Feistel round, but instead we apply 
the G-functions to other subblock inputs in the subsequent round. 

As a result of this implementation choice, Simpira for b = 2 and b = 4 and 
their reduced-round variants are not always equivalent to a (generalized) Feistel 
with identical rounds. For example, for b = 2 the G-function is alternatingly 
applied from left to right and from right to left. When the number of rounds 
is odd, this is not equivalent to a Feistel with identical rounds: the two output 
subblocks will be swapped. 

x0 x1 x0 x1 x2 x3 

G GG 

b = 2 b = 4 

Fig. 3. One round of the Simpira construction for b = 2 and b = 4 In both cases, the 
total number of rounds is 15. G is shorthand for Gc,b, where c is a counter that is 
initialized by one, and incremented after every evaluation of Gc,b. Every Gc,b consists 
of two AES round evaluations, where the round constants that are derived from (c, b). 

5 Post-Quantum Security of Simpira 

We refer to [13] for the security claims of Simpira in the classical (non-quantum) 
setting, where it is argued to be secure against structural distinguishers with a 
complexity up to 2128. In this section, we argue why Simpira is also secure in a 
post-quantum setting against attacks with the same complexity. 

In particular, we evaluate the security of F and H of SPHINCS when in-
stantiated by Simpira with respectively b = 2 and b = 4, combined with a 
Davies-Meyer feedforward, as described in Sect. 3. We explain why this construc-
tion is undetectable, preimage resistant, second-preimage resistant and collision-
resistant up to 2128 operations, both in a classical and in a quantum setting. 

A common misunderstanding is that the complexity of a quantum algorithm 
is the square root of the corresponding classical algorithm. This would mean 
that F and H need to have a preimage and second-preimage resistance of 2256 . 
Such a claim is not made in the Simpira design document [13], as only security 
up to structural distinguishers with complexity up to 2128 is argued. Although 
no preimage or second-preimage attack is known, the Simpira instantiations of 
F and H may have preimage or second-preimage attacks with a complexity of 

6 



Algorithm 1 AESENC (see [12]) 

1: procedure AESENC(state, key) 
2: state ← SubBytes(state) 
3: state ← ShiftRows(state) 
4: state ← MixColumns(state) 
5: state ← state ⊕ key 
6: return state 
7: end procedure 

Algorithm 2 Gc,b(x) 

1: procedure Gc,b(x) 
2: C ← SETR EPI32(0x00 ⊕ c ⊕ b, 
3: 0x10 ⊕ c ⊕ b, 
4: 0x20 ⊕ c ⊕ b, 
5: 0x30 ⊕ c ⊕ b) 
6: return AESENC(AESENC(x,C), 0) 
7: end procedure 

Algorithm 3 Simpira (b ∈ {2, 4}) 
1: procedure Simpira(x0, . . . , xb−1) 
2: R ← 15 
3: c ← 1 
4: for r = 0, . . . , R − 1 do 
5: xr+1 ← xr+1 ⊕ Gc,b(xr) 
6: c ← c + 1 
7: if b = 4 then 
8: xr+3 ← xr+3 ⊕ Gc,b(xr+2) 
9: c ← c + 1 
10: end if 

11: end for 

12: return (x0, x1, . . . , xb−1) 
13: end procedure 

Algorithm 4 Simpira−1 (b ∈ {2, 4}) 

1: procedure Simpira−1(x0, . . . , xb−1) 
2: R ← 15 
3: c ← bR/2 
4: for r = R − 1, . . . , 0 do 
5: if b = 4 then 
6: xr+3 ← xr+3 ⊕ Gc,b(xr+2) 
7: c ← c − 1 
8: end if 

9: xr+1 ← xr+1 ⊕ Gc,b(xr) 
10: c ← c − 1 
11: end for 

12: return (x0, x1, . . . , xb−1) 
13: end procedure 

Fig. 4. Alg. 2 specifies Gc,b using the AESENC operation that is defined in Alg. 1. Alg. 3 
and Alg. 4 specify Simpira and its inverse for b = 2 and b = 4, where both the input and 
output consist of b subblocks of 128 bits. Note that all arrays use zero-based numbering, 
and array subscripts should be taken modulo the number of elements of the array. 

less than 2256, possibly as the result of a distinguisher that makes more than 
2128 evaluations. 

This incorrect interpretation of post-quantum security is likely the result of 
some confusion about Grover’s algorithm [10, 11], a quantum algorithm that 
inverts a function with a s-bit output using about 2s/2 operations. As s = 256 
in our case, this corresponds to about 2128 quantum operations. Note that only 
the digest size s determines the complexity of Grover’s algorithm, and not any 
particular structure about the function. When the function is a random oracle, 
Grover’s algorithm was shown to be optimal by Bennett et al. [1]. 

But more efficient quantum algorithms exist to invert particular functions. 
The discrete logarithm problem comes in mind, for which Shor [25,26] provided 
a quantum algorithm that is polynomial-time in the size of the input. How-

7 



ever, Shor’s algorithm crucially relies on the special structure of the function. 
Here in particular, it uses the fact that exponentiation can be performed using 
the square-and-multiply algorithm. For Simpira, however, no such structure is 
present. Therefore, although the Simpira design document only claims security 
up to 2128 in the classical setting, also no quantum algorithm is known that 
can find preimages or second-preimages for F or H in less than 2128 quantum 
operations. 

Furthermore, there is no algorithm that can find collisions in less than 2128 

operations (classical or quantum). Note that a quantum algorithm by Brassard, 
Høyer and Tapp [7] is frequently claimed to find collisions with a lower complex-
ity. We refer to Bernstein [2] for an explanation of why the Brassard-Høyer-Tapp 
quantum algorithm does not outperform classical collision search algorithms. 
Bernstein’s argument is used to argue the security of SPHINCS against multi-
target preimage attacks, and applies regardless of the primitives by which it is 
instantiated. 

Undetectability can be seen as a rather broad notion, as there are many ways 
in which the outputs of F (or H) could be distinguished from uniformly random 
values. Perhaps the first output bit is biased towards zero, the XOR of the output 
bits is biased towards one, the probability of finding a collision is higher than 
for a uniformly random distribution,... Undetectability requires security against 
all of these distinguishers, and many more. In a classical setting, Simpira claims 
security against structural distinguishers up to 2128 queries, which includes all 
detectability attacks. In this claim, no specific computational model is imposed 
on the distinguisher, so that it carries over to the post-quantum setting as well. 
Note that F (or H) is evaluated on uniformly random inputs, so the quantum 
computer has no control over the inputs, but can base its decision only on the 
observation of the outputs of F (or H) in the “real world,” or uniformly random 
values in the “ideal world.” 

We point out that we do not consider the fully-quantum model, in which 
an adversary can query an oracle implementing a cryptographic primitive in a 
quantum superposition of different state. Under that assumption, exponential 
speed-ups are possible to attack many commonly-used constructions, such as 
Even-Mansour [17], and even CBC-MAC, GCM, and OCB [15]. Currently, the 
security of most hash-based constructions (including the original SPHINCS) is 
not yet well-understood in the fully-quantum model. Neither do we consider 
that better alternatives to Grover’s algorithm may be discovered in the future 
to invert cryptographic hash functions. Any progress in this area will likely have 
an impact on SPHINCS with the current parameter choices, regardless of the 
underlying hash functions. 

6 Benchmarks of SPHINCS-Simpira 

We measured the performance of SPHINCS on the latest Intel processor, Archi-
tecture Codename Skylake, with Hyper-Threading and Turbo Boost disabled. 
Our measurements consider both the original SPHINCS, as well as SPHINCS-

8 



Simpira where the F and H functions are replaced by Simpira with respectively 
b = 2 and b = 4 and a Davies-Meyer feedforward, as explained in Sect. 6. As none 
of the other parameters are changed, both the original SPHINCS and SPHINCS-
Simpira have a private-key size of 1 088 bytes, a public-key size of 1 056 bytes, 
and the size of each signature is 41 000 bytes. 

The authors of SHPINCS made an optimized implementation available as 
part of eBACS [4]. To ensure the fairest possible comparison, we use the latest 
SPHINCS implementation on eBACS in the SUPERCOP benchmarking frame-
work (version 20170105). In particular, we perform 32 runs to measure the av-
erage and mean speed of the key generation algorithm (crypto sign keypair), 
the signature algorithm (crypto sign) on 59-byte messages, and the verification 
algorithm (crypto sign open) on 59-byte messages. The results are shown in 
Table 1. 

Table 1. Cycle counts on Intel Skylake for the crypto sign keypair, crypto sign, and 
crypto sign open operations of both the original SPHINCS and SPHINCS-Simpira, 
using the SUPERCOP benchmarking framework. Messages are chosen to be 59 bytes 
long. 

SPHINCS (orig.) SPHINCS-Simpira speed-up 

Cycles to generate a key pair 
median 
average 

2 841 398 
2 844 989 

1 875 254 
1 878 209 

1.52× 
1.51× 

Cycles to sign 59 bytes 
median 
average 

43 993 732 
44 007 958 

32 549 062 
32 568 235 

1.35× 
1.35× 

Cycles to verify 59 bytes 
median 
average 

1 283 710 
1 286 054 

629 086 
631 346 

2.04× 
2.04× 

7 Comparison with Haraka 

Haraka [16] has been proposed as another AES-based hash function to replace 
the F and H functions of SPHINCS. The first version of Haraka was vulnerable 
to an attack by Jean [14] due to a weak choice of round constants, but was 
subsequently updated to prevent the attack. 

Haraka was announced before Simpira, and is even faster than Simpira when 
used in SPHINCS. An additional advantage of the F and H functions of Haraka 
is that it is optimized for both latency and throughput, whereas Simpira fo-
cuses only on optimizing throughput. Although the latency of F and H is not 
a bottleneck in SPHINCS, having a low latency can be an advantage in other 
applications. 

9 



It is difficult to make a comparison between Haraka and Simpira. Although 
both AES-based, they are entirely different designs, and make different security 
claims as well. Simpira claims security against structural distinguishers up to 
2128 queries in a classical setting, inspired by the hermetic sponge strategy of 
SHA-3 [5,23]. From this, the security of F and H in SPHINCS-Simpira against 
preimage, second-preimage and undetectability attacks follow. Haraka makes 
a stronger claim against preimage and second-preimage resistance (up to 2256 

queries in a classical setting), but makes no claim against other non-randomness 
properties. No explicit claim of undetectability is made for Haraka, but this 
seems implied as SPHINCS is the target application. 

We hope that the different designs and security claims of Haraka and Simpira 
will be an interesting starting point for discussions, and that this may lead to 
a better understanding of the pre-quantum and post-quantum security of AES-
based designs in general. 

8 Conclusion 

For modern 64-bit processors that nowadays all have AES instructions, Simpira 
offers a family of high-throughput cryptographic permutations of various input 
sizes. This makes it an interesting candidate for the 256-bit-to-256-bit and 512-
bit-to-256-bit hash functions that dominate the performance of SPHINCS, when 
these are combined with a Davies-Meyer feedforward. 

However, Simpira only claims security up to 2128 queries using classical com-
puters, and no security against quantum computers. By recalling that the com-
plexity of Grover’s algorithm depends on the output size of the function, and 
not on any particular structure of the function, we claim that Simpira has the 
same security both pre-quantum and post-quantum. 

SPHINCS-Simpira then provides the same post-quantum security claims as 
the original SPHINCS. However, our benchmarks show that SPHINCS-Simpira 
gives a 1.5× speed-up for generating key pairs, a 1.4× speed-up for signing 59-
byte messages, and a 2.0× speed-up for verifying the signatures. 

References 

1. Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.V.: Strengths and Weak-
nesses of Quantum Computing. SIAM J. Comput. 26(5), 1510–1523 (1997), https: 
//doi.org/10.1137/S0097539796300933 

2. Bernstein, D.J.: Cost analysis of hash collisions: Will quantum computers make 
SHARCS obsolete? SHARCS ’09: Special-purpose Hardware for Attacking Cryp-
tographic Systems pp. 105–116 (2009) 

3. Bernstein, D.J., Hopwood, D., Hülsing, A., Lange, T., Niederhagen, R., Pa-
pachristodoulou, L., Schneider, M., Schwabe, P., Wilcox-O’Hearn, Z.: SPHINCS: 
Practical Stateless Hash-Based Signatures. In: Oswald, E., Fischlin, M. (eds.) Ad-
vances in Cryptology - EUROCRYPT 2015 - 34th Annual International Conference 
on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, 

10 

http:computers.By


� 

April 26-30, 2015, Proceedings, Part I. LNCS, vol. 9056, pp. 368–397. Springer 
(2015), https://doi.org/10.1007/978-3-662-46800-5_15 

4. Bernstein, D.J., Lange, T.: eBACS: ECRYPT benchmarking of cryptographic sys-
tems. http://bench.cr.yp.to (accessed 2017-02-21) 

5. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Cryptographic Sponge Func-
tions, available at http://sponge.noekeon.org/CSF-0.1.pdf 

6. Black, J., Rogaway, P., Shrimpton, T.: Black-Box Analysis of the Block-Cipher-
Based Hash-Function Constructions from PGV. In: Yung, M. (ed.) Advances in 
Cryptology - CRYPTO 2002, 22nd Annual International Cryptology Conference, 
Santa Barbara, California, USA, August 18-22, 2002, Proceedings. LNCS, vol. 
2442, pp. 320–335. Springer (2002) 

7. Brassard, G., Hoyer, P., Tapp, A.: Quantum algorithm for the collision problem. 
arXiv preprint quant-ph/9705002 (1997) 

8. Chang, D., Lee, S., Nandi, M., Yung, M.: Indifferentiable Security Analysis of 
Popular Hash Functions with Prefix-Free Padding. In: Lai, X., Chen, K. (eds.) 
Advances in Cryptology - ASIACRYPT 2006, 12th International Conference on 
the Theory and Application of Cryptology and Information Security, Shanghai, 
China, December 3-7, 2006, Proceedings. Lecture Notes in Computer Science, vol. 
4284, pp. 283–298. Springer (2006), https://doi.org/10.1007/11935230_19 

9. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Informa-
tion Theory 22(6), 644–654 (1976), https://doi.org/10.1109/TIT.1976.1055638 

10. Grover, L.K.: A Fast Quantum Mechanical Algorithm for Database Search. In: 
Miller, G.L. (ed.) Proceedings of the Twenty-Eighth Annual ACM Symposium on 
the Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996. pp. 
212–219. ACM (1996), http://doi.acm.org/10.1145/237814.237866 

11. Grover, L.K.: Quantum Mechanics Helps in Searching for a Needle in a Haystack. 
Phys. Rev. Lett. 79, 325–328 (Jul 1997), http://link.aps.org/doi/10.1103/ 
PhysRevLett.79.325 

12. Gueron, S.: Intel R Advanced Encryption Standard (AES) New Instruc-
tions Set. Available at: https://software.intel.com/en-us/articles/ 

intel-advanced-encryption-standard-aes-instructions-set (September 
2012), Revision 3.01 

13. Gueron, S., Mouha, N.: Simpira v2: A Family of Efficient Permutations Using the 
AES Round Function. In: Cheon, J.H., Takagi, T. (eds.) Advances in Cryptology -
ASIACRYPT 2016 - 22nd International Conference on the Theory and Application 
of Cryptology and Information Security, Hanoi, Vietnam, December 4-8, 2016, 
Proceedings, Part I. Lecture Notes in Computer Science, vol. 10031, pp. 95–125 
(2016), https://doi.org/10.1007/978-3-662-53887-6_4 

14. Jean, J.: Cryptanalysis of Haraka. IACR Trans. Symmetric Cryptol. 2016(1), 1–12 
(2016), http://tosc.iacr.org/index.php/ToSC/article/view/531 

15. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking Symmetric 
Cryptosystems Using Quantum Period Finding. In: Robshaw, M., Katz, J. (eds.) 
Advances in Cryptology - CRYPTO 2016 - 36th Annual International Cryptology 
Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part II. 
Lecture Notes in Computer Science, vol. 9815, pp. 207–237. Springer (2016), https: 
//doi.org/10.1007/978-3-662-53008-5_8 

16. Kölbl, S., Lauridsen, M.M., Mendel, F., Rechberger, C.: Haraka v2 – Efficient 
Short-Input Hashing for Post-Quantum Applications. IACR Trans. Symmetric 
Cryptol. 2016(2), 1–29 (2016), http://tosc.iacr.org/index.php/ToSC/article/ 
view/563 

11 

http://tosc.iacr.org/index.php/ToSC/article
https://software.intel.com/en-us/articles
http://link.aps.org/doi/10.1103
http://doi.acm.org/10.1145/237814.237866
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1007/11935230_19
http://sponge.noekeon.org/CSF-0.1.pdf
http:http://bench.cr.yp.to


17. Kuwakado, H., Morii, M.: Security on the quantum-type Even-Mansour cipher. In: 
Proceedings of the International Symposium on Information Theory and its Appli-
cations, ISITA 2012, Honolulu, HI, USA, October 28-31, 2012. pp. 312–316. IEEE 
(2012), http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6400943 

18. Lamport, L.: Constructing Digital Signatures from a OneWay Function. Tech. Rep. 
SRI-CSL-98, SRI International Computer Science Laboratory (October 1979) 

19. Langley, A.: Hash based signatures. https://www.imperialviolet.org/2013/07/ 
18/hashsig.html (2013) 

20. Merkle, R.C.: A Certified Digital Signature. In: Brassard, G. (ed.) Advances in 
Cryptology - CRYPTO ’89, 9th Annual International Cryptology Conference, 
Santa Barbara, California, USA, August 20-24, 1989, Proceedings. Lecture Notes 
in Computer Science, vol. 435, pp. 218–238. Springer (1989), https://doi.org/ 
10.1007/0-387-34805-0_21 

21. National Institute of Standards and Technology: Recommendation for Key Deriva-
tion Using Pseudorandom Functions (Revised) (U.S. Department of Commerce, 
Washington, D.C.). NIST Special Publication 800-108 (October 2009), https: 
//doi.org/10.6028/NIST.SP.800-108 

22. National Institute of Standards and Technology: Digital Signature Standard (DSS) 
(U.S. Department of Commerce, Washington, D.C.). NIST Federal Information 
Processing Standards Publication 186-4 (July 2013), https://doi.org/10.6028/ 
NIST.FIPS.186-4 

23. National Institute of Standards and Technology: SHA-3 Standard: Permutation-
Based Hash and Extendable-Output Functions (U.S. Department of Commerce, 
Washington, D.C.). NIST Federal Information Processing Standards Publication 
202 (August 2015), https://doi.org/10.6028/NIST.FIPS.202 

24. Rivest, R.L., Shamir, A., Adleman, L.M.: A Method for Obtaining Digital Sig-
natures and Public-Key Cryptosystems. Commun. ACM 21(2), 120–126 (1978), 
http://doi.acm.org/10.1145/359340.359342 

25. Shor, P.W.: Algorithms for Quantum Computation: Discrete Logarithms and Fac-
toring. In: 35th Annual Symposium on Foundations of Computer Science, Santa 
Fe, NewMexico, USA, 20-22 November 1994. pp. 124–134. IEEE Computer Society 
(1994), https://doi.org/10.1109/SFCS.1994.365700 

26. Shor, P.W.: Polynomial-Time Algorithms for Prime Factorization and Discrete 
Logarithms on a Quantum Computer. SIAM J. Comput. 26(5), 1484–1509 (1997), 
https://doi.org/10.1137/S0097539795293172 

12 

https://doi.org/10.1137/S0097539795293172
http://doi.acm.org/10.1145/359340.359342
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028
http:https://doi.org
https://www.imperialviolet.org/2013/07
http:cipher.In

