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A game is rigid if a near-optimal score guarantees, under the sole assumption of the validity of 
quantum mechanics, that the players are using an approximately unique quantum strategy. Rigidity 
has a vital role in quantum cryptography as it permits a strictly classical user to trust behavior in 
the quantum realm. This property can be traced back as far as 1998 (Mayers and Yao) and has been 
proved for multiple classes of games. In this paper we prove ridigity for the magic pentagram game, 
a simple binary constraint satisfaction game involving two players, five clauses and ten variables. 
We show that all near-optimal strategies for the pentagram game are approximately equivalent to 
a unique strategy involving real Pauli measurements on three maximally-entangled qubit pairs. 

I. INTRODUCTION 

Quantum rigidity is a strengthening of the guarantee 
that quantum behavior is taking place. It essentially as-
certains that observing certain correlations in a system, 
for example, correlations that violate Bell inequalities, 
is sufficient by itself to determine the quantum state and 
the measurements used to obtain these correlations. This 
notion was expressed in the work of Mayers and Yao on 
“self-checking quantum sources” [1] in 1998, and it can 
be traced back even earlier [2, 3]. Rigidity is a central 
tool for quantum computational protocols that involve 
untrusted devices, since it allows a user to verify the in-
ternal workings of a device based only on its external 
behavior (see, e.g., [4]). 
Since its introduction the notion of rigidity has seen 

good deal of work, generally focused either on prov-
ing rigidity for particular classes of games, or proving 
that rigid games exist that self-test particular quantum 
states. Two-player games that are known to be rigid in-
clude the CHSH game [2, 5], the magic square game [6], 
the chained Bell inequalities [7], the Mayers-Yao crite-
rion [1, 8], Hardy’s test [9], the Hadamard-graph coloring 
game [10], and various classes of binary games [11–13]. 
New results on rigid games add to the tools available for 
protocols based on untrusted devices. 
In the current paper we prove that the magic penta-

gram game (see Figure 1) is rigid. This game is a natural 
one to study: in particular, it was originally proposed 
alongside the magic square game [14], and it shares some 
of the same properties that make the magic square game 
useful in cryptography (in particular, it shares the prop-
erty that an optimal strategy must yield a perfect shared 
key bit pair between two parties, which was exploited 
in [15]). From a resource standpoint, it also offers an 
improvement over the magic square game: whereas the 
magic square game requires 9 questions to self-test 2 EPR 
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pairs, we will prove that the magic pentagram game self-
tests 3 EPR pairs with 20 questions. If we compare the 
number of bits of randomness needed to generate the 
questions set to the number EPR pairs tested, the magic 

1square has a ratio of log2 9 ≈ 1.58, while the magic2 
pentagram game has a ratio of 1 log2 20 ≈ 1.44.3 
The optimal strategy for the magic pentagram game 

is shown in Figure 2. Our main result is summarized 
below, and proved formally in Propositions 9, 10, 12, 
and Corollary 11. 

Theorem 1 (Informal). Suppose that Alice and Bob have 
a strategy for the magic pentagram game that wins with 
probability 1 − �. Then, after the application of a lo-
cal isometry on Alice’s and Bob’s systems, the following 
statements hold. 

1. The shared state is within Euclidean distance √ 
O( �) from a state of the form (Φ+)⊗3 ⊗ |junki, 
where Φ+ denotes a Bell state and |junki denotes 
an arbitrary bipartite state. (Proposition 12.) 

2. The post-measurement states under Alice’s and 
Bob’s measurements are approximated (up to√ 
O( �)) by the corresponding post-measurement 
states from the strategy in Figure 2. (Proposi-
tions 9–10 and Corollary 11.) 

Our proof is self-contained and borrows techniques 
from previous papers on rigidity [5, 6, 16]. One of the 
challenges for the magic pentagram game is that the first 
player may associate two different measurements to a sin-
gle observable — for example, in Figure 1, Alice may 
use a different measurement for vertex 1 depending on 
whether the context is G or D. (This does not occur 
in the magic square game.) Our early technical work 
addresses this fact — see Propositions 5–6 and the dis-
cussion that follows. √ 
The coefficients of the error terms O( �) for Theo-

rem 1 are not given explicitly, and optimizing these coef-
ficients is left as an open problem. (Tracing through the 
steps of the current proof might yield coefficients in the 
thousands.) 
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FIG. 1. The pentagram game. 

In the larger picture, the magic square game and the 
magic pentagram game are examples of binary constraint 
satisfaction games [17]. Arkhipov [18] proved that a cer-
tain natural subclass of binary constraint satisfaction 
problems — specifically, those that are based on XOR 
clauses where every variable is in exactly two clauses — 
are all in a precise sense reducible to the magic square 
game and the magic pentagram game. This suggests that 
our result is a step towards a full classification of winning 
quantum strategies within this class. 

II. THE MAGIC PENTAGRAM GAME 

The pentagram game is a binary constraint satisfaction 
game between two parties, Alice and Bob. Its rules can 
be defined, as its name suggests, on a pentagram hyper-
graph, see Fig. 1. The five hyperedges of the pentagram 
(the clauses or contexts) are labeled C, D, E, F, G, and 
each contains four vertices. The hyperedges are each as-
signed a value: `(C) = `(D) = `(E) = `(F ) = 1, and 
`(G) = −1. The rules of the games are as follows: 

• A context j is chosen and a vertex v ∈ j is chosen 
(both uniformly at random). The context j is given 
to Alice and the vertex v is given to Bob. 

• Alice assigns either +1 or −1 to each vertex in the 
context j, and Bob assigns +1 or −1 to v. 

• Alice and Bob can communicate and agree on a 
strategy prior to the beginning of the game, but 
are not allowed to communicate once the game has 
begun. 

The game is won if the following two conditions both 
hold: 

• The product of the values returned by Alice is equal 
to the pre-assigned value `(j). 

• Alice and Bob return the same value for v. 

There is no classical strategy to win this game per-
fectly, as is easily verified. However, it can be won with 
probability 1 using quantum resources [14, 19]. A win-
ning strategy is schematically shown in Fig. 2, with Z, X 

FIG. 2. A winning strategy. 

and I denoting the Pauli operators σz, σx, and the iden-
tity operator, respectively. They share six qubits, three 
at Alice’s lab (Q1Q2Q3) and three at Bob’s (Q4Q5Q6), 
prepared in the maximally entangled state 

3O 1 |Φ+i⊗3 = √ (|0iQi |0iQi+3 + |1iQi |1iQi+3 ), (1)
2

i=1 

where |0i, |1i are the eigenbasis of the Pauli Z opera-
tor. (When no confusion arises we drop the tensor prod-
uct symbol and the subscript labels for Alice and Bob’s 
subsystems.) Upon receiving a hyperedge label j, Al-
ice measures the four Pauli observables associated with 
the four vertices of j on her three qubits, and then as-
signs to each vertex the value she obtains for the cor-
responding observable. These observables are reflection 
operators (i.e., Hermitian operators having eigenvalues 
in {−1, +1}) such that observables of adjacent vertices 
(vertices that are connected by the same hyperedge) all 
commute and thus can be measured simultaneously. Bob 
measures the observable of his input vertex on his three 
qubit system and assigns a {−1, +1} value to the vertex 
according to the outcome of his measurement. By con-
struction of this strategy, the winning conditions for this 
game, as listed above, are fulfilled for every input value 
j and v. 
We note that in this strategy any two non-adjacent 

observables anti-commute. (This will become important 
in later proofs.) 

III. STRATEGIES FOR THE MAGIC 
PENTAGRAM GAME 

Our goal is to relate arbitrary strategies for the magic 
pentagram game to the strategy in Figure 2. The class 
of strategies that we study are captured in the following 
definition. 

Definition 2. A projective strategy for the magic penta-
gram game consists of the following data: 

1. The shared state: Two finite-dimensional Hilbert 
spaces HA and HB , and a unit vector |ψi ∈ HA ⊗ 
HB . 

2. Alice’s measurements: For each j ∈ 
j{C, D, E, F, G}, a projective measurement {M }t 
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on HA, where t varies over the set of all functions pected score) for the reflection strategy is given by 
from j to {0, 1} whose parity is equal to `(j). 



 � �



 �� 2X I + Rj 

v I − Sv1 
Lplose = 3. Bob’s measurements: For vertex v, a projective 20 2 2 2v∈jmeasurement {Ns}s∈0,1.v !� �� � 2



 I − Rj 

v L 
I + Sv 

2 2 





The functions obtained from these measurements spec- + 
2ify the output values for Alice and Bob. Note that we 

1 

X 

2could have allowed for the shared state to be mixed and L − Rj LSvv= 
2for the measurements to be general positive-operator val- 20 

v∈j 
ued measures (POVMs). However standard techniques 

1 

X 

2 
Rj 

vL − LSvimply that any such strategy is a partial trace of one in = . 
220the above form, so there is no generality lost. v∈j 

Additionally, we make the following definition. 
Thus we have the following. 

Definition 3. A reflection is a Hermitian automorphism 
whose eigenvalues are contained in {−1, +1}. A reflec-
tion strategy for the magic pentagram game consists of 

� 
Proposition 4. Let (L, Rj , {Sv}) be a reflection v 
strategy for the magic pentagram game which achieves 
winning probability 1 − �. Then, for any context j andthe following data: 
vertex v ∈ j, 

1. The shared state: Two finite-dimensional Hilbert 
spaces HA and HB , and a linear map L : HB → HA 



Rj L − LSvv 
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√ 
≤ O( �), (5) 

satisfying kLk = 1.2 Next we prove a series of properties for near-optimal 
strategies, all of which are consequences of Proposition 4. 

2. Alice’s reflections: Reflections 

Proposition 5 (Changing contexts). Let 
{Rj | j ∈ {C, D, E, F, G}, v ∈ j}v 

(L, {Rj }, {Sv})v 

on HA such that the reflections that belong to any be a reflection strategy with expected score 1 − �. Let 
context j all commute ([Rj , Rj 

0 ] = 0) and their v v v1, . . . , vn be a sequence of vertices and j1, . . . , jn and 
product is equal to `(j)I. j1

0 , . . . , j0 be sequences of contexts such that vi ∈ ji ∩ j0 n i 
for all i. Then, 

3. Bob’s reflections: Reflections {Sv }v on HB . 


Lv1 v2 vn
Note that any projective strategy can be converted into 2 

a reflection strategy, and vice versa, via the relations 
Proof. Applying Proposition 4 inductively, we find that 




 √j0 j0 j0 
1 2 nRj1 Rj2 Rjn· · · L − R R · · · R ≤ O(n �).v1 v2 vn 

j0 j0 

Rj1 Rjn· · · L and R 1 · · · R n L are both within Euclidean v1 vn √ 
XX 

Rj M j M j 
v = t − t , 

v1 vn(2) 
distance O(n �) from LSv1 · · · Svn . t(v)=0 t(v)=1 

Sv = N0 − N1 (3)v v The next two propositions certify the relation between 
L = hΦB |ψi (4) reflection operators in a strategy with expected score 

1 − �. For convenience, hereafter we refer to sequences P 
where |ΦB i = 
The probability 

|iii on HB . T1, . . . , Tn of matrices satisfying kTi+1 − Tik ≤ δ as δ-i 2 
distribution obtained from a pro- approximate sequences. 

jective measurement {O1, . . . , On} on HA is given by 
2 2

(kO1Lk2 , . . . , kOnLk ), and the probability distribution 2
obtained from a projective measurement {P1, . . . , Pn} on 

2 2HB is given by (kLP1k2 , . . . , kLPnk ). For any context 2
j and any vertex v ∈ j, the probability that Alice and 
Bob will assign different values to the vertex v in a given 

Proposition 6 (Approximate commutativity). Let 
(L, {Rj }, {Sv }) be a reflection strategy with expected v

score 1 − �. Let v and w be adjacent vertices, such that 
v, w ∈ j, and let j0 6= j be the other hyperedge which 
contains w. Then, 


Rj Rj0 

L − Rj0 

Rj 
v w w vL 




 ≤ O(
reflection strategy is given by √ 

�) (6) 



 � �� �



 



 



 
2� �� � √2 2 

I + Rj 
v L 

I − Sv I − Rj 
v L 

I + Sv kLSwSv − LSv Swk ≤ O( �). (7)2+ . 
2 2 2 22 2 

Proof. The desired result follows easily by applications of 
Thus the losing probability (that is, one minus the ex- Proposition 4. 
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Each vertex v has two reflection operators for Alice 
(Rj and Rk, where j ∩ k = {v}). It is helpful for some v v 
of the proofs that follow to single out one distinguished 
reflection operator for each vertex. We therefore make 
the following (arbitrary) assignments, 

R1 := RG R6 := RE 
1 6 

R2 := RG R7 := RF 
2 7 

R3 := RE R8 := RD (8)3 8 
R4 := RF R9 := RD 

4 9 
R5 := RE R10 := RC 

5 10 . 

Proposition 7 (Approximate anti-commutativity). Let 
(L, {Rj }, {Sv}) be a reflection strategy with expected v 
score 1 − �, and let v ∈ j and w ∈ j0 be non-adjacent 
vertices (i.e., vertices that never occur in the same con-
text). Then, 


Rj Rj0 

L + Rj0 

Rj 
v w w vL 




 √ 
≤ O( �) (9) The next theorem asserts that some of the reflections 

2 √ 
kLSwSv + LSvSwk ≤ O( �). (10)2 

Proof. By Proposition 5, it suffices to prove these rela-
tions with Rj , Rj0 

replaced by Rv, Rw. We give a proof v w 
for v = 7, w = 3, which generalizes to cover all other 
cases by symmetry. The proof is inspired by the proof of 
rigidity for the magic square game [6]. Applying the rules 
for Alice’s measurements from Definition 3 and the fore-
going propositions, we find that the following sequence is √ 
an O( �)-approximate sequence: 

R7R3L, 

(R4R9R6)(R6R8R5)L, 

R4R9R8R5L, 

R4(R1R10R8)R8R5L, 

R4R1R10R5L, 

R4R1(R2R7)L, 

−R3R7L, 

and relation (10) follows similarly. 

The next proposition follows from Propositions 4, 6, 
and 7. 

Proposition 8. Let v1 ∈ j1, v2 ∈ j2, . . . , vn ∈ jn be a 
sequence of vertices and i ∈ {1, 2, . . . , n − 1}. Then, 

IV. RIGIDITY 

In this section, we will use the following notation: 
Q1, . . . , Q6 will denote qubit registers (each with a fixed 
isomorphism to C2). The linear maps Hi : Qi → Qi de-
note the Hadamard maps |0i 7→ |+i , |1i 7→ |−i, and the 
linear maps Xi, Zi : Qi → Qi denote the Pauli operators. 
For any reflection U on HA ⊗HB , and i ∈ {1, 2, 3, 4, 5, 6}, 
let the map 

Ci(U) : Qi ⊗HA ⊗HB → Qi ⊗HA ⊗HB (11) 

denote the controlled operation |0i h0| ⊗ I + |1i h1| ⊗ U . 
Note that these maps interact as follows: 

XiCi(U)Xi = Ci(U)U = UCi(U) (12) 

ZiCi(U) = Ci(−U) = Ci(U)Zi (13) 

in a near-optimal strategy for the magic pentagram game 
can be simulated by Pauli operators. Let 

X 0 X 0 1 = R6 4 = S6 

X 0 X 0 2 = R5 5 = S5 

X 0 X 0 3 = R7 6 = S7 (14)
Z 0 Z 0 1 = R10 4 = S10 

Z 0 Z 0 2 = R9 5 = S9 

Z 0 Z 0 3 = R8 6 = S8, 

where the Rs are given in Eq. (8). These operators 
are chosen so that for i ∈ {1, 2, 3} (and similarly for 
i ∈ {4, 5, 6}) the pairs (Xi

0, Zi
0), belong to non-adjacent 

vertices, while all the other pairs of operators belong to 
adjacent vertices. Thus the approximate commutativity 
conditions and anti-commutativity conditions are what 
one would expect for the corresponding Pauli operators. 
We note that the particular choice of the X 0s and Z 0s 
here is not unique. The following results will hold for 
any choice of X 0s and Z 0s as long as they satisfy the 
required approximate commutation relations. 

Proposition 9. Let (L, {Rj }, {Sv}) be a reflection strat-v

egy with expected score 1 − �. Then, there exists an isom-
etry ΨA from HA to HA ⊗ Q1 ⊗ Q2 ⊗ Q3 such that for 
all i ∈ {1, 2, 3}, 

kXiΨAL − ΨAXi 
0Lk ≤ O( 

√ 
�) (15)2 

kZiΨAL − ΨAZi
0Lk ≤ O( 

√ 
�). (16)2 




Rji+1 Rji Rjn−bRj1 · · · · · · v1 vi+1 vi vn 

Rj1 Rji Rji+1 Rjn Proof. Our construction of the isometries follows previ-· · · · · · Lv1 vi vi+1 vn 


 ous papers on rigidity (e.g., [16]). For each i ∈ {1, 2, 3}√ 
L ≤ O(n �) define 

 2 

LSv1 · · · Svi Svi+1 · · · Ψi : HA → HA ⊗ Qi (17)√

 Svn 

· · ·Svi+1 Svi Svn −bLSv1 · · · ≤ O(n �),
2 

by 
where b = 1 if vi, vi+1 are adjacent and b = −1 if vi, vi+1 

are non-adjacent. Ψi(z) = [Ci(Xi
0)]Hi[Ci(Zi

0)](z ⊗ |+i). (18) 
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√ √ 
Then, the following is an O( �)-approximate sequence: Then, the following is an O( �)-approximate sequence: 

XiΨiL, 

Xi[Ci(Xi
0)]Hi[Ci(Zi

0)](L ⊗ |+i), 
[Ci(Xi

0)]Xi
0XiHi[Ci(Zi

0)](L ⊗ |+i), 
[Ci(Xi

0)]HiZiXi
0[Ci(Zi

0)](L ⊗ |+i), 
[Ci(Xi

0)]HiZi[Ci(−Zi
0)]Xi

0(L ⊗ |+i), 
[Ci(Xi

0)]Hi[Ci(Zi
0)]Xi 

0(L ⊗ |+i), 
ΨiXi

0L. 

Thus, 

kXiΨiL − ΨiXi 
0Lk ≤ O( 

√ 
�).2 

√ 
Additionally, the following is an O( �)-approximate se-
quence: 

ZiΨiL, 

Zi[Ci(Xi
0)]Hi[Ci(Zi

0)](L ⊗ |+i), 
[Ci(Xi

0)]ZiHi[Ci(Zi
0)](L ⊗ |+i), 

[Ci(Xi
0)]HiXi[Ci(Zi

0)](L ⊗ |+i), 
[Ci(Xi

0)]Hi[Ci(Zi
0)]Zi

0Xi(L ⊗ |+i), 
[Ci(Xi

0)]Hi[Ci(Zi
0)]Zi

0(L ⊗ |+i), 
ΨiZi

0L. 

Thus, B 
2 

√ 
kZiΨiL − ΨiZi

0Lk ≤ O( �). Proof. Define Ψi for i ∈ {4, 5, 6} by the same expres-2 
sion (18) that was used in the previous proof, and let 

Also, if i, k ∈ {1, 2, 3} with k 6 i, then by Proposi-= √ 
tion 6, the following is a O( �)-approximate sequence: 

ΨB = Ψ4Ψ5Ψ6. The desired result follows by the same 
reasoning that was used to prove Proposition 9. 

Xk
0 ΨiL, 

X 0 k[Ci(Xi
0)]Hi[Ci(Zi

0)](L ⊗ |+i), 
Xk
0 [Ci(Xi

0)]HiL[Ci(Zi
0 
+3)](I ⊗ |+i), 

X 0 k[Ci(Xi
0)]LHi[Ci(Zi

0 
+3)](I ⊗ |+i), 

[Ci(Xi 
0)]Xk

0 LHi[Ci(Zi
0 
+3)](I ⊗ |+i), 

[Ci(Xi 
0)]Xk

0 Hi[Ci(Zi
0)]L(I ⊗ |+i), 

[Ci(Xi 
0)]Hi[Ci(Zi

0)]Xk
0 L(I ⊗ |+i), 

ΨiXk
0 L. 

Therefore 

kXk
0 ΨiL − ΨiXk

0 Lk ≤ O( 
√ 
�) (19)2 

and by similar reasoning, 

kZk
0 ΨiL − ΨiZk

0 Lk ≤ O( 
√ 
�). (20)2 

Define Φi : HB → HB ⊗Qi by the same expression used 
to define Ψi, except with the operators Xi

0, Z 0 replacedi 
with Xi

0 
+3, Zi

0 
+3: 

Φi(z) = [Ci(Xi
0 
+3)]Hi[Ci(Zi

0 
+3)](z ⊗ |+i). (21) 

√ 

X2ΨAL, 

X2Ψ1Ψ2Ψ3L, 

Ψ1X2Ψ2Ψ3L, 

Ψ1X2Ψ2LΦ3, 

Ψ1Ψ2X2
0 LΦ3, 

Ψ1Ψ2X2
0 Ψ3L, 

Ψ1Ψ2Ψ3X2
0 L. 

Therefore, 

kX2ΨAL − ΨAX2
0 Lk ≤ O( 

√ 
�). (23)2 

The desired result for i = 1, 3 follows by similar reason-
ing. 






Likewise, we have the following. 

Proposition 10. Let (L, {Rj }, {Sv }) be a reflection v

strategy with expected score 1 − �. Then, there exists an 
isometry ΨB from HB to HB ⊗ Q4 ⊗ Q5 ⊗ Q6 such that 
for all i ∈ {4, 5, 6}, 

√


 


 2 

† †Xi − LXi 
0ΨBLΨ ≤ O( �) (24)B 


 √† †Zi − LZi
0ΨBLΨ ≤ O( �). (25) 

Note that Propositions 9 and 10 easily generalize to 
sequences of measurements — for example, the following √ 
is an O( �)-approximate sequence: 

X1X2ΨAL, 

X1ΨAX
0 
2L, 

X1ΨALX
0 
5, 

ΨAX
0 
1LX

0 
5, 

ΨAX
0 
1X

0 
2L. 

(26) 

(27) 

(28) 

(29) 

(30) 

Applying this method inductively, we have the following 
corollary. 

Corollary 11. The isometries from Proposition 9 
and 10 satisfy the following. For any sequence 
M 0 

1, . . . ,M
0 ∈ {X1

0 , X2
0 , X3

0 , Z1
0 , Z2

0 , Z3
0 } and correspond-n 

ing sequence M1, . . . ,Mn ∈ {X1, X2, X3, Z1, Z2, Z3}, 

kM1 · · · MnΨAL − ΨAM1 
0 · · · Mn

0 Lk ≤ O(n 
√ 
�).2 

For any sequence N1
0 , . . . , N 0 ∈ {X4

0 , X5
0 , X6

0 , Z4
0 , Z5

0 , Z6
0 }n 

and corresponding sequence N1, . . . , Nn ∈ 

Then, kΨiL − LΦik ≤ O( �) by Proposition 4. Let2 

ΨA = Ψ1Ψ2Ψ3. (22) 





{X4, X5, X6, Z4, Z5, Z6}, 

† †Nn · · · N1 − LN 0 · · · N1
0 ΨB nLΨ




 ≤ O(n 
√ 

B �). 
2 
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Finally, we prove the following proposition, which ad- where vi 
dresses the image of the L under the isometry ΨA ⊗ ΨB . and 

varies over {φ+ 
i 

(40) imply that all 
, φ− 

i , ψ
+ 
i , ψ

− 
i }. 

components 
Conditions (39) 
Pv1,v2,v3 except √ 

For each i ∈ {1, 2, 3}, let P must have Euclidean norm less than O( �).φ+,φ+,φ+ 
1 2 3 

The desired result follows. 
φ+ 
i : Qi → Qi+3 (31) 

V. SUMMARY AND CONCLUSIONS 
be defined by #" Quantum rigidity allows a classical user to certify ma-

φ+ 2= i 

1√ 0 
nipulations of quantum systems, thus enabling quantum . (32) 

2 
1√0 cryptography in a scenario in which the user does not 

trust her quantum apparatus (device-independent quan-
(This is a matrix expression for an EPR pair.) Let tum cryptography). In this paper we have expanded the #" toolbox for the device-independent setting by showing 

0 that the magic pentagram game is rigid. In particular, 2 
1√ 

−φ (33)= 
0 − 1

2 
√i this means that it is possible to certify the existence of 3 

ebits using a game that consists of only 20 questions. #" 
ψ+ 2= i 1

1√ 

√ 

0 In our style of proof we have reduced some of the ar-
guments for rigidity to bare manipulations of sequences (34)

0 
2 #" of operators (see the proofs in section IV). This style 

2 
1√0 in particular allows us to cleanly handle conditions such 

as approximate commutativity and anti-commutativity. 
−ψ (35)= . − 1

2 
√i 0 

Such an approach could be useful for proving more gen-
Proposition 12. Let L, ΨA, ΨB be the operators from eral results. 
Propositions 9 and 10. Then, for some L0 : HB → HA, A natural next step would be to try to parallelize our 

≤ O( 

result (following [4, 16, 20–26]) to show that parallel √ copies of the magic pentagram game can be used to cer-�). (36) 



L0 ⊗ φ+ ⊗ φ+ ⊗ φ+ − ΨALΨ1 2 3 

† 
B 




 
2 tify a maximally entangled state of arbitrary size. Then, 

we could try to choose a small subset of the questions †Proof. Let P = ΨALΨ

0

0 

By the score assumption, 

i+3 − L 

i+3 − L 

B . from the parallelized game and prove that that subset is 

 

 √ adequate to achieve rigidity. 
iLX

ZiLZ
0 

0 ≤ O(X �) (37) 
The magic pentagram game is an example of a binary 2

 

 √ 

≤ O( �), (38) constraint satisfaction XOR game in which every variable 
2 

for i ∈ {1, 2, 3}, therefore by Propositions 9 and 10, 
√ 

kXiPXi+3 − P k2 ≤ O( �) (39)√ 
kZiPZi+3 − P k ≤ O( �), (40)2 

Note that Xiφ
+Xi = Ziφ

+Zi = φ+, while the other Bell i i i 
states fail significantly to satisfy the same equalities: 

appears in exactly two contexts. This class of games was 
studied in [18], and the author proved that any game in 
the class that exhibits pseudo-telepathy must in a sense 
contain either the magic square game or the magic penta-
gram game (as topological minors of its relational graph). 
An interesting further direction would be to explore fur-
ther the consequences for our rigidity result (and [6]) for 
the class from [18]. 

Xiφ
− 
i Xi = −φ− 

i (41) 
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