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ABSTRACT 
The application of machine learning 

techniques in the manufacturing sector provides 

opportunities for increased production efficiency 

and product quality. In this paper, we describe how 

audio and vibration data from a sensor unit can be 

combined with machine controller data to predict 

the condition of a milling tool. Emphasis is placed 

on the generalizability of the method to a range of 

prediction tasks in a manufacturing setting. Time 

series, audio, and acceleration signals are 

collected from a Computer Numeric Control 

(CNC) milling machine and discretized into blocks. 

Fourier transformation is employed to create 

generic power spectrum feature vectors. A 

Gaussian Process Regression model is then trained 

to predict the condition of the milling tool from the 

feature vectors. We highlight that this multi-step 

procedure could be useful for a range of 

manufacturing applications where the frequency 

content of a signal is related to a value of interest.  

INTRODUCTION 
The application of modern machine learning 

techniques to manufacturing processes provides an 

opportunity to increase productivity and improve 

overall product quality in traditional 

manufacturing lines [1]. The adoption of predictive 

models within the industrial value chain is part of 

a larger transition often referred to as the industrial 

internet, which promises to bring substantially 

increased operational effectiveness as well as the 

development of entirely new business models, 

services, and products [2].  

In order to increase manufacturing productivity 

while reducing maintenance costs, it is crucial to 

develop more intelligent maintenance strategies, 

that can predict when maintenance should be 

performed [3].   Reliable tool-condition monitoring 

is likely to play an important role in the reactive 

maintenance strategies of future manufacturing 

facilities. 



 

Numerous machine learning models have been 

proposed to optimize a range of tasks, from robotic 

control to machine failure detection [4,5]. One of 

the hurdles preventing adoption on a broader scale 

is that preprocessing raw data into relevant features 

is a subjective and difficult process [6]. In 

developing most machine learning models, a 

domain expert is given the task of carefully 

selecting a set of inputs, normally referred to as 

features, that yield optimum performance for the 

given prediction task. While such a technique has 

been considered the status quo for some time, 

recent progress in deep learning has demonstrated 

that automatic feature selection often yields 

superior performance than manual feature 

selection [7]. The recent popularization of Deep 

Recurrent Neural Networks provides a promising 

method of analyzing time series data [8]. However, 

the development of deep neural networks requires 

a large training dataset and tremendous 

computational power [9]. 

Researchers have previously demonstrated that 

the condition of a machine tool can be inferred 

from features of the vibration and audio signals 

[10,11]. A number of researchers have attempted 

to use the skew and kurtosis coefficients of the 

audio and acceleration time-series to predict the 

condition of the tool, but with mixed results [11–

13]. Bukkapatnam et al. developed a tool wear 

prediction technique using an artificial neural 

network (ANN) with features inspired by the 

principles of nonlinear dynamics [14]. Sanjay et al. 

developed a model for predicting tool flank wear 

using ANNs [15]. The feed rates, spindle speeds, 

torques, machining times, and thrust forces were 

used to train the ANN model. Wu et al. reviewed 

these methods and demonstrated an alternative 

approach using random forests with a set of 

manually selected features [3]. A wide range of 

tool monitoring techniques have been reviewed by 

Dimla et al [16]. They concluded that existing 

techniques perform well on carefully selected 

experimental data, but there is a need for a multi-

level system capable of handling unprocessed data. 

While the application of machine learning to 

continuous time series data brings about its own 

difficulties, there are several characteristics of 

manufacturing that make it a perfect match for 

machine learning. First, manufacturing tends to be 

a repetitive process, and hence the time series 

signals from manufacturing often tend to be 

repetitive. Second, faults in the manufacturing 

process are likely to produce a different signal, and 

can be identified by comparing the time series 

signal against that from an operational product line. 

In this paper, we outline a methodology for 

extracting information from a time series data 

source, with emphasis on generalizability. In this 

method, the time series signals are aggregated, 

transformed, and then classified.  In the first step, 

we break the time series into a series of blocks, 

using instructions from the machine controller. In 

the tool wear example, each block corresponds to a 

single cutting action of the milling machine. 

However, the method only requires that the blocks 

represent a signal from some repeated part of the 

process. In the second step, we calculate the power 

spectral density (PSD) of each time series block 

using Fast Fourier Transform (FFT). Finally, we 

train a Gaussian Process Regression (GPR) model 

to predict tool condition based on the PSD vectors.  

The remainder of the paper is organized as 

follows: In the first section, we review how time 

series audio and vibration data are collected from a 

Computer Numeric Control (CNC) machine, 

namely a Mori Seiki NVD1500DCG. In the next 

section, we describe how the time series data is 

divided into blocks using information from the 

machine controller. We then discuss how feature 

vectors are developed to represent the frequency 

content of the audio and acceleration sensors. We 

conclude by demonstrating that the frequency 

vectors contain information about the tool 

condition, and subsequently show that they can be 

used to predict tool condition using a GPR 

algorithm.  

TIME SERIES DATA COLLECTION 
In this section, we describe how time series 

acceleration and acoustic data were collected from 

a CNC milling machine, namely a Mori Seiki 

NVD1500DCG. As shown in Figure 1, a 

waterproof sensor unit from Infinite Uptime was 

attached to the vise of the milling machine.           



 

The sensor unit was capable of measuring both the 

audio and triaxial acceleration signals inside the 

milling machine. The acceleration signal was 

recorded in the x-, y- and z-directions at 1000 Hz. 

The audio signal was recorded at 8000 Hz. Data is 

streamed from the sensor to a laptop computer 

using a Universal Serial Bus (USB) connection. 

The milling machine was programmed to 

produce a number of simple ‘parts’ by removing 

material from a solid steel block. Each part 

consisted of 20 separate cutting actions performed 

by the milling machine. Figure 2 shows a section 

of acceleration time series data recorded using the 

sensor unit. 

The machining data, such as tool position and 

rotation speed, were recorded from the FANUC 

controller. An MTConnect agent was used to 

synchronize the data from the milling machine and 

stream it to a laptop computer, along with a 

timestamp. A post-processing step was used to 

convert the machining data into a set of operations 

performed by the machine. The post-processing 

involved a simulation step, which is previously 

described in an earlier paper [17].  

 

GENERIC FEATURE VECTORS 

In machine learning, the process of 

featurization involves converting raw data into a 

vector form that is suitable for the chosen machine 

learning model. The featurization process often 

reduces the dimensionality of the data, which in 

turn reduces the computational burden of training 

the predictive model. In this section, we describe 

how the time series data is split into blocks using 

the controller data, and then converted into feature 

vectors. 

In a more traditional application of machine 

learning, we would attempt to identify a range of 

different measures that correlate strongly with the 

target value of interest, which, in this study, is tool 

condition. A number of researchers have attempted 

to use the skew and kurtosis coefficients of the 

audio and acceleration time series to predict the 

condition of the tool with mixed results [11–13]. 

While this approach is valuable, it can also limit the 

application of the model to a very specific scenario. 

Instead, we create relatively large feature vectors, 

and use an optimization algorithm to assign a 

weight to each feature.  

 
FIGURE 1. A MORI SEIKI NVD1500DCG 

MILLING MACHINE WITH CUTTING TOOL (1) 

AND SENSOR UNIT FROM INFINITE UPTIME (2)  

 

 
FIGURE 2. MEASURED ACCELERATION SIGNAL 

IN THE X-DIRECTION WHILE PRODUCING A SINGLE 

PART 

 

 
FIGURE 3. ACCELERATION SIGNAL IN THE X-

DIRECTION, AFTER BEING AUTOMATICALLY LABELED 

USING THE CONTROLLER DATA.  

 



 

Discretizing Time Series Data 

The first step of preprocessing a time series 

data is to divide the data into blocks, according to 

the type of operation performed by the machine. 

The data from the milling machine controller is 

used to automatically label the time series data. 

Labelling the time series makes the dataset more 

structured, and thus makes the dataset more 

suitable for use with machine learning algorithms. 

The milling machine performs a number of 

different operations to produce a part. Figure 3 

shows the time series data in the production of a 

part that involves 10 climb-cutting operations and 

10 conventional-cutting operations. Each cutting 

operation is separated by a brief “air cutting” 

operation, in which the machine pauses briefly 

between cuts. We use the terms “climb cutting” and 

“conventional cutting” refer to the relationship 

between the rotation direction to the feed direction. 

A detailed description of these operations has been 

discussed earlier [17]. 

The audio and vibration signals produced are 

dependent on the type of cutting operation being 

performed by the milling machine, as illustrated in 

Figure 3.  

Estimating the Power Spectral Density 

Next, we estimate the power spectral density (PSD) 

of each time series block. As the audio and 

acceleration signals are periodic, the PSD provides 

an elegant way to summarize the information about 

the signals. In many cases, comparing the PSD of 

different blocks can reveal information about the 

underlying physical process. 

FFT is used to estimate the PSD of each time 

series block. For each acceleration or audio signal, 

𝑠 ∈ ℝ𝑁, the PSD is given by: 

𝑠̂(𝜔) =
1

𝑁
|∑ 𝑠(𝑛)𝑒−𝑖𝜔𝑛

𝑁−1

𝑛=0

|

2

, (1) 

where 𝑠̂(𝜔) is the PSD of the signal at angular 

frequency 𝜔. The PSD is computed at a discrete set 

of frequencies 𝜔 = 2𝜋𝑘/𝑇 for 𝑘 ∈ {1 … 𝑁}, where 𝑇 

is the sampling period of the signal.  

When the PSD is estimated in this manner the 

PSD vector 𝑠̂ ∈ ℝ𝑁 , has the same length as the 

input time series signal 𝑠 ∈ ℝ𝑁. Because 

inconsistencies exist in manufacturing processes, 

the length of each time series block varies slightly. 

This variation is typical of most manufacturing 

processes, where small variations tend to occur in 

each iteration of a repetitive process [18]. On the 

other hand, in machine learning it is expected that 

the length of the feature vectors is the same. 

Therefore, we calculate the PSD over sequential 

windows of constant length, and average the 

results. Specifically, the time series is broken into 

M consecutive segments, where each segment has 

a length of 256 points. The PSD is calculated for 

each of the M segments. The PSD for the entire 

block is obtained by averaging the PSDs for each 

segment. There are several benefits of computing 

the PSD in this manner. First, the length of the 

frequency coefficient vector is now the same across 

all time series blocks. Second, the averaging 

process helps to reduce noise in the PSD, while still 

providing a consistent estimate of the PSD [19].  

To create a generic feature vector, the PSD 

vectors of each signal are combined. Let 𝒂̂ be the 

audio PSD and 𝒗̂𝑥, 𝒗̂𝑦 and 𝒗̂𝑧 be the vibration PSD. 

We denote the generic feature vector as: 

𝒙𝑖 = [
𝒂̂

𝒗̂𝑥 + 𝒗̂𝑦 +  𝒗̂𝑧
] , (2) 

where the generic feature vector 𝒙𝑖 contains the 

PSD from the audio and vibration signals. The PSD 

vector for the vibration data in each direction are 

added. By Parseval’s theorem the result will 

always have the same signal energy as the sum of 

energies of the components [20]. In this way, the 

vibration component of the generic feature vector 

is largely invariant to the rotation of the 

accelerometer. 

To demonstrate that the generic feature vector 

contains relevant information about the physical 

process, several feature vectors are compared. 

Figure 4 compares the feature vectors from 

operations with different cutting strategies. Figure 

5 compares the coefficients from a new tool and a 

worn tool. 



 

 
FIGURE 4. COMPARISON OF FEATURE VECTORS 

WHILE THE MACHINE WAS PERFORMING DIFFERENT 

CUTTING OPERATIONS.  

 
FIGURE 5. COMPARISON OF FEATURE VECTORS FOR 

A NEW TOOL AND A WORN TOOL, WHILE A CLIMB 

CUTTING OPERATION WAS BEING COMPLETED 

TOOL CONDITION PREDICTION MODEL 
In this section, we develop a GPR model to 

predict tool condition using the generic frequency 

feature vectors. A number of alternative techniques 

such as k-Nearest Neighbors and Support Vector 

Regression were considered. GPR is chosen as it 

performs particularly well with noisy data. An 

additional benefit of GPR is that it provides a 

distribution on the target value, as opposed to a 

scalar estimate.  

GPR has been used to develop models for a 

range of manufacturing problems. In [21], GPR 

was used to predict the energy consumption of a 

CNC milling machine using features such as 

spindle speed and cutting type. A variant of GPR 

called Local Gaussian Process Regression (LGPR) 

was used in [4] to develop a model for real-time 

robot control. The Predictive Model Markup 

Language (PMML) was recently extended to offer 

GPR support, as described in [22] and [23], 

providing a standardized format to save and 

transport GPR models.  

Data Collection 

The Mori Seiki milling machine was used to 

produce parts until the cutting tool became severely 

damaged, or the cutting tool broke. A total of 14 

tools were used to produce 56 parts. The audio and 

vibration time series were recorded as described 

earlier. 

In a typical manufacturing environment, 

machine tools tend to last several days. To 

accelerate the testing process, the operating 

parameters of the machine were adjusted to 

increase the rate of tool-wear by increasing the feed 

rate and reducing the rotation speed. With the 

adjusted operating parameters, the operating 

lifetime of a cutting tool was reduced to about 30 

minutes in this experiment.  

Defining Tool Condition 

A number of different methods have been 

proposed to measure the condition of a machine 

tool. While quantitative measurements such as the 

wear depth have been proposed as tool condition 

measures, these measures often fail to accurately 

capture wear when the blade becomes chipped. 

In this study, we define the condition of the 

milling machine tool 𝑦𝑐 ∈ [0,1], based on the 

remaining lifetime of the tool, as estimated after 

manually examining the tool with a microscope. 

The scale is defined such that 100 % indicates a 

new tool in perfect condition, and 50 % indicates 

the condition at which the tool would be replaced 

in a commercial manufacturing operation. Figure 6 

illustrates four different states of the machine tool 

flute.  

 



 

 

FIGURE 6. TOOL FLUTE IN DIFFERENT STATES OF 

CONDITION. A LOWER VALUE OF 𝑦 INDICATES MORE 

WEAR 

Gaussian Process Model 

In GPR, a Gaussian process (GP) is used as a 

prior to describe the distribution on the target 

function 𝑦 = 𝑓(𝑥). A GP is a generalization of the 

Gaussian probability distribution  for which any 

finite linear combination of samples has a joint 

Gaussian distribution [24]. 

A GP can be fully specified by its                    

mean function m(⋅) and covariance kernel      

function k(⋅,⋅). 

𝑝(𝑓1:𝑛) = 𝐺𝑃(𝑚(∙), 𝑘(∙,∙)). 
 

(3) 

 

The mean function 𝑚(∙) captures the overall trend 

in the target function value and the kernel function 

𝑘(∙,∙) is used to approximate the covariance by 

representing the similarity between the data points 

[24]. For the tool condition model, we choose to 

use the zero function as the mean function.  

In general, we denote the input as 𝒙𝑖 ∈ ℝ𝒏 and 

the target value as 𝑦 ∈ ℝ. In the proposed data 

processing method, the input 𝒙𝑖 is the generic 

feature vector. A GP is used as a prior to describe 

the distribution on the target function 𝑦𝑖 = 𝑓(𝒙𝒊). 

We attempt to learn the target function by 

incorporating prior knowledge captured in 

historical data. Suppose the current data set is 

denoted by 𝑫 = {(𝒙𝑖, 𝑦𝑖)|𝑖 = 1, … 𝑛}. With GPR, 

the measured output 𝑦𝑛𝑒𝑤 = 𝑓(𝒙𝑛𝑒𝑤) 

corresponding to the new feature vector 𝑥𝑛𝑒𝑤 and 

the historical outputs 𝑦1:𝑛 in the training data set 

follow a multivariate Gaussian distribution: 

[
𝒚1:𝑛

𝑓𝑛𝑒𝑤] ~𝑁 (𝟎, [
𝐊 𝒌
𝒌𝑇 𝑘(𝒙𝑛𝑒𝑤 , 𝒙𝑛𝑒𝑤)

]), 
 

(4) 

 

where the entries in  the vector 𝒌, and the 

covariance kernel matrix 𝐊, are defined 

respectively as: 

𝒌𝑖  =  𝑘(𝒙𝑖, 𝒙𝑛𝑒𝑤), (5) 

𝐊𝑖𝑗  = 𝑘(𝒙𝑖 , 𝒙𝑗). (6) 

The covariance kernel matrix 𝐊 is often 

precomputed on the training data, allowing new 

predictions to be computed efficiently. 

Selecting a Kernel Function 

The covariance kernel function provides an 

efficient method to compute the similarity between 

two generic feature vectors. In GPR, the kernel 

function is used to estimate the covariance between 

two input vectors, 𝒙i and 𝒙𝑗. 

The Automatic Relevance Determination 

(ARD) squared exponential kernel is often used 

with GPR, as it automates the selection of feature 

weights. The ARD squared exponential function 

can be expressed as: 
𝑘(𝒙𝑖 , 𝒙𝑗) = 

𝛾exp (−
1

2
(𝒙𝑖 − 𝒙𝑗)𝑇diag(𝝀)−2(𝒙𝑖 − 𝒙𝑗)), 

(7) 

where the kernel function is described by the 

hyper-parameters, 𝛾 and 𝝀. The signal variance 

hyper-parameter 𝛾 quantifies the overall 

magnitude of the covariance value. The hyper-

parameter 𝜆𝑘 where 𝑘 ∈ {1 … |𝝀|} is used to 

quantify the relevancy of the input feature 𝑥𝑘
𝑖  when 

predicting the response 𝑦. During the training 

process, an optimization problem is constructed to 

maximize the likelihood of the training data, 

relative to the hyper-parameters 𝛾 and 𝝀 [24]. 

Noise Model 

Each tool condition label 𝑦, is likely to contain 

random noise due to the complex nature of tool 

wear and the manual labelling method. To account 

for this random noise we assume that each 

 
𝑎)      𝑦 = 0.9  

 
𝑏)         𝑦 = 0.4 

 
𝑐)        𝑦 = 0.6 𝑑)       𝑦 = 0.1 
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https://en.wikipedia.org/wiki/Multivariate_normal_distribution


 

observed value contains some random noise ϵ, such 

that 𝑦 = 𝑓(𝒙) + 𝜖. We assume that this noise 

follows an independent, identically distributed 

Gaussian distribution with zero mean and variance 

𝜎𝜖
2: 

𝜖~𝒩(0, 𝜎𝜖
2). (8) 

It follows from the independence assumption that 

the noise model can be represented by adding a 

noise term to the kernel function [24]: 
 

𝑘(𝒙𝑖 , 𝒙𝑗) = 

𝛾exp (−
1

2
(𝒙𝑖 − 𝒙𝑗)𝑇diag(𝝀)−2(𝒙𝑖 − 𝒙𝑗)) + 𝜎𝜖

2𝛿𝑖𝑗 , 
(9) 

 

where 𝛿𝑖𝑗 represents Kronecker delta function 

which serves to selectively add the noise variance 

𝜎𝜖
2 to the covariance value.  

Model Regularization 

The size of the hyperparameter vector is 

dependent on the choice of kernel and the length of 

the input vector 𝒙𝑖. With the ARD squared 

exponential kernel, the number of hyperparameters 

can become reasonably large: 

|𝜽| = |𝛾| + |𝝀| = 1 + |𝒙𝒊|.  
 

(10) 

 

The large number of hyperparameters increases the 

flexibility of the model, allowing it to represent 

high-dimensional relationships. The increased 

model complexity also makes it prone to 

overfitting. In machine learning, regularization is 

commonly used to limit the parameter space of the 

model. Bayesian model selection is an alternative 

approach to regularization, used to constrain the 

model complexity, as described in [25]. We start 

by defining a prior 𝑝(𝜽) on the hyperparameters 𝜽, 

to restrict the hyperparameter space. Hereafter we 

will refer to 𝑝(𝜽) as the hyperprior, as is common 

in existing literature [24]. In the proposed 

methodology, we choose the hyperprior to 

minimize the weights in 𝜽. 

𝑝(𝜽)~𝒩(0, 𝛼2𝑰), 
 

(11) 

 

where 𝛼 is a regularization parameter which 

controls the flexibility of the model. For a large 𝛼, 

the model will tend to fit to the training data well, 

but is unlikely to generalize well to the unseen test 

data. As the value of 𝛼 is decreased the model will 

become more constrained, and the generalization 

error will tend to decrease. The optimum value of 

𝛼 is found through cross-validation.  

Training Procedure 

In the training procedure a GP is fitted to the 

training data set. Suppose we denote the dataset 

𝑫 = {(𝒙𝑖, 𝑦𝑖)|𝑖 = 1, … 𝑛} for time series block 𝑖. 
The GPR training procedure involves selecting a 

set of hyperparameters to maximize the marginal 

likelihood of the training data. The marginal 

distribution of the observations can be expressed 

as: 

𝑝(𝒚1:𝑛|𝜽) = ∫ 𝑝(𝒚1:𝑛|𝒇1:𝑛) 𝑝(𝜽)𝑝(𝒇1:𝑛|𝜽) 𝑑𝒇1:𝑛 . 
 

(12) 

 

The unknown function 𝒇 can be marginalized out 

of (12) to obtain the marginal likelihood of the 

training observations. The hyperparameters 𝜽 are 

chosen to maximize the marginal likelihood of 

observations in a given training data set 𝑫. An 

optimization equation is formed to maximize the 

marginal likelihood, and obtain to the optimum 

hyperparameters 𝜽∗: 

𝜽∗ = arg max
θ

log 𝑝 (𝐲1:n|𝜽 ). 
 

(13) 

 

Finding the optimum hyperparameters using (13) 

requires an iterative approach as the value of the 

kernel matrix K is inherently dependent on the 

hyperparameters. The process for obtaining the 

optimum hyperparameters is well documented in 

the literature [24]. The MATLAB library GPML 

[25] is chosen to optimize the hyperparameters. 

Scoring Procedure 

In GPR, the aim of the scoring procedure is to 

obtain a posterior distribution 𝑓𝑛𝑒𝑤 on the output 

value, based on the previously unseen observation 

𝒙𝑛𝑒𝑤. In the case where the mean function is zero, 

the posterior distribution on the response 𝑓𝑛𝑒𝑤 for 

the newly observed input 𝒙𝑛𝑒𝑤 can be expressed as 

a Gaussian distribution: 



 

𝑓𝑛𝑒𝑤~𝒩(𝜇(𝒙𝑛𝑒𝑤|𝑫𝑛), 𝜎 
2(𝒙𝑛𝑒𝑤|𝑫𝑛)). 

 

(14) 

 

The posterior mean 𝜇(𝒙𝑛𝑒𝑤|𝑫𝑛), and associated 

variance 𝜎2(𝒙𝑛𝑒𝑤|𝑫𝑛), can be calculated directly. 

As the posterior distribution is 1D Gaussian, the 

posterior mean and variance are sufficient to fully 

describe the posterior distribution. That is, the 

posterior distribution can be expressed as [24]:  

𝜇(𝒙𝑛𝑒𝑤|𝑫𝑛) = 𝒌𝑇(𝐊 + 𝜎𝜖
2𝐈)−1𝒚1:𝑛, (15) 

𝜎 
2(𝒙𝑛𝑒𝑤|𝑫𝑛) = 𝑘(𝒙𝑛𝑒𝑤 , 𝒙𝑛𝑒𝑤) − 𝒌𝑇(𝐊 + 𝜎𝜖

2𝐈)−1𝒌. (16) 

MODEL PERFORMANCE 
When evaluating machine learning models, it is 

common practice to divide the data set into a 

training set and testing set. The model is trained on 

the training set and then tested on the previous 

unseen data in the testing set. Data points from 

three cutting tools were randomly selected for the 

testing set. Two GP models are trained to predict 

tool condition; the first is trained with the generic 

feature vectors from the climb-cutting blocks, and 

the second is trained with the feature vectors from 

the conventional-cutting blocks. 

The two models are used together to predict the 

condition of the tool, for each point in the testing 

set. Figure 7 and Figure 8 provide a comparison of 

the model predictions with the human labels. In the 

ideal case, the model would predict the same values 

as the human labels, and the plotted points would 

align with the dotted diagonal line. It can be 

observed that the trained model predicts the tool 

conditions comparable to the human labeled 

results. 

The tool condition predicted by the model 

closely aligns with the human labelled tool 

condition for relatively new tools, especially for 

tool condition in the 90-100 % range. This is most 

likely because the new tools provide a very 

consistent audio and vibration signal. Once the tool 

condition drops below 40 % there is a larger 

variation in the audio and vibration signals, making 

tool condition prediction more difficult. For 

example, a cutting tool at 40 % condition may have 

sustained heat damage and worn smooth, or it may 

have undergone brittle failure and chipped. Both 

failure modes would provide different audio and 

vibration signals, but the model is expected to label 

both cases as 40 % wear. The confidence interval 

increases as the condition decreases, indicating that 

it is harder to predict more heavily worn tools, as 

shown in Figure 7 and Figure 8. 

It is likely that the accuracy of the model could 

be improved by increasing the amount of data in 

the training data set. The training data set does not 

contain many time series segments for worn tools, 

as a number of tests had to be stopped before the 

tool condition dropped below 20 %. Increasing the 

number of training data points collected with worn 

tools could reduce the confidence intervals in the 

predictions.   

 
FIGURE 7. TOOL CONDITION PREDICTION FOR THE 

CLIMB CUTTING ACTIONS IN ONE OF THE THREE TEST 

DATASETS. THE ERROR BARS INDICATE ONE STANDARD 

DEVIATION IN THE TARGET DISTRIBUTION. 

 
FIGURE 8. TOOL CONDITION PREDICTION FOR THE 

CONVENTIONAL CUTTING ACTIONS IN ONE OF THE 

THREE TEST DATASETS. THE ERROR BARS INDICATE ONE 

STANDARD DEVIATION IN THE TARGET DISTRIBUTION. 



 

However, in an industrial application the cutting 

tool will be replaced before it reaches 50 % wear, 

so the accuracy of the model is less critical for 

heavily worn tools. 

DISCUSSION 
This study demonstrates how information from 

a milling machine controller can be combined with 

sensor data to predict the condition of the milling 

machine tool. Information from the milling 

machine controller was used to aggregate the time 

series data over a set of finite intervals. The 

frequency content in each time series block were 

summarized using a PSD. The PSD from the audio 

and vibration signals were combined to create a 

generic feature vector, containing information 

about each time series block. 

The use of a non-parametric regression model, 

namely GPR, allowed the complex relationship 

between the generic feature vector and the target 

value to be modelled. The ARD squared 

exponential kernel was used to automate the 

feature selection process. The combination of the 

generic feature vectors and automated weighting 

procedure make this technique applicable to a 

range of different modelling tasks in the 

manufacturing domain. However, the cross-

validation training procedure increases the training 

time by an order of magnitude. 

The GP model provides confidence bounds for 

the predictive estimations, which are useful when 

interpreting the reliability of a prediction at some 

arbitrary time. The confidence bounds would likely 

prove useful in a practical application where the 

tool-condition predictions were used to determine 

when to change machine tools. 

FUTURE WORK 
For this method to have practical applications, it 

must generalize well to a range of different 

machines and machine operations. A similar 

technique could be applied to predict tool condition 

on a range of different manufacturing machines. 

The same technique could also be applied to 

correlate time series signals with surface quality or 

bearing failure. 
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