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Thermoelectric transport in coupled double layers with interlayer excitons and exciton condensation
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Quantum Boltzmann formalism is employed to study the transport properties of strongly-coupled double layer
systems that enable the formation of interlayer excitons and exciton condensation. The importance of exciton
formation, dissociation, and condensation is highlighted in the context of thermoelectric power generation, and
this mathematical inquiry provides an alternative methodology to calculate the thermoelectric efficiency given
the conditions of exciton formation. The Onsager relation for the Coulomb drag resistivity is shown to be valid
even when exciton condensation is present. In addition, it is found that the traditional thermoelectric figure
of merit is no longer sufficient to predict the efficiency of thermoelectric power generation in the presented
situations. This inquiry offers insights for designing double layer systems, including their interlayer interactions,
with enhanced thermoelectric energy conversion efficiency.
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I. INTRODUCTION

Thermoelectric generators and Peltier refrigerators with
high efficiencies have been actively pursued for decades. To
achieve comparable efficiencies with dynamic heat engines
and refrigerators, the dimensionless thermoelectric figure of
merit ZT = σα2T

κ
for thermoelectric materials needs to be

approximately 4 [1], where σ is electrical conductivity, α is
the Seebeck coefficient, κ is thermal conductivity, and T is
temperature. Various approaches to optimize thermoelectric
material structures and dimensionality to enhance the ZT
value have been pursued in the past. For example, “electron-
crystal-phonon-glass” systems have generated great interest
[2,3]. Despite tremendous effort, experimental ZT values are
still notably below 4, not mentioning the complications in
applications due to costly materials or high temperatures [1,4].
Seeking alternative high ZT materials and devices continues
to be a vigorous research field.

The traditional thermoelectric module usually consists of
two spatially separated channel materials of opposite doping
in which the Coulomb interaction between them is negligibly
small. However, the Coulomb interaction can be made strong
if the channels are very thin and brought into close proximity,
and in this case, the thermoelectric performance may be sig-
nificantly enhanced. Stacked two-dimensional (2D) systems
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are ideal candidates for studying such thermoelectric transport
with strong interchannel Coulomb interactions.

Two-dimensional materials and heterostructures offer
promising opportunities to take advantage of the relevant
physics via device engineering. Applications range from
building high-mobility systems for quantum computation by
enabling the existence of anyons [5] to Bose-Einstein conden-
sation (BEC) of excitons with excitonic superfluidity [6–9].
Ever since the first isolation of graphene [10], various 2D
materials have likewise been isolated from their bulk coun-
terparts and can be grown on substrates. In addition, 2D
materials such as graphene, hexagonal boron nitride (hBN),
and transition metal dichalcogenides, can be stacked [11–15]
to form high-quality interfaces, having both tunable interlayer
distances and interactions [16].

In this paper, we report a mathematical approach to under-
standing transport properties in coupled double layer systems
and show how the formation of excitons and exciton conden-
sation affect the transport coefficients. The important role of
exciton formation, dissociation, and condensation in deriving
the formula for thermoelectric efficiency is established. Since
the traditional ZT value is not sufficient to understand ther-
moelectric efficiency in the presence of exciton or exciton
condensation, this approach offers new insights relevant to
designing high efficiency modules.

Foundational principles and quantum Boltzmann formal-
ism for unbounded carriers and excitons are described in
Sec. II, wherein the formula for transport coefficients are
provided and the Onsager relation is proved. In Sec. III,
exciton condensation and its interaction with noncondensed
excitons is discussed based on Zaremba-Nikuni-Griffin for-
malism [17,18], which has been successfully applied to
BECs at finite temperatures. Section IV discusses thermo-
electric applications and quantitative insights for designing
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FIG. 1. Counterflow thermoelectric transport for a generic dou-
ble layer system with interlayer interactions. The formulas on
closed-headed arrows −� represent the voltage drop along the arrows
between the indicated ends. The open-headed arrows −→ represent
the current direction, with l and w being the length (along current
direction) and width (transverse to current direction) of each layer,
respectively.

high ZT modules in the presence of excitons or exciton
condensation.

II. BOLTZMANN TRANSPORT FORMALISM IN COUPLED
DOUBLE LAYER SYSTEMS

Before introducing transport formalism, it will benefit the
reader to establish some foundational principles, starting with
a discussion of the resistivity matrix and how one incorporates
the strength of interlayer interactions. For a Coulomb-coupled
double layer system, the effect of the interlayer interaction
can be included in the Coulomb drag resistivity, whose tensor
may be reduced to a matrix for anisotropic one-dimensional
transport in each layer:

ρ =
[

ρt ρD

ρD ρb

]
, (1)

where ρt (b) is the resistivity for the layer with label t (b) and
ρD is the Coulomb drag resistivity. The entropy production
is σR = IT ρI, where I = [It Ib]T is the vector of prescribed
current flowing in both layers (the superscript T is for the vec-
tor transpose). Since σR should be non-negative (ρ is positive
semidefinite) for any prescribed currents, it follows that:

−√
ρtρb � ρD � √

ρtρb. (2)

Therefore, the magnitude of Coulomb drag resistivity is
bounded by the geometric mean of the intralayer resistivities.
If the equality in Eq. (2) holds, i.e., ρD = ±√

ρtρb, the entropy
production will be zero if

√
ρt Ib = ∓√

ρbIt . Thus, dissipa-
tionless current can flow in coupled double layers when the
resistivity matrix is singular. If one layer is superconducting,
e.g., ρt = 0, we will have ρD = 0, consistent with reported
experiments [19–22].

Now consider the counterflow thermoelectric circuit repre-
sented by the schematic in Fig. 1. It consists of the building
blocks of traditional thermoelectric modules. The two layers
(red and green) are shorted at the right side, and a resistance
Rx is connected between the two layers at the left side. Here
Rx includes a load resistance and any extrinsic resistances of
the contacts and interconnects. Assuming that the counterflow
Seebeck coefficient is αCF , the voltage is measured between
the two red dots in Fig. 1 after the red wire is removed and
a temperature difference of 1 K is established between the
black and red dots. A heater at the right side will create a

t

b

FIG. 2. Illustration of a double layer system. The layer indices
are at the right end of each layer. Excitons are composed of two
carriers, represented by circles, and are sinusoidally connected across
the two layers. The other circles without connections represent the
unbounded carriers.

temperature difference �T between the two ends of each
layer that induces an electromotive force αCF �T to drive the
counterflow current ICF . From Fig. 1, we have

ICF = αCF �T[
Rx + (ρt + ρb − 2ρD) l

w

] . (3)

The effective electrical conductivity from Eq. (3) is

σeff = l

wRx + (ρt + ρb − 2ρD)l
. (4)

If the counterflow transport is dissipationless, i.e., ρD = ρt =
ρb, ICF = αCF �T/Rx and σeff = l/(wRx ). The thermoelectric
figure of merit for such a dissipationless system (connected by
the external resistor Rx) would then become:

ZT = α2
CF T

κwRx
l. (5)

There are two important things to note here. The first is that
the units of ZT are still what they would normally be for
traditional cases since a length unit exists in both the nu-
merator and denominator (as length and width, respectively).
The second is that we do not consider the dimensions of
the two layers when discussing thermal resistance because
we do not have an extrinsic thermal resistor incorporated
into the circuit (whereas the discussion of a total electrical
current and external resistor necessitated the inclusion of the
layers’ lateral dimensions). It is exclusively the existence of
an external resistor, coupled with a superconducting top and
bottom layer, that renders ZT proportional to the length l of
the thermoelectric unit [23]. Thus, double layer systems with
any Coulomb drag resistivity may have a high ZT by simply
optimizing the system geometry.

Though the phenomenological model is inadequate for giv-
ing a full picture of thermoelectric transport in coupled double
layer systems, it does offer several insights including the idea
that large Coulomb drag resistivity, due to strong interlayer
interactions, can result in high ZT values. In general, to have
positive ρD, the two layers should have charges of opposite
sign. For instance, Coulomb interactions between electrons in
one layer and holes in the other may enable the formation of
interlayer excitons, as drawn in Fig. 2.

Another component that will be considered in this formal-
ism is exciton BECs, which are predicted to occur in double
layer systems potentially near room temperature, although
different theories have differed substantially on the critical
temperature for the condensation [24–33]. At present, con-
densation has only been observed at low temperature and high
magnetic field [6–9]. That said, efforts are ongoing pertaining
to both condensates and double layer systems [34–41]. While
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it is proposed that the formation of excitons can lead to high
ZT [23,42], to date there have been no systematic studies on
thermoelectric transport in coupled double layers, such as the
one depicted in Fig. 2, with interlayer exciton condensation.
Counterflow Seebeck coefficients and power factors have been
measured in bilayer graphene, a double layer system with
Coulomb drag, but no signature of interlayer excitons or exci-
ton condensation was observed [43].

At finite temperature, the exciton condensation fraction
is less than 100%, and thus the system in Fig. 2 can sup-
port the coexistence of exciton condensate, noncondensed
excitons, and unbounded carriers. It has been shown that
Boltzmann formalism and Bose superfluid hydrodynamics
can successfully be used to describe both noncondensates and
condensates for dilute Bose gases [17,18,44]. We consider
the case where the interexciton distance is larger than the
interlayer distance, so that excitons can be well approximated
by bosons and the Boltzmann formalism for dilute Bose gases
can be applied to excitons. We also assume that the for-
mation of excitons occurs at a temperature higher than the
exciton condensation temperature, which corresponds to the
BEC limit [45]. In such a scenario, the interaction between
the exciton condensate and noncondensate will help to de-
termine the condensate velocity when the noncondensate and
unbounded carriers are driven out of equilibrium by external
fields or a temperature gradient. If the unbounded carriers are
neglected, then only counterflow electrical current is allowed
in two layers. It is therefore necessary to allow unbounded
carriers entering the formalism to have noncounterflow trans-
port. Additionally, such unbounded carriers must exist when
the carrier densities before exciton formation in both layers
are different.

Though, in classical cases, ZT does not scale with the
dimension of the system, it should be noted that the opposite
is true in this case because of the emergence of superfluidity.
In the cases presented in this work, the existence of exciton
condensation allows electrical and thermal transport to scale
differently, removing the apparent inconsistency of why the
classical case does not apply. Furthermore, with the existence
of an exciton condensation, electrical current is carried by
condensation, which itself exhibits superfluidity, whereas the
heat current is carried by excitations. This distinction is cru-
cial in our explanations for why traditional expectations of ZT
cannot be applied.

To begin the formalism, the properties of the double layer
system in Fig. 2 can be encoded in the distribution functions
fμ(x, kμ, τ ), where μ = t , b for the unbounded carriers in
the layer t , b and μ = e for the noncondensate excitons. The
dynamics of fμ can be described by the quantum Boltzmann
equations that have been successfully used to study the in-
teractions between BEC and its excitations [17,18,44]. Here
x is the 2D position of particles in each layer, kμ is the
wave vector, and τ is time. The generic coupled Boltzmann
equations for the distribution functions are [46]

∂τ fμ + vμ · ∇x fμ + Fμ

h̄
· ∇k fμ = Cμ[ f ], (6)

where f represents all the distribution functions ft , fb, and fe.
The collision integral contains components from single parti-
cle scattering (Cs

μ), binary scattering (Cb
μ), exciton formation

and decay (Cr
μ), and scattering of noncondensate excitons by

exciton condensate (Cc
μ), i.e.,

Cμ[ f ] = Cs
μ[ f ] + Cb

μ[ f ] + Cr
μ[ f ] + Cc

μ[ f ]. (7)

More details of these integrals, and the application of external
fields, can be found in Appendix A. The exciton condensate,
if it exists, enters Eq. (6) through the collision integral Cc

μ.
While we are mainly interested in the steady state transport
properties, exciton condensates may be considered a static
background, with its governing equations discussed in a later
section.

A. Linearized Boltzmann equations

Assuming a uniform electric field in each layer, the explicit
position dependence in both fμ and the transition probabili-
ties may be dropped despite many quantities, such as carrier
concentration, still being position dependent through local
variables like temperature. Furthermore, it is assumed that
only electric fields and temperature gradients are the only
major factors that drive the distribution out of equilibrium.
Therefore, the derivation of fμ from the local equilibrium
distribution function

nμ(x, kμ) =
[

exp

(
eμ(kμ) − ζμ(x)

kBT (x)

)
+ (−1)δμe

]−1

(8)

is proportional to the electric fields and temperature gradients,
where kB is the Boltzmann constant, T (x) is the temperature,
and ζμ(x) is the chemical potential. Linear response theory
can then be applied to calculate the transport coefficients. We
can write

fμ = nμ(1 − n̄μφμ) (9)

where n̄μ = 1 − (−1)δμe nμ. Now the linearized steady state
Boltzmann equations (see Appendix B) can be written as

Xμ ≡ 1

h̄

(
Fμ− eμ−ζμ

T
∇xT

)
· ∇knμ =

∑
ν

Pμ,νφν, (10)

where qμEμ = Fμ ≡ Fμ − ∇xζμ is the gradient of the elec-
trochemical potential (at local chemical equilibrium ζe = ζt +
ζb and thus F e = F t + Fb). As stated earlier, the x depen-
dence of the transition probabilities T and ζμ will be removed.

B. Transport coefficients

It can be shown that P is a positive-definite operator, thus
the inverse of P exists and it is denoted by P−1 = L. The
solution of the Boltzmann equations can be written as

φμ =
∑

ν=t,b,e

Lμ,νXν . (11)

Note that such a solution is formal for any generic collision
integrals given in Appendix B. An explicit formula for L will
not be given here since it can only be solved numerically, ex-
cept for some cases involving simple approximations (such as
the relaxation time approximation). Attention should be paid
to the approximated solutions when symmetry properties of L
are demanded, as for the Onsager reciprocal relations shown
in the next subsection. There are already numerous efforts

235304-3



HU, RIGOSI, NEWELL, AND CHEN PHYSICAL REVIEW B 102, 235304 (2020)

devoted to various numerical methods [47,48] that should be
consulted when a particular system is considered.

The normal electric current in each layer carried by
the unbounded carriers and noncondensate excitons (see
Appendix C) is

jn
μ =

∑
ν=t,b

σμ,νEν − τμ∇xT, (12)

where the coefficients’ matrices can be formally written as

σμ,ν = kBT qμqν

h̄2 (Jμ,ν + Jμ,e + Je,ν + Je,e),

τμ = kBqμ

h̄2 (Kμ,t + Kμ,b + Kμ,e + Ke,t + Ke,b + Ke,e),

(13)

with

Jμ,ν ≡
∫

∇knμ ⊗ Lμ,ν∇knνdkμ,

Kμ,ν ≡
∫

∇knμ ⊗ Lμ,ν[(eν − ζν )∇knν]dkμ, (14)

in which the notation (a ⊗ b)mn ≡ ambn has been used.
Similarly, the heat current (see Appendix C) in each layer

(μ = t, b) can be written as

hμ =
∑
ν=t,b

χμ,νF ν − κμ∇xT, (15)

where the coefficients’ matrices are

χμ,ν = kBT

h̄2

(
Mμ,ν + Mμ,e + 1

2
Me,ν + 1

2
Me,e

)
,

κμ = kB

h̄2

(
Nμ,t + Nμ,b + Nμ,e + 1

2
Ne,t + 1

2
Ne,b + 1

2
Ne,e

)
,

(16)

with

Mμ,ν ≡
∫

(eμ − ζμ)∇knμ ⊗ Lμ,ν∇knνdkμ,

Nμ,ν ≡
∫

(eμ − ζμ)∇knμ ⊗ Lμ,ν[(eν − ζν )∇knν]dkμ. (17)

Note that the factor 1
2 appears in Eq. (16) because one exciton

contributes equally to the heat currents ht and hb.
For an open circuit, jn

μ = 0, and thus a temperature gradient
will induce intralayer electric fields. The Seebeck coefficient
can be expressed as

αμ =
∑
ν=t,b

ρμ,ντν, (18)

where ρμ,ν is the inverse of σμ,ν such that
∑

ν=t,b σμ,νρν,ω =
δμωI where I is the unity matrix. Note that such an inverse will
always exist because of the fact that P is positive definite.

C. Onsager reciprocal relations

Before studying the symmetry properties of the conductiv-
ity matrix, we will examine the operator P . The most generic
collision integral is given in Appendix B and the generic term

Cg
μ[φ](kμ) in Cμ[ f ] after linearization can be written as∑

ν

P g
μ,νφν = Qa(kμ)φμ +

∑
ν

∫
Qb(kμ; kν )φνdkν . (19)

It can be verified that〈
ψμ,P g

μ,νφν

〉 − 〈
φν,P

g
ν,μψμ

〉
=

∫
[Qb(kμ; kν ) − Qb(kν ; kμ)]ψμφνdkμdkν, (20)

where the inner product is defined as 〈ψμ, φμ〉 ≡ ∫
ψμφμdkμ.

Therefore P g
μ,ν will be self-adjoint if

Qb(kμ; kν ) = Qb(kν ; kμ), (21)

that is, Qb is symmetric with respect to its arguments. The
existence of such symmetry is dictated by the detailed bal-
ance of the scattering processes, as shown in Appendix B
for Q1/2/3/c. On the other hand, the charge conservation
for each individual layer (no tunneling current) requires∑

ν=μ,e

∫
Cg

ν [φ](kν )dkν = 0 which is then equivalent to

(δαμ + δαe)Qa(kα ) +
∑

ν=μ,e

∫
Qb(kν ; kα )dkν = 0. (22)

By performing summation over μ = t, b for Eq. (22), Qa and
Qb are connected by

Qa(kμ) = −
∑

ν=t,b,e

1 + δνe

1 + δμe

∫
Qb(kν ; kμ)dkν, (23)

for μ = t, b, e. We then have∑
μ=t,b,e

〈
φμ,Cg

μ[φ]
〉

= −1

2

∑
μ,ν=t,b,e

∫
Qb(kμ; kν )λ[φμ, φν]2dkμdkν, (24)

where λ[φμ, φν] ≡
√

1+δνe
1+δμe

φμ −
√

1+δμe

1+δνe
φν and Eq. (21) is

used. It can be verified that Eqs. (21), (23), and (24) hold for
all Cs/b/r/c listed in Appendix B.

For each of the processes Cs/b/r/c we considered, we have
Qb(kμ; kν ) < 0. Therefore∑

μ,ν=t,b,e

〈φμ,Pμ,νφν〉 =
∑

μ=t,b,e

〈
φμ,Cg

μ[φ]
〉
� 0, (25)

and the equality holds only if φμ = 0 for all μ = t, b, e. As
a result, P is positive definite. Thus L = P−1 must exist and
is also self-adjoint and positive definite. We then arrive at the
following Onsager relations

σμ,ν = σ T
ν,μ,

∑
ν=t,b

χν,μ = T

qμ

τ T
μ ,

∑
μ=t,b

κμ =
∑
μ=t,b

κT
μ ,

(26)

for μ = t, b, where the superscript T indicates a matrix trans-
pose. The summation over individual layers appears since the
temperature profile is identical for every layer, whereas the
electric field in each layer can be independently tuned. The
second equation of Eq. (26) highlights the symmetry between
the responses of the electric and heat currents to ∇xT and
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the electrochemical force field F t = Fb, respectively. For the
third equation of Eq. (26), the Onsager relation might break
down for individual layers, i.e., κμ 
= κT

μ .
It is the self-adjointness of all P s/b/r/c that determines

the validity of the Onsager reciprocal relations. If interlayer
tunneling exists, or Eq. (23) is violated, the Onsager relations
still hold provided L exists (a physical requirement). Any
linearized collision integral that violates Eq. (21) will break
down the Onsager relations and may be considered nonphysi-
cal.

D. Entropy production

The entropy density and entropy current can be defined as
[46]

sμ ≡ −kB

∫
[ fμ ln fμ + (−1)δμe f̄μ ln f̄μ]dkμ,

uμ ≡ −kB

∫
vμ[ fμ ln fμ + (−1)δμe f̄μ ln f̄μ]dkμ. (27)

It then can be shown that

∂τ sμ + ∇x · uμ =
∫

eμ − ζμ

T
Cμ[ f ](kμ)dkμ + kB〈φμ, Xμ〉.

(28)

Due to the energy and particle number conservation, the
first term on the right hand side of Eq. (28) is zero.
Note that

∫
(eμ − ζμ)Cμ[ f ](kμ)dkμ = 0 for combined en-

ergy and particle number conservation for Cr
μ whereas∫

eμCμ[ f ](kμ)dkμ = ∫
ζμCμ[ f ](kμ)dkμ = 0 for Cs

μ and Cb
μ.

In the next section, we show that
∫

(ee − ζe)Cc
e [ f ](ke)dke is

of third order with respect to the magnitude of the exciton
condensate velocity and can thus be neglected. The total local
entropy generation then becomes

s = kB

∑
μ=t,b,e

〈φμ, Xμ〉 =
∑
μ=t,b

jμ · Eμ +
∑
μ=t,b

hμ · ∇x

(
1

T

)

= 1

T

∑
μ,ν=t,b

jT
μρμ,νjν + 1

T 2
(∇xT )T κj∇xT, (29)

where κj ≡ κE − T
∑

μ=t,b τ T
μ αμ is the thermal conductivity

under zero normal current, in which κE ≡ ∑
μ=t,b κμ is the

thermal conductivity under an electrochemical potential gra-
dient of zero.

III. EXCITON CONDENSATION AND SUPERFLUIDITY

Now that the formalism for coupled double layer systems
has been established in such a way that includes exciton
formation, one may introduce exciton condensation, which
occurs at sufficiently low temperature and whose environ-
ment can support superfluidity. The exciton condensate can
be described by the condensate wave function �(x, τ ) =√

nc
e(x, τ ) exp(iθ (x, τ )). The exciton condensate velocity is

given by

vc
e(x, τ ) = h̄

me
∇xθ (x, τ ), (30)

where me is the exciton effective mass. At finite tempera-
ture, the collision integral between exciton condensate and
noncondensate excitons, given in Appendix A, will make
the transport coefficients implicitly depend on the local con-
densate density nc

e and momentum mevc
e. The hydrodynamic

equations for the condensate can be written as [17]
∂nc

e

∂τ
+ ∇x · (

nc
evc

e

) = −
∫

Cc
e [ f ](ke)dke,

me
∂vc

e

∂τ
= −∇x

(
ζc + me

(
vc

e

)2

2

)
, (31)

where the chemical potential of an exciton condensate is
[17,18]

ζc = − ∇2
x
√

nc
e

2me
√

nc
e

+ Vex + gnc
e + 2gnn

e (32)

in which g is the strength of the s-wave approximated interex-
citon potential, Vex is the external potential on excitons such
that ∇xVex = Fe, and nn

e = ∫
fe(ke)dke is the density of the

noncondensate excitons.
At thermal equilibrium, we expect zero current for the

exciton condensate (vc
e = 0), otherwise, there is a nonzero

noncondensate exciton current that can generate finite entropy
production. When small external forces or temperature gradi-
ents are applied, as seen in previous sections, a proportionate
response is expected by the transport currents, or average
velocity of noncondensate excitons and unbounded carriers.
These driving forces will also induce a nonzero velocity of
exciton condensate, similar to the case of an induced supercur-
rent in superconductors due to a temperature gradient [49,50].
To lowest order, we can assume vc

e is proportional to the ex-
ternal force or temperature gradient, and we can safely neglect

the term me(vc
e )2

2 in Eq. (31) and the quantum pressure term in
ζc. Therefore, to have a stationary flow of exciton condensate,
the chemical potential ζc must be position independent, from
which the exciton condensate density nc

e can be determined.
We can decompose the total electric current in layer μ as

Jμ = jn
μ + (qtδμt + qbδμb)js

e, (33)

where js
e = nc

evc
e is the supercurrent of excitons and jn

μ is the
normal component of the electric current in layer μ given by
Eq. (12). The exciton condensate velocity vc

e can be deter-
mined from the continuity equation in Eq. (31), which is

∇x · js
e =−

∫
Cc

e [ f ](ke)dke =
∑

μ=t,b,e

Aμ

(
vc

e

) · Fμ−B
(
vc

e

) · ∇xT

(34)

where

Aμ

(
vc

e

) ≡
∫

Qc
e

(
k′

ek′′
e ; kekc

e

)
Gμ(kek′

ek′′
e )dkedk′

edk′′
e ,

B
(
vc

e

) ≡
∫

Qc
e

(
k′

ek′′
e ; kekc

e

)
H(kek′

ek′′
e )dkedk′

edk′′
e , (35)

with h̄kc
e = mevc

e being the momentum of the conden-
sate, shorthand notation Gμ(kek′

ek′′
e ) for Gμ(ke) − Gμ(k′

e) −
Gμ(k′′

e ) and H(kek′
ek′′

e ) for H(ke) − H(k′
e) − H(k′′

e ), and

Gμ(ke) = Le,μ(∇knμ),

H(ke) =
∑

μ=t,b,e

Le,μ

(
eμ − ζμ

T
∇knμ

)
. (36)
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It is worth noting that the energy spectrum of the noncon-
densed excitons or unbounded charge carriers can be altered
by the presence of the exciton condensation. The mathemat-
ical notation for all of these descriptions will be consistent
throughout this paper.

The right hand side of Eq. (34) may be nonzero since
the external force and temperature gradient can be varied
arbitrarily, indicating that the conversion between condensate
and noncondensate is due to the interaction between them. It
can be shown that Aμ(vc

e = 0) = B(vc
e = 0) = 0, so that both

sides of Eq. (34) are of second order about Fμ and ∇xT . In
fact, the implicit conservation laws encoded in Qc

e in Eq. (35)
are

kc
e + ke = k′

e + k′′
e ,

ee(ke) + ζc +
(
vc

e

)2

2me
= ee(k′

e) + ee(k′
e). (37)

If kc
e = 0, Eq. (37) has inversion symmetry and thus both

processes of ke ↔ k′
e + k′′

e and −ke ↔ −k′
e − k′′

e have equal
probability; that is, Qc

e(k′
ek′′

e ; ke, kc
e = 0) remains the same

when the direction of ke, k′
e, and k′′

e are simultaneously
reversed. Since both Gμ(ke) and H(ke) are odd functions,
Aμ(vc

e ) and B(vc
e ) must be zero when vc

e = 0. We can thus
expand Aμ(vc

e ) and B(vc
e ) around vc

e = 0 and rewrite Eq. (34)
as

∇x · js
e = vc

e ·
[ ∑

μ=t,b,e

(∇v ⊗ Aμ)Fμ − (∇v ⊗ B)∇xT

]
,

(38)

where the differential operator ∇v is applied on Aμ(vc
e ) and

B(vc
e ) with respect to vc

e, and ∇v ⊗ Aμ and ∇v ⊗ B are eval-
uated at vc

e = 0. The right hand side of Eq. (38) is of second
order. We can then safely consider js

e as divergenceless. On the
other hand, any global scaling of vc

e leaves Eq. (38) invariant.
We can then denote vc

e = vv̂c
e, where v̂c

e is a dimensionless
solution of Eq. (38).

Now v can be fixed by invoking the principle of minimum
entropy production [51,52]. Since the exciton condensate car-
ries no entropy, the local entropy production in Eq. (29) can
be rewritten as

s = 1

T

[ ∑
μ,ν=t,b

JT
μρμ,νJν + js

e
T W js

e

−2
∑
μ=t,b

js
e

T (qtρt,μ + qbρb,μ)Jμ

]

+ 1

T 2
(∇xT )T κj∇xT (39)

where

W ≡ q2
t ρt,t + qt qbρt,b + qbqtρb,t + q2

bρb,b. (40)

Note that the term
∫

(ee − ζe)Cc
e [ f ](ke)dke ∼ v3 is neglected

and not added to Eq. (28). Therefore, the existence of exciton
condensation will not produce entropy; instead, it redistributes
entropy among excitations.

The total entropy production is

S =
∫

s(x)dx, (41)

where the area integration is over the whole plane. Minimum
entropy production then requires that ∂S/∂v = 0. The systems
under consideration have uniform flows and thus uniform
entropy production in the interior of the system. The con-
tribution to the total entropy production from the boundary
of the system can be neglected. The minimum total entropy
production is then considered to be equivalent to the local
minimum entropy production, that is ∂s

∂v
= 0. Neglecting the

second order terms, we can then obtain

v =
∑

μ=t,b

(
v̂c

e

)T
(qtρt,μ + qbρb,μ)Jμ

nc
e

(
v̂c

e

)T
W v̂c

e

(42)

and the normal current

jn
μ = Jμ − qtδtμ + qbδbμ(

v̂c
e

)T
W v̂c

e

∑
ν=t,b

(
v̂c

e ⊗ v̂c
e

)
(qtρt,ν + qbρb,ν )Jν .

(43)

Now, Eq. (12) can be written as

Eμ − αμ∇xT =
∑

ν

ρ̃μ,νJν, (44)

where the new resistivity matrix ρ̃ is

ρ̃μ,ν = ρμ,ν − (qtρμ,t + qbρμ,b)
(
v̂c

e ⊗ v̂c
e

)
(qtρt,ν + qbρb,ν )(

v̂c
e

)T
W v̂c

e

.

(45)

It can be verified that the Onsager relation holds, i.e., ρ̃T
μ,ν =

ρ̃ν,μ.
The matrix composed of blocks of ρ̃μ,ν is singular because

jn
μ = 0 if Jμ = (qtδtμ + qbδbμ)uv̂c

e for any given u below the
critical value; that is, all the current will be carried by the
supercurrent. Therefore, the presence of exciton condensation
will yield a singular resistivity matrix and the system can
support supercurrent and generate zero entropy production
from carrier transport.

There are no explicit modifications for the other coeffi-
cients in Eqs. (15) and (12). However, those coefficients are
implicitly affected by the existence of exciton condensate and
its interaction with noncondensate excitons.

IV. THERMOELECTRIC APPLICATIONS

It can be shown that the heat current in each layer can be
rewritten as

hμ =
∑

ν,ω=t,b

χμ,ωqωρω,νjn
ν +

(∑
ν=t,b

χμ,νqναν − κμ

)
∇xT

(46)

and the total heat current is

h =
∑
μ=t,b

hμ =
∑
μ=t,b

T αT
μ jn

μ − κj∇xT . (47)
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FIG. 3. Schematic (a) of the double layer system with contacts
and an active region having a green background. Its energy diagram
is shown in (b) while in the presence of a temperature gradient. The
purple solid dots and red circles represent unbounded carriers in each
layer. The layers are labeled by t and b at their right ends in (a).
The line labels for electrochemical potentials ζ̃t and ζ̃b and chemical
potential ζc of exciton condensate are labeled at right end of each line
in (b). The vertical dashed lines are the interfaces between the active
region and the contacts that are in thermal equilibrium with thermal
reservoirs at temperatures TL and TR. The heat current hL (hR) flowing
from (into) the left (right) contact is indicated by the outlined green
arrow. The exciton condensate is in the green region in (b). Normal
currents jn

t and jn
b and exciton condensate current js

e are also labeled.
The thin, curved green arrows represent the processes of exciton
formation, dissociation, or condensation. The signs of the gradient
of ζ̃t and ζ̃b in the active region are positive in this illustration.

The first term in Eq. (47) can be identified with the Peltier
term. When all the electric current is carried by the exci-
ton condensate, the Peltier term vanishes and we have h =
−κj∇xT . Then the input and the output heat current cancels,
resulting in no energy production and contradicting the situa-
tion of a finite Seebeck voltage that can drive an external load.
In these cases, the energy balancing at the contact interfaces
plays an important role to resolve such contradictions.

Considering a system that is uniform in one direction, the
transport is essentially reduced to 1D, as in the schematics in
Fig. 3. The vector quantities then become scalars. However,
the bold-style conventions are kept for them (e.g., j and h
are actually scalars). In Fig. 3(a), the system is composed
of a double layer with left contacts, an active region, and
right contacts, separated by the vertical blue and red dashed
interfacial lines. The interlayer Coulomb interaction is on only
in the active regions so that there are no excitons or exciton
condensation in the contacts. The left and right contacts are in
thermal equilibrium with two reservoirs at temperatures of TL

and TR, respectively. Near the interfaces, excitons are formed
and condensed, or uncondensed and dissociated, depending
on the direction of the exciton current. Any excitonic reactions
happen within the healing length of an exciton condensate,
accompanied by an energy release for exciton formation and
absorption for exciton dissociation. The electrochemical po-
tential ζ̃μ for each layer is drawn in Fig. 3(b) as well as the
flat chemical potential ζc of exciton condensate. The electro-
chemical potential is related to its gradient by

Eμ = − 1

qμ

∇xζ̃μ (48)

for μ = t, b and F e = −∇xζ̃e where ζ̃e = ζ̃t + ζ̃b. We now
use the energy conservation law at the interfacial regions:

dU = ζ̃dN + T dS + ErdN, (49)

where U is the internal energy, ζ̃ is the electrochemical poten-
tial for unbounded carriers or chemical potential for excitons
or exciton condensate, N is the number of carriers, Er is the
reaction energy (e.g., binding energy Er = Eb) for exciton
formation/dissociation/condensation, and S is the entropy.
The term T dS can be identified with the heat exchange.

At steady state, we have dU/dt = 0. Therefore, for the left
interface (blue dashed line in Fig. 3), we have

hL + (
js
e(ζ̃t + ζ̃b − ζc) − h + jn

eEb + js
eEbc

)∣∣
xL

= 0, (50)

where Eb is the exciton binding energy, Ebc is the exciton
condensation energy, hL is the heat flowing out of the left
contact, and jn

e is the normal exciton current that can be written
as

jn
e =

∫
ve(ke) fedke =

∑
ν=t,b

σe,νF ν − τe∇xT, (51)

with

σe,ν = kBT

h̄2 (Je,e + Je,ν ), τe = kB

h̄2 (Ke,e + Ke,t + Ke,b).

(52)

Similarly for the right interface(
js
e(ζc − ζ̃t − ζ̃b) + h − jn

eEb − js
eEbc

)∣∣
xR

− hR = 0. (53)

In order to simplify the analysis, we assume that both the
transport coefficients and the energies Eb and Ebc have neg-
ligible temperature dependence. At thermal equilibrium, we
have ζc = ζ̃e = ζ̃t + ζ̃b in which all terms are independent of
position. When a temperature gradient is applied, the electro-
chemical potentials are no longer flat. Instead, ζ̃e will intersect
with the flat ζ̃c at the center of the active region, indicating a
symmetrical distribution of the magnitude of nonequilibrium
exciton concentrations at both interfaces. Thus we can write

(ζ̃t + ζ̃b − ζc)|xL
= − (ζ̃t + ζ̃b − ζc)|xR

= 1
2 [ζ̃t (xL ) − ζ̃t (xR) + ζ̃b(xL ) − ζ̃b(xR)],

(54)

in which
ζ̃μ(xL ) − ζ̃μ(xR)

= −qμ

[
αμ(TL − TR) − l

∑
ν

ρ̃μ,νJν

]
, (55)

where l = xR − xL is the length of the active region.
Now we can obtain the heat current hL and hR:

hL = js
e

2
(qtαt + qbαb)(TL − TR) + TL

∑
μ=t,b

αμjn
μ

− κj
TR − TL

l
− l

2
qJ − jn

eEb − js
eEbc,

hR = js
e

2
(qtαt + qbαb)(TR − TL ) + TR

∑
μ=t,b

αμjn
μ

− κj
TR − TL

l
+ l

2
qJ − jn

eEb − js
eEbc, (56)
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where qJ ≡ ∑
μ,ν=t,b jn

μρμ,νjn
ν is the Joule heating density in-

side the active region. Note that the equality qt ρ̃t,ν + qbρ̃b,ν =
0 has been used. Now the energy production is

hL − hR = (TL − TR)
∑
μ=t,b

αμJμ − lqJ . (57)

The first term on the right hand side of Eq. (57) is readily
identified as the thermoelectric power generation and it must
be positive.

The thermoelectric power generation requires that the en-
tropy production rate of the two thermal reservoirs is positive,
i.e.,

σR = hR

TR
− hL

TL
> 0. (58)

Three typical cases are summarized below, and although other
general cases can be studied in a similar fashion, their deriva-
tions tend to be too tedious to document here.

A. No excitons or exciton condensation

When there are no interlayer excitons, the formulations
above may be reduced to the traditional analysis of thermo-
electric transport, with interlayer Coulomb drag resistivity
included. To simply the formula without losing the effect
of the interlayer Coulomb interaction, we assume that αb =
−αt = α, ρt,t = ρb,b = ρ0, ρt,b = ρb,t = ρD, and TR = Th >

TL = Tc. It can be shown that the counterflow current satisfies

ICF = Jt = −Jb = α(Th − Tc)

Rx + l (ρ0 − ρD)
, (59)

where the load resistance is 2Rx in the counterflow configu-
ration shown in Fig. 1. The thermoelectric efficiency can now
be written as

η = ηC
m

l + m

(
1 + l + m

ZThl
− ηC

2

l

l + m

)−1

, (60)

where ηC = Th−Tc
Th

is the Carnot efficiency, m = Rx/(ρ0 − ρD),
and ZTh is the figure of merit

ZTh = Z0Th
1

1 − ρD/ρ0
, (61)

where Z0Th = 2α2

κjρ0
Th. Clearly, positive ρD is beneficial for

enhancing the ZTh value if the other transport coefficients are
not significantly affected by the interlayer Coulomb interac-
tion. The ZTh value can be dramatically enhanced if there is
strong Coulomb drag such that the Coulomb drag resistivity
ρD is very close to the intralayer resistivity ρ0. The formula
for η under generic resistivity matrix and Seebeck coefficient
values can be similarly obtained but have explicit forms that
are too lengthy to express here. Now we see that the effective
conductance in Eq. (4) and ZT formula of Eq. (5) deduced
from the phenomenological model may not be appropriate for
predicting thermoelectric efficiency, but they are still useful
to demonstrate the importance of interlayer interactions for
enhancing thermoelectric efficiency in double layer systems.

B. Only excitons without exciton condensation

When the concentration of the unbounded carriers in the
active region is low and neglected, all the currents are carried
by the noncondensed excitons when both TL and TR are above
the transition temperature of exciton condensation. The resis-
tivity matrix is singular and thus the Seebeck coefficients for
individual layers are not well defined. Instead, we can write
the Seebeck coefficient for an exciton as

αe = qtαt + qbαb = ρeτe = Ke,e

Je,e
, (62)

where ρe ≡ σ−1
e,e , so that the heat currents are

hL = TLαejn
e − κj

TR − TL

l
− l

2
qJ − jn

eEb,

hR = TRαejn
e − κj

TR − TL

l
+ l

2
qJ − jn

eEb, (63)

where qJ = ρe(jn
e )2. The exciton current is

jn
e = (TL − TR)αe

lρe + q2Rx
, (64)

where q = qt = −qb and we again assume a load resistance of
Rx in the counterflow configuration shown in Fig. 1. We also
assume TR = Th > TL = Tc. The thermoelectric efficiency can
then be written as

η ≡ hL − hR

−hR
= ηC

1 − l
l+m

1 + 1
ZTh

l+m
l − ηC

2
l

l+m − Eb
αeTh

, (65)

where m = q2Rx/ρe and

ZTh = α2
e

κjρe
Th = α2

e σe,e

κj
Th. (66)

Equation (65) can be recast into Eq. (60) if we define an
effective figure of merit as

ZeffTh ≡ ZTh

1 − ZTh
Eb

αeTh

l
l+m

. (67)

The entropy production rate can be written as

σR = (Th − Tc)2

ThTc

[
α2

e (Th + Tc)l

2ρe(l + m)2
− Ebαe

ρe(l + m)
+ κj

l

]
. (68)

Positive entropy production requires that

Eb

αeTh
<

l + m

ZThl
+

(
1 − ηC

2

)
l

l + m
. (69)

The color map of ZeffTh is shown in Fig. 4(a), where we
use representative values of ηC = l

l+m = 0.5. Note that ZeffTh

can be divergent (on the white line) and even negative (blue
region). We have ZeffTh > 4 in the red region between the
dashed line and the white line. Thermoelectric power genera-
tion is not allowed in the blank area as the entropy production
is negative.

C. Excitons with exciton condensation

When both TR and TL are below the transition temperature
of exciton condensation and the concentration of unbounded
carriers is small enough to be neglected, the current in the
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FIG. 4. Color maps of (a) ZeffTh in Eq. (67) and (b) η/ηC in

Eq. (72), where ZxTh ≡ α2
e Th

κj (2q2Rx/l )
is the extrinsic thermoelectric fig-

ure of merit.

active region is carried entirely by the exciton condensate,
thus qJ = 0. The heat currents are

hL = js
e

2
αe(TL − TR) − κj

TR − TL

l
− js

eEbc,

hR = js
e

2
αe(TR − TL ) − κj

TR − TL

l
− js

eEbc, (70)

It has been predicted that interlayer voltages do not allow
stationary exciton condensate flow [53,54]. Therefore, the se-
rial counterflow connection cannot be used in thermoelectric
applications in the presence of exciton condensation. Instead,
each layer needs to form an individual current loop. The
exciton condensate current is

js
e = (TL − TR)αe

2q2Rx
(71)

when a load resistance Rx is connected to each layer to form
two individual loops. We use the same convention that TR =
Th > TL = Tc. The thermoelectric efficiency is

η ≡ hL − hR

−hR
= ηC

1
ηC

2 + κj
2q2Rx

lα2
e Th

− Ebc
αeTh

, (72)

and the entropy production rate is

σR = (Th − Tc)2

ThTc

[
κj

l
− α2

e (Th + Tc)

4q2Rx
− Ebcαe

2q2Rx

]
. (73)

Note that the traditionally defined figure of merit term is
absent in Eq. (72) because of the absence of exciton resistivity
ρe. Instead, we can define an extrinsic figure of merit

ZxTh ≡ α2
e Th

κj(2q2Rx/l )
, (74)

since it depends on the load resistance 2Rx and system length
l . The color map of η/ηC is shown in Fig. 4(b) (a represen-
tative value of ηC = 0.5 is used). The vertical dashed line
defines the bound of Ebc

αeTh
for either a long active region (l →

∞) or a small load resistance (Rx → 0), under which Eq. (72)
is reduced to

η = ηC

(
ηC

2
− Ebc

αeTh

)−1

. (75)

For this case, in order to guarantee positive σR, we need

0 < −αe <
2Ebc

Th + Tc
, (76)

which requires js
e > 0. In other words, exciton condensation

current flows from cold to hot, resembling the superfluid
fountain effect. Letting Th+Tc

2 be close to the Berezinskii-
Kosterlitz-Thouless (BKT) transition temperature [55], i.e.,

Th + Tc

2
≈ TBKT ≈ 0.078

2π

Ebc

kB
, (77)

the relation −αe ≈ 2Ebc
Th+Tc

then requires | αe
q | ≈ 1.6 mV/K,

which is large, yet possibly attainable in Bi-based double layer
exciton systems [42].

V. DISCUSSION AND CONCLUDING REMARKS

It has been established that the role of exciton condensates
in the enhancement of thermoelectric efficiency is twofold: (1)
Exciton condensates redistribute the contribution of electrical
and heat current in the system in such a way that electrical
current is carried by the exciton condensate, whereas the heat
current is carried by exciton excitations and other excitations.
This different functionality provides a new way of design-
ing thermoelectric modules. Mathematically, the existence
of exciton condensate can increase the effective electrical
conductivity to infinity, thus extending the traditional ZT to
infinity as well. However, a complete thermoelectric system
must have interfaces and external loads, preventing an actual
‘infinite’ case to emerge. (2) In the case of coupled dou-
ble layer systems, the lateral dimensions contribute to the
thermoelectric efficiency formula in Eq. (72), thus making
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length parameters another degree of consideration in device
fabrication.

As shown in Eqs. (65) and (72), the exciton binding
and condensation energies are required in order to calculate
thermoelectric efficiency, in addition to the traditional ther-
moelectric figure of merit. Even for a double layer system
without interlayer excitons, the figure of merit is modified
so that the Coulomb drag resistivity enters the thermoelectric
figure of merit of Eq. (61). Therefore, bringing double layers
close enough at the nanometer scale can dramatically enhance
thermoelectric efficiency in a way that cannot be realized in
more traditional approaches where the conflicting materials’
parameters limit the enhancement.

The interaction between layers leading to high Coulomb
drag resistivity or interlayer exciton formation can be control-
lably tuned, adding a powerful new ingredient to engineer the
thermoelectric efficiency and power output. We can have effi-
ciencies close to Carnot efficiency when excitons or exciton
condensation are present, given the appropriate conditions.
Though exciton condensation bears significant physical simi-
larities with conventional superconductors and BEC of helium
or dilute Bose gases [56,57], their thermoelectric responses
differ fundamentally.

The theoretical inquiries presented herein have predicted a
phenomenon, similar to the superfluid fountain effect [58,59],
whereby exciton condensation current flows from cold to
hot areas. The latter fountain effect is due to the conversion
from superfluid to normal and takes place at the heated spots,
resulting in a superfluid flow toward those heated spots. Tradi-
tionally, one expects a constriction (such as thin tubes) to slow
down or stop the flow of the normal fluid component in order
to exhibit the fountain effect. Such constrictions are subtle to
realize in double layer systems for exciton condensate. In fact,
for an exciton condensate realized in bilayer quantum wells in
the quantum Hall regime, though the parallel transport is very
resistive, the counterflow transport that supports exciton flow
can be very conductive [60]. A larger phase space has been
explored for exciton condensation in bilayer graphene double
layer systems [8,9], however no thermoelectric transport mea-
surement has been performed.

In superconductors, no thermoelectric voltage can be de-
tected in a uniform superconductor due to the effortless
compensation of the normal thermoelectric current by an op-
posite supercurrent [49]. A nonzero thermoelectric response
can only be observed in an inhomogeneous superconduc-
tor, e.g., bimetallic superconducting loop [50]. In Ref. [50],
a similar minimization procedure is carried out to obtain
the supercurrent component of the circulating current in the
bimetallic loop and the results satisfactorily agreed with
the experiments. Though finite supercurrents can be in-
duced with a temperature gradient in superconductor loops,
a superconductor might not be useful for generating thermo-
electric power. Significant thermoelectric voltage can only
be generated in a small range around the interfaces be-
tween superconducting and normal metal or between two

superconductors, whereas a bulk superconductor has expo-
nentially small thermoelectric voltage due to its energy gap.
Thus, superconductors as thermoelectric channeling materials
cannot effectively drive an external load, since there are only
insignificant temperature drops in those small ranges that are
usually at microscopic scales. These drawbacks worsen when
the length of the superconductor is macroscopically large.

Unlike Cooper pairs, excitons are charge neutral and thus
exciton supercurrent cannot carry an electric current by itself,
but exciton supercurrent contributes to the counterflow of
electric currents in both layers of the double layer system.
Though the individual layer electrochemical potentials need
to satisfy the requirement of ζ̃e = ζ̃t + ζ̃b, ζ̃t and ζ̃b can have
appreciable gradients because the electric current and carrier
densities in each individual layer can be tuned by external
circuits. However, for Cooper pairs in superconductors, both
electrons in the pair are in the same environment, lacking the
degree of freedom of layer identities for excitons.

An exciton binding energy can be large due to the tun-
able nature and strength of interlayer Coulomb coupling,
permitting high temperature exciton condensate superfluidity
[55]. This enables thermoelectric applications within a large
temperature range. Even if there is no exciton condensation
[55], the noncondensed exciton gas and large exciton binding
energy can facilitate entering the regimes in Fig. 4(a) where
the effective ZeffT is larger than 4 or even negative, thus
supporting once again that coupled double layer systems offer
unique opportunities to realize high efficiency thermoelectric
modules. One interesting direction that can be taken with this
formalism is to explore the temperature dependence of the
thermoelectric efficiency given the conditions described in the
previous sections.

To conclude, quantum Boltzmann transport formalism was
used to study the thermoelectric response of coupled double
layer systems. The interaction between exciton condensate
and noncondensate is included using the Zaremba-Nikuni-
Griffin formalism [17,18]. We show that the Onsager relation
holds for the resistivity matrix even when an exciton conden-
sation exists, and the resistivity matrix is singular as expected.
We then use the obtained transport coefficients to derive the
formulas for thermoelectric efficiency when the coupled dou-
ble layer system is used as the active region connecting two
thermal reservoirs. It is crucial to take the energy of exciton
formation, dissociation, and condensation into account, allow-
ing one to resolve the dilemma that exciton condensation flow
can carry electric current but no entropy. This mathematical
demonstration clarifies the route for engineering systems to
enhance thermoelectric efficiency.
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APPENDIX A: COLLISION INTEGRALS

The collision integrals are defined as

Cs
μ[ f ](x, kμ) =

∫
[S1(x|k′

μ; kμ) f ′
μ f̄μ − S1(x|kμ; k′

μ) fμ f̄ ′
μ]dk′

μ,

Cb
μ[ f ](x, kμ) =

∑
ν

∫
[S2(x|k′

μk′
ν ; kμkν ) f ′

μ f ′
ν f̄μ f̄ν − S2(x|kμkν ; k′

μk′
ν ) fμ fν f̄ ′

μ f̄ ′
ν]dk′

μdkνdk′
ν,

Cr
μ[ f ](x, kμ) =

∑
α,β

∫ {
1

2
[S3(x|kαkβ ; kμ) fα fβ f̄μ − S3(x|kμ; kαkβ ) fμ f̄α f̄β]

+ S3(x|kα; kμkβ ) fα f̄μ f̄β − S3(x|kμkβ ; kα ) fμ fβ f̄α

}
dkαdkβ,

Cc
e [ f ](ke) =

∫ [
Sc

(
k′

ek′′
e ; kekc

e

)
f̄e f ′

e f ′′
e − Sc

(
kekc

e; k′
ek′′

e

)
fe f̄ ′

e f̄ ′′
e

+ 2Sc
(
k′′

e kc
e; kek′

e

)
f̄e f̄ ′

e f ′′
e − 2Sc

(
kek′

e; k′′
e kc

e

)
fe f ′

e f̄ ′′
e

]
dk′

edk′′
e , (A1)

where h̄kc
e = mevc

e is the momentum of the exciton conden-
sate (me is the mass of excitons). The transition probability Sc

is proportional to the condensate density.
We have used the shorthand notation of f ′

μ = fμ(x, k′
μ, t ).

We have defined f̄μ ≡ 1 − (−1)δμe fμ since the unbounded
carriers and excitons are considered to be fermions and
bosons, respectively, where δμe is the Kronecker delta func-
tion. These collision integrals describe the single particle scat-
terings (phonons, defects, impurities, etc.), particle-particle
scatterings, exciton formation and dissociation, and scattering
between the condensate and noncondensate [17,18,44], with
their corresponding transition rates S1, S2, S3, and Sc, respec-
tively. For example, S1(x|k′

μ; kμ) is the transition probability
of the single particle scattering from state with momentum k′

μ

to state with momentum kμ, S3(x|kt kb; ke) is the probability
of the formation of the exciton with quasimomentum ke from
particles with quasimomentum kt and kb. Note that in the
integral Cμ, k′

ν needs to be replaced by k′′
μ, when ν = μ.

The factor 1
2 in Cr

μ comes from the fact that S3(x|kαkβ ; kμ)
is symmetrical with respect to the exchange of α and β. It is
also understood that α = t and β = b or α = b and β = t in

S3(x|kαkβ ; kμ) for μ = e; otherwise S3 is zero. The conserva-
tion laws (energy, momentum, charge, etc.) and the quantum
mechanical nature of the scattering is implicitly encoded in
the mathematical forms of the transition probabilities. For
example, exciton formation/dissociation requires

kt + kb = ke + Ge, (A2)

where Ge is some reciprocal lattice vector corresponding to
the lattice composed of all the translation vectors Re that leave
the total Hamiltonian invariant when the translation is applied
simultaneously to both layers.

When external electrical fields Et/b are applied to each
layer, Eq. (6) needs to be supplemented by the following
equations of semiclassical dynamics:

∂τ kμ = 1

h̄
Fμ, ∂τ x = vμ(kμ) = 1

h̄
∇keμ(kμ), (A3)

where Fμ = qμEμ is the force on the unbounded carriers
carrying charge qμ in the layer μ (= t, b), Fe = Ft + Fb is the
force on the excitons, eμ(kμ) and vμ(kμ) = 1

h̄∇keμ(kμ) are
the band structure and group velocity of unbounded carriers
(μ = t, b) and noncondensed excitons (μ = e).

APPENDIX B: LINEARIZING THE COLLISION INTEGRALS

The linearized collision integrals are

Cs
μ[φ](kμ) =

∫
Q1(k′

μ; kμ)(φμ − φ′
μ)dk′

μ,

Cb
μ[φ](kμ) =

∑
ν

∫
Q2(k′

μk′
ν ; kμkν )(φμ + φν − φ′

μ − φ′
ν )dk′

μdkνdk′
ν,

Cr
μ[φ](kμ) =

∑
α,β

∫ [
1

2
Q3(kαkβ ; kμ)(φμ − φα − φβ ) + Q3(kμkβ ; kα )(φμ + φβ − φα )

]
dkαdkβ,

Cc
e [φ](ke) =

∫ [
Qc

(
k′

ek′′
e ; kekc

e

)
(φe − φ′

e − φ′′
e ) + 2Qc

(
k′′

e kc
e; kek′

e

)
(φe + φ′

e − φ′′
e )

]
dk′

edk′′
e , (B1)
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where

Q1(k′
μ; kμ) ≡ S1(k′

μ; kμ)n′
μn̄μ, Q2(k′

μk′
ν ; kμkν ) ≡ S2(k′

μk′
ν ; kμkν )n′

μn′
ν n̄μn̄ν,

Q3(kαkβ ; kμ) ≡ S3(kαkβ ; kμ)nαnβ n̄μ, Qc
(
k′

ek′′
e ; kekc

e

) ≡ Sc
(
k′

ek′′
e ; kekc

e

)
n̄en′

en′′
e . (B2)

The principle of detailed balance requires

Q1(k′
μ; kμ) = Q1(kμ; k′

μ), Q3(kαkβ ; kμ) = Q3(kμ; kαkβ ) ≡ S3(kμ; kαkβ )nμn̄α n̄β,

Q2(k′
μk′

ν ; kμkν ) = Q2(kμkν ; k′
μk′

ν ), Qc
(
k′

ek′′
e ; kekc

e

) = Qc
(
kekc

e; k′
ek′′

e

) ≡ Sc
(
kekc

e; k′
ek′′

e

)
nen̄′

en̄′′
e . (B3)

Additional symmetries are

Q2(k′
μk′

ν ; kμkν ) = Q2(k′
νk′

μ; kνkμ), Q3(kαkβ ; kμ) = Q3(kβkα; kμ). (B4)

By defining the linear operator Pμ,ν = P s
μ,ν + P b

μ,ν + P r
μ,ν + P c

μ,ν with

P s
μ,νφν ≡

∫
Q1(k′

μ; kμ)(φμ − φ′
μ)dk′

μδμν,

P b
μ,νφν ≡

∑
α

∫
Q2(k′

μk′
α; kμkα )(φμ − φ′

μ)dk′
μdkαdk′

αδμν

∫
Q2(k′

μk′
ν ; kμkν )(φν − φ′

ν )dk′
μdkνdk′

ν,

P r
μ,νφν ≡

∑
α,β

∫ [
1

2
Q3(kαkβ ; kμ) + Q3(kμkβ ; kα )

]
φμdkαdkβδμν

+
∑

α

∫
[Q3(kμkν ; kα ) − Q3(kμkα; kν ) − Q3(kνkα; kμ)]φνdkαdkν,

P c
e,eφe = Qa

c

(
kekc

e

)
φe +

∫
Qb

c

(
kekc

e; k′
e

)
φ′

edk′
e, (B5)

where

Qa
c

(
kekc

e

) ≡
∫ [

Qc
(
k′

ek′′
e ; kekc

e

) + 2Qc
(
k′′

e kc
e; kek′

e

)]
dk′

edk′′
e (B6)

and

Qb
c

(
kekc

e; k′
e

) ≡
∫ [

2Qc
(
k′′

e kc
e; kek′

e

) − 2Qc
(
k′

ek′′
e ; kekc

e

) − 2Qc
(
k′

ekc
e; kek′′

e

)]
dk′

edk′′
e , (B7)

the collision integral now becomes

Cμ[φ](kμ) =
∑

ν

Pμ,νφν. (B8)

Generalization of the above derivation is made for the generic collision integral that has explicit and simple physical
significance which can be written as

Cg
μ[ f ] =

∑
α . . .

β . . .

∫
[S(kα . . . ; kβ . . .) fα . . . f̄β . . . − S(kβ . . . ; kα . . .) fβ . . . f̄α . . .]dkα . . . dkβ . . . , (B9)

where one of the f s for the second part of the arguments (kβ . . .) in S(kα . . . ; kβ . . .), e.g., fβ is identified with fμ by including
a Dirac delta δ(μβ ) in the transition probabilities S(. . . ; . . .). The collision integral Cg

μ[ f ] represents the processes that the
incoming states with momentum kα . . . are scattered into the outgoing states with momentum kβ . . .. The linearized Cg

μ[ f ] can
be written as

Cg
μ[φ] =

∑
α . . .

β . . .

∫
Q(kα . . . ; kβ . . .)(φβ + · · · − φα − · · · )dkβ . . . dkα . . . , (B10)

where

Q(kα . . . ; kβ . . .) ≡ S(kα . . . ; kβ . . .)nα . . . n̄β . . . , Q([ρσ ] . . . ; [αβ] . . .) = Q([αβ] . . . ; [ρσ ] . . .), (B11)
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due to detailed balance. Without losing the generality, we can assume that fβ is identified with fμν , i.e.,

Cg
μ[φ] =

∑
α . . .

ν . . .

∫
Q(kα . . . ; kμkν . . .)(φμ + φν + · · · − φα − · · · )dkν . . . dkα . . . , (B12)

so that we have

Qa(kμ) =
∑
α . . .

ν . . .

∫
Q(kα . . . ; kμkν . . .)dkν . . . dkα . . . (B13)

and

Qb(kμ; kν ) =
∑
...α...

∫
[Q(. . . kα . . . ; kμ . . . kν . . .) − Q(. . . kν . . . ; kμ . . . kα . . .)]dkα . . . , (B14)

where the summation in Qb excludes the index ν and similarly for the integral elements dkν . It can be verified that Qa and Qb

satisfy Eqs. (21) and (22).

APPENDIX C: ELECTRIC AND HEAT CURRENT

The electric current in each layer (μ = t, b) is

jn
μ = qμ

∑
ν=μ,e

∫
vν (kν ) fνdkν = −qμ

∑
ν=μ,e

∫
Bν

vν (kν )nν n̄νφνdkν

= kBT qμ

h̄2

∑
ν = μ, e

α = t, b, e

∫
∇knνLν,α

[(
Fα − eα − ζα

T
∇xT

)
· ∇knα

]
dkν ≡ jF

μ + jT
μ, (C1)

where

jF
μ = kBT qμ

h̄2

∑
ν = μ, e

α = t, b, e

[∫
∇knν ⊗ Lν,α∇knαdkν

]
Fα,

jT
μ = −kBqμ

h̄2

∑
ν = μ, e

α = t, b, e

[∫
∇knν ⊗ Lν,α[(eα − ζα )∇knα]dkν

]
∇xT, (C2)

and we have used the notation (a ⊗ b)mn ≡ ambn. We can define

Jμ,ν ≡
∫

∇knμ ⊗ Lμ,ν∇knνdkμ.

We then have

jF
μ = kBT qμ

h̄2

∑
ν=t,b

(Jμ,ν + Jμ,e + Je,ν + Je,e)F ν . (C3)

The heat current in each layer is defined as

hμ =
∑

ν=μ,e

∫
vν (kν )

eν (kν ) − ζν

1 + δνe
fνdkν (C4)

and its calculation is straightforward.
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